Critical Assessment of Using Ionic Liquid as Entrainer via Extractive Distillation

Supporting Information

Hung-Hsin Chen, Meng-Kai Chen, Bor-Chang Chen, and I-Lung Chien *

Department of Chemical Engineering,

National Taiwan University,

Taipei 10617, Taiwan

^{*} Corresponding author. I-Lung Chien, Tel: +886-3-3366-3063; Fax: +886-2-2362-3040; E-mail: ilungchien@ntu.edu.tw

This text file is the supporting information for the paper "Critical Assessment of Using Ionic Liquid as Entrainer via Extractive Distillation."

Detailed Information of Estimated PLXANT model

Figure S1. Estimated PLXANT model of [EMIM][OAC] by the critical temperature from the group contribution method and Klincewicz method.

Detailed Information of Economic Analysis

Table S1Basis of economics and equipment sizing.

Retrofitted or Duplicate Process Flowsheet for Separation

- Table S2 UNIQUAC model parameters of acetone/methanol/DMSO system.
- Table S3 NRTL model parameters of IPA/water/DMSO system
- Figure S2. Retrofitted process flowsheet for acetone/methanol separation based on Luyben's work.
- Figure S3. Duplicate process flowsheet for IPA dehydration to 99.9999 mol% from Arifin and Chien's work.
- Figure S4. Retrofitted process flowsheet for IPA dehydration to 99.99 mol% from Liang et al.'s work.

Sensitivity Analysis to Impurity in IL Recover Stream

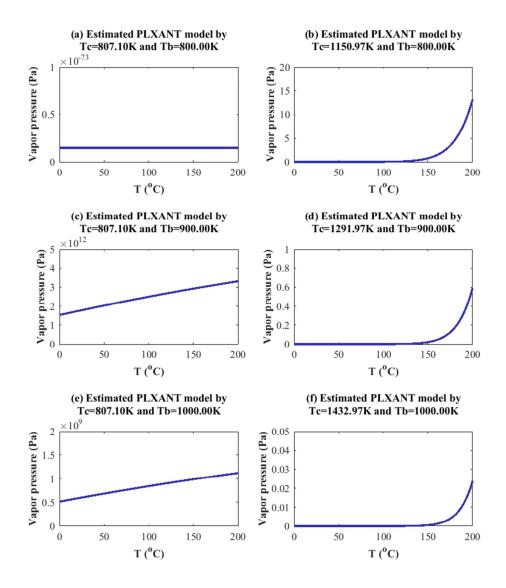

Figure S5. Sensitivity analysis of how E/F, NE, NF and NT influence Xmmax for acetone/methanol separation.

Figure S6. Sensitivity analysis of how E/F, NE, NF and NT influence Xwmax for 99.9999 mol% IPA case.

Figure S7. Sensitivity analysis of how E/F, NE, NF and NT influence Xwmax for 99.99 mol% IPA case.

Supporting Information I: Estimated PLXANT model

Figure S1. Estimated PLXANT model of [EMIM][OAC] by the critical temperature from the group contribution method and Klincewicz method.

Supporting Information II: detailed information of economic analysis

```
Table S1 Basis of economics and equipment sizing
Column diameter (D): Aspen tray sizing
Column length (L): NT trays with 2-ft spacing plus 20% extra length
Column and other vessel (D and L are in meters)
     Capital cost = 17,640(D)^{1.066}(L)^{0.802}
Condensers (area in m^2)
     Heat-transfer coefficient = 0.852 \text{ kW/K-m}^2
     Differential temperature = reflux-drum temperature -315 K
     Capital cost = 7296(area)^{0.65}
Reboilers (area in m^2)
     Heat-transfer coefficient = 0.568 \text{ kW/K-m}^2
     Differential temperature = steam temperature – base temperature (\Delta T > 20 \text{ K})
     Capital cost = 7296(area)^{0.65}
Vacuum system
     Steam ejector
          Size factor (S): flow rate (lb/hr)/suction pressure (torr)
          Cost multiplying factor (C_M):
               One-stage: 1.0, two-stages: 1.8, three-stages: 2.1
          Capital cost = 1690(C_M)(S)^{0.41}
          Steam used amount is assumed to be 10 times of flowrate.
          Operating cost = (Steam consumption) * (LP steam cost)
     Liquid-ring pump
          Size factor (S): flow rate (ft^3/min)
          Capital cost 8250(S)<sup>0.35</sup>
     Screw compressor
          Size factor (S): flow rate (ft^3/min)
          Capital cost 9590(S)<sup>0.38</sup>
Energy cost
     HP steam = 9.88/GJ (41 barg, 254 °C)
     MP steam = 8.22/GJ (10 barg, 184 °C)
     LP steam = 7.78/GJ (5 barg, 160 °C)
     Cooling water (320K) = $0.354/GJ
     Chilled water (15 \,^{\circ}C) = $4.43/GJ
     Refrigerant at -50 °C = 13.11/GJ
     Refrigerant at -67.78 °C = 17.97/GJ
```

Refrigerant at -101.11 °C = \$26.71/GJ Electricity = \$16.9/GJ

Chemical cost

Acetone = \$3.40/kg IPA = \$3.87/kg

TAC = (capital cost/payback period) + energy cost; Payback period = 3 years; Operating hour = 8000 hours/year

Supporting Information III: Retrofitted or Duplicate Process Flowsheet for Separation

Table S2 UNIQUAC model parameters of acetone/methanol/DMSO system.			
Acetone	Acetone	Methanol	
Methanol	DMSO	DMSO	
ASPEN VLE-IG	ASPEN VLE-IG	ASPEN VLE-IG	
0	0	0	
0	0	0	
-225.1533	-62.9317	129.3624	
52.7705	-20.3857	23.4854	
	Acetone Methanol ASPEN VLE-IG 0 0 -225.1533	AcetoneAcetoneMethanolDMSOASPEN VLE-IGASPEN VLE-IG0000-225.1533-62.9317	

Table S2 UNIQUAC model parameters of acetone/methanol/DMSO system.

UNIQUAC activity coefficient model:

$$\ln \gamma_i = \frac{\Phi_i}{x_i} + \frac{z}{2} q_i \ln \left(\frac{\theta_i}{\Phi_i}\right) - q_i \ln \left(\sum_k \theta_k \tau_{ki}\right) - q_i \sum_j \frac{\theta_j \tau_{ij}}{\sum_j \theta_j \tau_{ji}} + l_i + q_i - \frac{\Phi_i}{x_i} \sum_j x_j l_j,$$

where

 γ_i is the activity coefficient of component i,

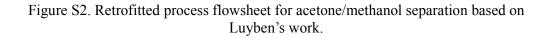
 x_i is the mole fraction of component i,

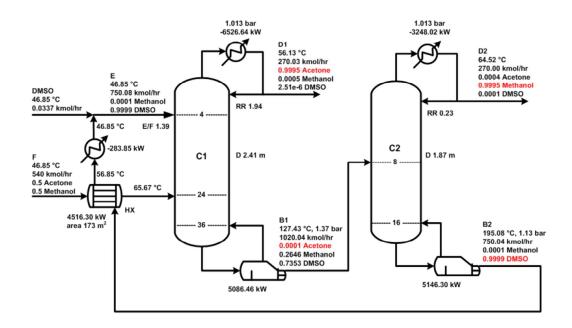
q_i is the pure component area parameter of component i,

r_i is the pure component volume parameter of component i,

$$\begin{split} \Phi_{i} &= \frac{X_{i}r_{i}}{\sum_{k}X_{k}r_{k}}, \\ \theta_{i} &= \frac{X_{i}q_{i}}{\sum_{k}X_{k}q_{k}}, \\ \tau_{ij} &= \exp\left(a_{ij} + \frac{b_{ij}}{T}\right), \\ l_{i} &= \frac{z}{2}(r_{i} - q_{i}) + 1 - r_{i}, \\ z &= 2. \end{split}$$

Component i	Isopropanol	Isopropanol	Water
Component j	Water	DMSO	DMSO
Source	ASPEN VLE-IG	ASPEN VLE-IG	ASPEN VLE-IG
a _{ij}	-1.3115	0	-1.2449
a_{ji}	6.8284	0	1.7524
b _{ij} (K)	426.40	115.28	586.80
$b_{ji}(K)$	-1483.46	-25.01	-1130.22
c _{ij}	0.30	0.30	0.30


Table S3 NRTL model parameters of IPA/water/DMSO system.


NRTL model:

$$\ln \gamma_{i} = \frac{\sum_{j} x_{j} \tau_{ji} G_{ji}}{\sum_{k} x_{k} G_{ki}} + \sum_{j} \left[\frac{x_{j} G_{ij}}{\sum_{k} x_{k} G_{kj}} \left(\tau_{ij} - \frac{\sum_{m} x_{m} \tau_{mj} G_{mj}}{\sum_{k} x_{k} G_{kj}} \right) \right],$$

$$\mathbf{G}_{ij} = \exp(-\mathbf{c}_{ij}\boldsymbol{\tau}_{ij}),$$

$$\tau_{ij} = a_{ij} + \frac{b_{ij}}{T}, \ \tau_{ii} = 0$$

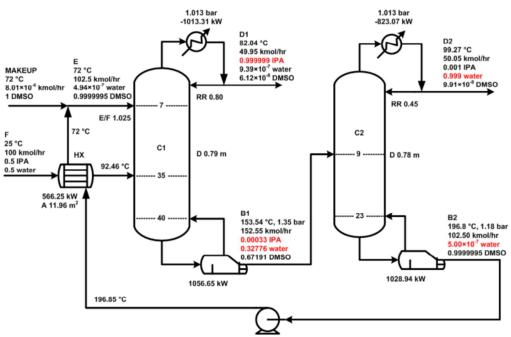


Figure S3. Duplicate process flowsheet for IPA dehydration to 99.9999 mol% from Arifin and Chien's work.

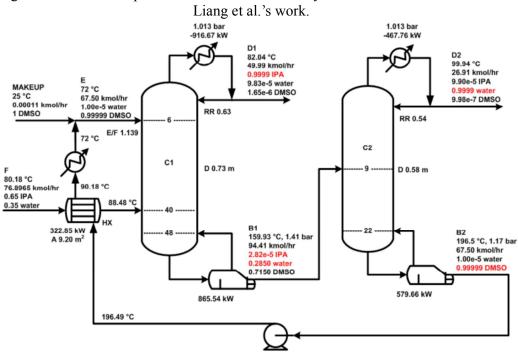
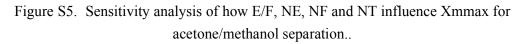
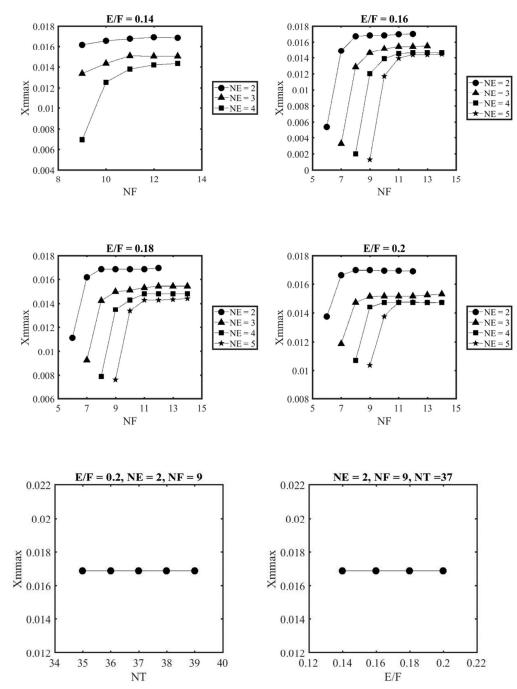




Figure S4. Retrofitted process flowsheet for IPA dehydration to 99.9999 mol% from

Supporting Information IV: Sensitivity Analysis to Impurity in IL Recover

Stream

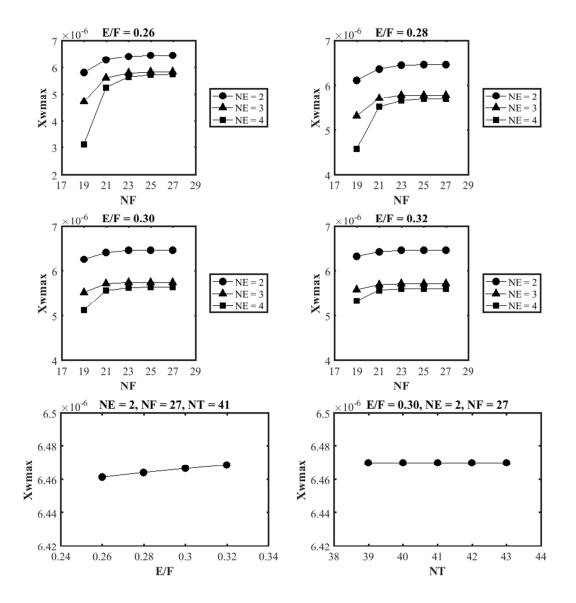


Figure S6. Sensitivity analysis of how E/F, NE, NF and NT influence Xwmax for 99.9999 mol% IPA case.

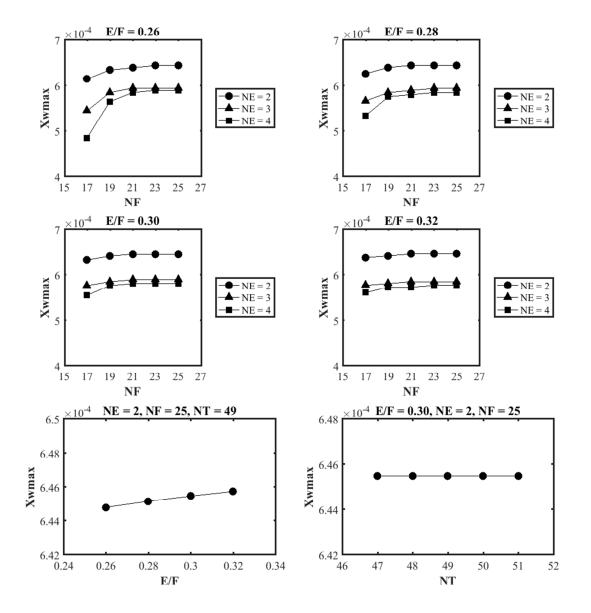


Figure S7. Sensitivity analysis of how E/F, NE, NF and NT influence Xwmax for 99.99 mol% IPA case.