Synthesis of Methylenebicyclo[3.2.1]octanol by a Sm(II)-induced 1,2-Rearrangement Reaction with Ring Expansion of Methylenebicyclo[4.2.0]octanone

Kazuhiko Takatori,* Shoya Ota, Kenta Tendo, Kazuma Matsunaga, Kokoro Nagasawa, Shinya Watanabe, Atsushi Kishida, Hiroshi Kogen, and Hiroto Nagaoka

Graduate School of Pharmaceutical Sciences, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan

Supporting Information

Table of Contents

General Information	SI
Experimental Procedures and Characterization Data	
Preparation of a 0.1 M solution of SmI ₂ in THF	S2
Experimental procedure for the 1,2-rearrangement reaction	S2
Preparation of the substrates	S11
Deuteration experiment	S24
X-ray crystallographic analysis	S26
References	S27
¹ H- and ¹³ C-NMR Spectra of the Products and the Substrates	S28-64

General Information

All reactions were carried out under an inert atmosphere of argon with dry solvents, unless otherwise stated. Reagents of the highest commercial quality were purchased and used without further purification, unless otherwise stated. Anhydrous THF and CH₂Cl₂ were purchased from Kanto Chemical Industries Ltd. Other anhydrous solvents and reagents were prepared by standard methods. Sm granules or turnings were purchased from Soekawa Chemical Co. Ltd. or Kanto Chemical Industries Ltd., respectively. Reactions were monitored by thin-layer chromatography carried out on Merck silica gel 60 F₂₅₄ plates (250 μm) and visualized using ultraviolet light and *p*-anisaldehyde, potassium permanganate, or cerium molybdate stain. ¹H- and ¹³C-NMR spectra were recorded on a JEOL JNM-ECA500, a JEOL JNM-Lambda-500 (¹H: 500 MHz; ¹³C: 125 MHz), a JEOL JNM-ECS400, a JEOL JNM-AL400 (¹H: 400 MHz; ¹³C: 100 MHz), or a JEOL JNM-AL-300 (¹H: 300 MHz; ¹³C: 75 MHz) spectrometer. The chemical shifts are reported as δ values relative to tetramethylsilane (TMS) at 0 ppm or CHCl₃ at 7.26 ppm in CDCl₃ for ¹H-NMR, and relative to CDCl₃ at 77.0 ppm for ¹³C-NMR. IR spectra were recorded on a JASCO FT/IR 4100 Series spectrometer. MS spectra were recorded on a JEOL JMS-700 double-focusing spectrometer. Elemental analyses were recorded on a Yanaco CHN CORDER MT-6. Melting points were measured on a Yanaco micro melting point apparatus and are uncorrected. Optical rotations were measured on a JASCO P-2200 polarimeter.

Preparation of a 0.1 M solution of SmI₂ in THF¹

Sm granules or turnings (902 mg, 6.00 mmol), 1,2-diiodoethane (1.41 g, 5.00 mmol) and a Teflon-coated magnetic stirring bar were placed in an oven-dried 100 mL round-bottomed flask equipped with a three-way glass stopcock. The flask was evacuated and back-filled with argon three times. THF (50 mL) was added to the flask with a syringe, and the mixture was stirred overnight at room temperature. The resulting blue solution of SmI₂ in THF was transferred to a reaction vessel with a syringe. In this preparation method, the true concentration of the solution is reported to be approximately 0.07 M.¹

General procedure for the 1,2-rearrangement reaction with ring expansion of methylenebicyclo[4.2.0]octanone

Condition A (SmI₂/HMPA/t-BuOH combination)

A 0.1 M solution of SmI_2 in THF (3 equiv) was added dropwise to a solution of the substrate **2**, degassed HMPA (12 equiv), and *t*-BuOH (1 equiv) in THF. The mixture was stirred for 30 min at room temperature until all the substrate disappeared, as monitored by TLC. To quench the reaction, excess Sm^{2+} was oxidized to Sm^{3+} by blowing air into the flask while stirring the reaction mixture.

Condition B (SmI₂/LiCl/t-BuOH combination)

To a refluxed 0.1 M solution of SmI_2 in THF (3 equiv) was added dropwise a solution of the substrate **2**, dried LiCl (6 equiv), and *t*-BuOH (1 equiv) in THF so that reflux was maintained. The mixture was refluxed for 5 min until all the substrate disappeared, as monitored by TLC. The mixture was cooled to room temperature in an ice bath, and the reaction was quenched by blowing air into the flask while stirring the reaction mixture.

Condition C (SmI₂/TBABr/HMPA combination)

A 0.1 M solution of SmI_2 in THF (4 equiv) was added dropwise to dried TBABr (8 equiv). The mixture was refluxed for 20 min. Degassed HMPA (16 equiv) was added dropwise to the mixture, followed by reflux for a further 20 min. A solution of the substrate 2 in THF was added dropwise so that reflux was maintained. The mixture was refluxed for 30 min until all the substrate disappeared, as monitored by TLC. The mixture was cooled to room temperature in an ice bath, and the reaction was quenched by blowing air into the flask while stirring the reaction mixture.

Work-up procedure I

The quenched mixture was diluted with excess Et_2O , then washed with 1 M HCl, saturated aqueous NaHCO₃, 20% aqueous Na₂S₂O₃ solution, water, and then brine. The organic layer was dried over MgSO₄, and concentrated in vacuo to give crude product 1.

Work-up procedure II

The quenched mixture was diluted with excess Et_2O . While the mixture was vigorously stirred, saturated aqueous $NaHCO_3$ and 20% aqueous $Na_2S_2O_3$ solution were sequentially added dropwise at a volume ratio of 2:1. The resulting precipitate was separated by filtration, and the filtrate was concentrated in vacuo to give crude product 1.

Methyl $(1R^*,6R^*,9S^*)$ -9-hydroxy-10-methylenetricyclo[7.2.1.0^{1,6}]dodecane-6-carboxylate (1a)

The reaction was carried out under condition A and the worked up by procedure I using substrate **2a** (42.2 mg, 0.170 mmol) in THF (2.0 mL), a 0.1 M solution of SmI₂ in THF (5.1 mL, 0.51 mmol), HMPA (0.36 mL, 2.04 mmol), and t-BuOH (15.6 μ L, 0.164 mmol). The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 3:1) to give product **1a** as a colorless oil (38.2 mg, 90% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 1.17 (1H, m), 1.20–1.31 (2H, m), 1.32 (1H, dt, J = 5.4, 13.7 Hz), 1.38–1.58 (4H, m), 1.65–1.72 (2H, m), 1.82 (1H, m), 2.05 (1H, dt, J = 17.6, 2.4 Hz), 2.12 (1H, ddd, J = 14.2, 5.4, 2.0 Hz), 2.16 (1H, dd, J = 11.2, 2.4 Hz), 2.40 (1H, dt, J = 4.4, 13.2 Hz), 2.73 (1H, dq, J = 17.6, 2.4 Hz), 3.68 (3H, s), 4.81 (1H, m), 4.95 (1H, t, J = 2.4 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 22.4, 22.8, 32.6, 33.3, 35.0, 38.1, 41.1, 42.2, 49.3, 49.9, 51.4, 79.5, 102.3, 155.8, 176.1. IR (neat) cm⁻¹: 3411, 2930, 2861, 1729, 1664, 1463, 1430, 1259, 1242, 1186, 1151, 1132, 1121, 1074, 1017. EI-MS m/z (%): 250 (M⁺, 69), 190 (94), 148 (100), 121 (99), 108 (31). HR-EI-MS m/z: Calcd for C₁₅H₂₂O₃: 250.1569. Found: 250.1571 [M⁺].

(1R*,6S*,9S*)-6-Methyl-10-methylenetricyclo[7.2.1.0^{1,6}]dodecan-9-ol (1b)

The reaction was carried out under condition B and worked up by procedure I using substrate **2b** (40.8 mg, 0.200 mmol) in THF (2.4 mL), a 0.1 M solution of SmI₂ in THF (6.0 mL, 0.60 mmol), LiCl (50.9 mg, 1.20 mmol), and t-BuOH (18.3 μ L, 0.193 mmol). The crude product was purified by column chromatography on silica gel (hexane:Et₂O = 2:1) to give product **1b** as a slightly yellow oil (37.7 mg, 91% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 1.02 (3H, s), 1.08 (1H, dt, J = 13.3, 3.0 Hz), 1.19–1.40 (6Hm), 1.41–1.56 (4H, m), 1.72 (1H, dt, J = 3.9, 13.5 Hz), 1.80 (1H, dd, J = 10.8, 2.5 Hz), 1.95 (1H, dt, J = 5.7, 12.4 Hz), 2.02 (1H, dt, J = 17.4, 2.5 Hz), 2.76 (1H, dq, J = 17.4, 2.5 Hz), 4.79 (1H, m), 4.93 (1H, t, J = 2.5 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 20.4, 21.7, 22.8, 34.6, 35.1, 35.9, 36.5, 36.7, 39.7, 42.5, 47.7, 80.2, 101.9, 156.6. IR (neat) cm⁻¹: 3374, 2970, 2938, 2858, 1663, 1457, 1377, 1329, 1173, 1142, 1099, 1077, 1050, 892, 878. EI-MS m/z (%): 206 (M⁺, 100), 188 (30), 149 (25), 121 (78), 108 (39). HR-EI-MS m/z: Calcd for C₁₄H₂₂O: 206.1671. Found: 206.1667 [M⁺]. *Anal*. Calcd for C₁₄H₂₂O: C, 81.50; H, 10.75. Found: C, 81.74; H, 10.96.

$(1R^*,5R^*,8S^*)$ -9-Methylenetricyclo[6.2.1.0^{1,5}]undecan-8-ol (1c)

The reaction was carried out under condition C and worked up by procedure II using substrate **2c** (25.3 mg, 0.14 mmol) in THF (1.4 mL), a 0.1 M solution of SmI₂ in THF (5.8 mL, 0.58 mmol), TBABr (370 mg, 1.15

mmol), and HMPA (0.41 mL, 2.36 mmol). The crude product was purified by column chromatography on silica gel (hexane:Et₂O = 2:1) to give product **1c** as a colorless oil (22.1 mg, 88% yield). The product contained a small amount of **9** (**1c**:**9** = 11:1) which was difficult to separate from **1c**. ¹H-NMR (400 MHz, CDCl₃) δ : 1.34 (1H, dd, J = 10.5, 3.0 Hz), 1.40–1.74 (12H, m), 1.81 (1H, dt, J = 6.7, 11.3 Hz), 2.10 (1H, ddt, J = 16.3, 3.0, 2.4 Hz), 2.54 (1H, dt, J = 16.3, 2.4 Hz), 4.93 (1H, m), 5.08 (1H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 21.5, 22.6, 28.5, 35.0, 37.5, 41.1, 44.8, 46.3, 47.8, 79.8, 105.3, 156.4. IR (neat) cm⁻¹: 3356, 2930, 2859, 1448, 1245, 1099, 1077, 888. EI-MS m/z (%): 178 (M⁺, 84), 149 (43), 135 (15), 122 (17), 121 (100), 109 (13), 108 (64), 95 (17), 91 (10), 79 (11). HR-EI-MS m/z: Calcd for C₁₂H₁₈O: 178.1358. Found: 178.1356 [M⁺].

Methyl $(1S^*,6R^*,9S^*)$ -9-hydroxy-10-methylene-4-oxatricyclo[7.2.1.0^{1,6}]dodecane-6-carboxylate (1d)

The reaction was carried out under condition A and worked up by procedure I using substrate **2d** (41.3 mg, 0.165 mmol) in THF (2.0 mL), a 0.1 M solution of SmI₂ in THF (5.0 mL, 0.50 mmol), HMPA (0.34 mL, 1.95 mmol), and t-BuOH (15.1 μ L, 0.159 mmol). The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 2:3) to give product **1d** as a white solid (34.5 mg, 83% yield). Mp: 124–126 °C. ¹H-NMR (500 MHz, CDCl₃) δ : 1.10 (1H, d, J = 13.4 Hz), 1.25 (1H, dt, J = 4.9, 13.7 Hz), 1.52–1.57 (2H, m), 1.69 (1H, m), 1.97 (1H, ddd, J = 13.7, 4.9, 1.8 Hz), 2.14 (1H, dt, J = 17.7, 2.4 Hz), 2.37 (1H, dd, J = 11.3, 2.4 Hz), 2.77 (1H, dt, J = 5.5, 13.4 Hz), 2.91 (1H, dq, J = 17.7, 2.4 Hz), 3.43 (1H, d, J = 11.9 Hz), 3.45 (1H, ddd, J = 13.4, 11.6, 2.4 Hz), 3.73 (3H, s), 3.85 (1H, dd, J = 11.6, 5.5 Hz), 3.98 (1H, d, J = 11.9 Hz), 4.85 (1H, m), 4.99 (1H, t, J = 2.4 Hz). ¹³C-NMR (125 MHz, CDCl₃) δ : 27.2, 34.8, 37.3, 40.2, 40.4, 48.3, 50.2, 51.9, 65.5, 71.9, 79.2, 102.9, 154.5, 174.5. IR (neat) cm⁻¹: 3452, 2958, 2928, 2910, 2853, 1739, 1666, 1264, 1220, 1185, 1173, 1093, 1082. EI-MS m/z (%): 252 (M⁺, 40), 224 (37), 192 (100), 150 (51), 121 (54), 108 (51). HR-EI-MS m/z: Calcd for C₁₄H₂₀O₄: 252.1362. Found: 252.1367 [M⁺].

Ethyl $(1S^*,6R^*,9S^*)$ -4-(tert-butoxycarbonyl)-9-hydroxy-10-methylene-4-azatricyclo[7.2.1.0^{1.6}]-dodecane-6-carboxylate (1e)

The reaction was carried out under condition A and worked up by procedure I using substrate **2e** (50.7 mg, 0.140 mmol) in THF (1.7 mL), a 0.1 M solution of SmI₂ in THF (4.2 mL, 0.42 mmol), HMPA (0.29 mL, 1.67 mmol), and *t*-BuOH (12.8 μ L, 0.135 mmol). The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 3:2) to give product **1e** as a white amorphous solid (46.3 mg, 91% yield). ¹H-NMR (300 MHz, CDCl₃, 50 °C) δ : 1.09 (1H, m), 1.27 (3H, t, J = 7.2 Hz), 1.42 (9H, s), 1.45–1.65 (3H, m), 1.75 (1H, dt, J = 5.1, 12.3 Hz), 2.06–2.15 (3H, m), 2.63–2.75 (3H, m), 2.80 (1H, dq, J = 17.7, 2.4 Hz), 4.122 (2H, q, J = 7.2 Hz), 4.119 (1H, m), 4.25 (1H, m), 4.84 (1H, m), 4.99 (1H, t, J = 2.4 Hz). ¹³C-NMR (75 MHz,

CDCl₃, 50 °C) δ : 14.1, 28.4, 28.7, 34.3, 37.7, 40.0, 41.0 (br s), 41.3, 48.7, 48.9 (br s), 49.5, 60.6, 79.38, 79.44, 102.9, 154.4, 154.7, 173.6. IR (neat) cm⁻¹: 3430, 2978, 2931, 2866, 1725, 1677, 1467, 1430, 1366, 1282, 1150, 1099, 1047, 886, 757. EI-MS m/z (%): 365 (M⁺, 4.1), 308 (100), 264 (91), 235 (32), 192 (23), 57 (30). HR-EI-MS m/z: Calcd for $C_{20}H_{31}NO_5$: 365.2202. Found: 365.2204 [M⁺].

Methyl $(6aR^*,9S^*,11aR^*)$ -9-hydroxy-8-methylene-5,6,7,8,9,10,11,11a-octahydro-6a,9-methanocyclohepta[a]naphthalene-11a-carboxylate (1f)

The reaction was carried out under condition A and worked up by procedure I using substrate **2f** (44.5 mg, 0.150 mmol) in THF (2.0 mL), a 0.1 M solution of SmI₂ in THF (4.5 mL, 0.45 mmol), HMPA (0.31 mL, 1.78 mmol), and t-BuOH (13.7 μ L, 0.144 mmol). The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 2:1) to give product **1f** as a slightly yellow oil (39.7 mg, 89% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 1.39 (1H, m), 1.58 (1H, dt, J = 5.8, 13.7 Hz), 1.63–1.71 (2H, m), 1.90 (1H, dd, J = 11.2, 2.4 Hz), 1.95 (1H, br s), 2.16–2.27 (2H, m), 2.32 (1H, dq, J = 17.6, 2.4 Hz), 2.81–2.92 (4H, m), 3.60 (3H, s), 4.73 (1H, m), 4.98 (1H, t, J = 2.4 Hz), 7.09–7.17 (3H, m), 7.30 (1H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 26.3, 30.9, 31.2, 38.6, 40.2, 42.0, 48.6, 52.0, 52.4, 79.8, 102.6, 125.8, 126.7, 127.1, 129.3, 136.5, 137.7, 155.1, 175.0. IR (neat) cm⁻¹: 3413, 3014, 2981, 2950, 2929, 2867, 1720, 1665, 1457, 1244, 1207, 1191, 1177, 1129, 1079, 1017, 886, 789, 750, 739. EI-MS m/z (%): 298 (M⁺, 19), 239 (100), 221 (15), 131 (21). HR-EI-MS m/z: Calcd for C₁₉H₂₂O₃: 298.1569. Found: 298.1564 [M⁺].

(1R*,6R*,9S*)-10-Methylene-6-trimethylsilyloxytricyclo[7.2.1.0^{1,6}]dodecan-9-ol (1g)

The reaction was carried out under condition A and worked up by procedure II using substrate **2g** (44.5 mg, 0.160 mmol) in THF (2.0 mL), a 0.1 M solution of SmI₂ in THF (4.5 mL, 0.45 mmol), HMPA (0.33 mL, 1.90 mmol), and t-BuOH (14.6 μ L, 0.154 mmol). The reaction was performed under reflux for 45 min until all the substrate disappeared, as monitored by TLC. The crude product was purified by column chromatography on silica gel (hexane:Et₂O = 3:1) to give product **1g** as a as a white solid (40.2 mg, 90% yield). Mp: 93–95 °C. 1 H-NMR (400 MHz, CDCl₃) δ : 0.14 (9H, s), 1.02 (1H, m), 1.17 (1H, dd, J = 10.2, 2.4 Hz), 1.21 (1H, m), 1.37–1.61 (8H, m), 1.83 (1H, dt, J = 3.4, 13.2 Hz), 1.96 (1H, m), 2.10 (1H, dt, J = 17.6, 2.4 Hz), 2.12 (1H, dd, J = 10.2, 2.4 Hz), 2.45 (1H, dq J = 17.6, 2.4 Hz), 4.81 (1H, m), 4.97 (1H, t, J = 2.4 Hz). 13 C-NMR (100 MHz, CDCl₃) δ : 2.4, 21.6, 22.5, 33.9, 34.4, 35.0, 36.9, 40.0, 45.5, 47.6, 76.1, 79.3, 103.0, 156.4. IR (KBr) cm⁻¹: 3324, 2973, 2933, 2860, 1451, 1247, 1145, 1092, 1080, 1051, 1030, 998, 871, 837. EI-MS m/z (%): 280 (M⁺, 20), 190 (100), 173 (17), 162 (54), 144 (21), 134 (20), 73 (26). HR-EI-MS m/z: Calcd for C₁₆H₂₈O₂Si: 280.1859. Found: 280.1861 [M⁺]. *Anal.* Calcd for C₁₆H₂₈O₂Si: C, 68.52; H, 10.06. Found: C, 68.74; H, 10.14.

(1R*,6R*,9S*)-6-[(tert-Butyldimethylsilyloxy)methyl]-10-methylenetricyclo[7.2.1.0^{1,6}]dodecan-9-ol (1h)

The reaction was carried out under condition B and worked up by procedure II using substrate **2h** (50.3 mg, 0.150 mmol) in THF (1.8 mL), a 0.1 M solution of SmI₂ in THF (4.5 mL, 0.45 mmol), LiCl (38.2 mg, 0.900 mmol), and *t*-BuOH (13.7 μ L, 0.144 mmol). The crude product was purified by column chromatography on silica gel (hexane:Et₂O = 2:1) to give product **1h** as a white solid (47.3 mg, 94% yield). Mp: 117–120 °C.

¹H-NMR (300 MHz, CDCl₃) δ : 0.04 (6H, s), 0.89 (9H, s), 0.91–1.12 (3H, m), 1.21–1.56 (7H, m), 1.67–1.78 (4H, m), 1.87 (1H, dt, J = 5.3, 12.6 Hz), 2.01 (1H, dt, J = 17.6, 2.6 Hz), 2.83 (1H, m), 3.65 (1H, d, J = 9.7 Hz), 3.75 (1H, dd, J = 9.7, 1.7 Hz), 4.80 (1H, m), 4.93 (1H, t, J = 2.6 Hz). ¹³C-NMR (75 MHz, CDCl₃) δ : -5.5, 18.3, 21.4, 22.6, 25.9, 29.1, 29.2, 34.5, 36.3, 39.5, 40.9, 41.6, 46.9, 60.4, 79.9, 101.8, 156.4. IR (KBr) cm⁻¹: 3311, 2977, 2930, 2857, 1460, 1090, 1076, 861, 836, 778. EI-MS m/z (%): 336 (M⁺, 17), 279 (68), 187 (100), 145 (25), 131 (19), 119 (16), 105 (17), 75 (21). HR-EI-MS m/z: Calcd for C₂₀H₃₆O₂Si: 336.2485. Found: 336.2484 [M⁺]. *Anal*. Calcd for C₂₀H₃₆O₂Si: C, 71.37; H, 10.78. Found: C, 71.63; H, 10.82.

tert-Butyl (1S*,6R*,9S*)-6-[(tert-butyldimethylsilyloxy)methyl]-9-hydroxy-10-methylene-4-azatricyclo-[7.2.1.0^{1,6}]dodecane-4-carboxylate (1i)

The reaction was carried out under condition B and worked up by procedure II using substrate **2i** (52.4 mg, 0.120 mmol) in THF (1.5 mL), a 0.1 M solution of SmI₂ in THF (3.6 mL, 0.36 mmol), LiCl (30.5 mg, 0.720 mmol), and t-BuOH (11.0 μ L, 0.116 mmol). The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 5:2) to give product **1i** as a white amorphous solid (44.4 mg, 85% yield). ¹H-NMR (300 MHz, CDCl₃, 50 °C) δ : 0.06 (6H, s), 0.92 (9H, s), 1.07 (1H, m), 1.35 (1H, dd, J = 11.1, 2.7 Hz), 1.45 (9H, s), 1.48–1.52 (2H, m), 1.80–1.89 (3H, m), 1.90 (1H, dd, J = 13.5, 5.1 Hz), 2.04 (1H, dt, J = 17.1, 2.4 Hz), 2.42 (1H, d, J = 13.2 Hz), 2.69 (1H, dt, J = 3.3, 13.5 Hz), 2.89 (1H, dq, J = 17.1, 2.4 Hz), 3.66 (1H, d, J = 10.1 Hz), 3.70 (1H, d, J = 10.1 Hz), 4.00–4.07 (2H, m), 4.85 (1H, m), 4.98 (1H, t, J = 2.4 Hz). ¹³C-NMR (75 MHz, CDCl₃, 50 °C) δ : -5.6, -5.4, 18.4, 25.4, 26.0, 28.5, 33.3, 36.2, 39.7, 40.37, 40.42, 40.5, 46.3, 46.8, 60.3, 79.3, 79.7, 102.6, 155.2. No signal was observed for the carbonyl carbon. IR (neat) cm⁻¹: 3417, 2930, 2857, 1682, 1471, 1430, 1365, 1278, 1255, 1147, 1111, 1073, 885, 855, 837, 756, 666. HR-FAB-MS (m-nitrobenzyl alcohol) m/z: Calcd for C₂₄H₄₄NO₄Si: 438.3040. Found: 438.3049 [MH⁺].

(1S,3aS,3bR,5aR,8S,10aR,10bS,12aS)-10a,12a-Dimethyl-7-methylenehexadecahydro-1H-5a,8-methanocyclohepta[a]cyclopenta[f]naphthalene-1,8-diol (1j)

The reaction was carried out under condition B without t-BuOH and worked up by procedure I using substrate 2j (42.7 mg, 0.130 mmol) in THF (1.6 mL), a 0.1 M solution of SmI₂ in THF (3.9 mL, 0.39 mmol), and LiCl (33.1 mg, 0.781 mmol). The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 1:2) to give product 1j as a white solid (38.2 mg, 89% yield). Mp: 195–198 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 0.73 (3H, s), 0.88 (1H, dq, J = 3.9, 13.2 Hz), 0.97 (3H, s), 0.95 (1H, m), 1.02–1.13 (3H, m), 1.15–1.61 (13H, m), 1.75 (1H, dt, J = 3.9, 13.7 Hz), 1.79–1.91 (3H, m), 1.98–2.10 (2H, m), 2.80 (1H, m), 3.63 (1H, t, J = 8.8 Hz), 4.77 (1H, m), 4.91 (1H, t, J = 2.4 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 11.1, 15.2, 21.2, 23.4, 28.0, 30.5, 33.7, 34.4, 35.6, 36.6, 36.8, 37.7, 39.8, 43.0, 44.0, 47.8, 48.5, 50.9, 79.9, 81.9, 101.8, 156.4. IR (KBr) cm⁻¹: 3368, 2930, 2852, 1099, 1074. EI-MS m/z (%): 330 (M⁺, 100), 312 (52), 121 (41), 108 (36). HR-EI-MS m/z: Calcd for C₂₂H₃₄O₂: 330.2559. Found: 330.2556 [M⁺]. [α]²⁵ +23.6 (c 0.99, CHCl₃).

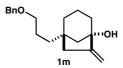
(1R*,5S*,6S*,9S*)-6-Methyl-10-methylenetricyclo[7.2.1.0^{1,6}]dodecan-5,9-diol (1k)

The reaction was carried out under condition B without t-BuOH and worked up by procedure I using substrate 2k (44.0 mg, 0.200 mmol) in THF (2.4 mL), a 0.1 M solution of SmI_2 in THF (6.0 mL, 0.60 mmol), and LiCl (50.9 mg, 1.20 mmol). The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 1:2) to give product 1k as a white solid (41.7 mg, 94% yield). Mp: 154–156 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 0.97 (3H, s), 1.04 (1H, m), 1.28 (1H, br s), 1.32 (1H, dd, J = 11.2, 2.9 Hz), 1.30–1.49 (2H, m), 1.53 (1H, m), 1.57–1.75 (5H, m), 1.87 (1H, dd, J = 11.2, 2.9 Hz), 1.92 (1H, dt, J = 5.4, 12.7 Hz), 2.03 (1H, dt, J = 17.6, 2.9 Hz), 2.75 (1H, dq, J = 17.6, 2.9 Hz), 3.62 (1H, dd, J = 11.2, 4.9 Hz), 4.81 (1H, m), 4.95 (1H, t, J = 2.9 Hz). 13 C-NMR (100 MHz, CDCl₃) δ : 12.9, 21.3, 30.6, 32.1, 33.8, 36.5, 39.5, 40.2, 44.0, 47.3, 75.3, 80.0, 102.4, 155.8. IR (KBr) cm⁻¹: 3450, 3303, 2986, 2962, 2935, 2861, 1666, 1457, 1331, 1074, 1009, 1001, 872. EI-MS m/z (%): 222 (M⁺, 100), 204 (25), 147 (47), 122 (50), 121 (41), 95 (66). HR-EI-MS m/z: Calcd for $C_{14}H_{22}O_2$: 222.1620. Found: 222.1618 [M⁺].

Representative example of the 1,2-rearrangement

A solution of substrate **2k** and dried LiCl (382 mg, 9.00 mmol) in THF (18.0 mL) was added dropwise to a refluxed 0.1 M solution of SmI₂ in THF (45.0 mL, 4.50 mmol) so that reflux was maintained. The mixture was refluxed for 5 min until the substrate disappeared, as monitored by TLC. The mixture was cooled to room temperature in an ice bath, and the reaction was quenched by blowing air into the flask while stirring the reaction mixture. The quenched mixture was diluted with excess Et₂O. While the mixture was vigorously

stirred, saturated aqueous NaHCO₃ and 20% aqueous Na₂S₂O₃ solution were sequentially added dropwise at a volume ratio of 2:1. The resulting precipitate was separated by filtration, and the filtrate was concentrated in vacuo. The resulting crude product was purified by column chromatography on silica gel (hexane:AcOEt = 1:1) to give product $1\mathbf{k}$ as a white solid (317 mg, 95% yield).


$(6aR^*,9S^*,11aS^*)$ -11a-Methyl-8-methylene-5,6,7,8,9,10,11,11a-octahydro-6a,9-methanocyclohepta[a]naphthalen-9-ol (1l)

The reaction was carried out under condition B and worked up by procedure I using substrate **2l** (40.1 mg, 0.159 mmol) in THF (2.0 mL), a 0.1 M solution of SmI₂ in THF (4.8 mL, 0.48 mmol), LiCl (40.7 mg, 0.960 mmol), and t-BuOH (14.6 μ L, 0.154 mmol). The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 3:1) to give product **1l** as a white solid (34.5 mg, 85% yield). Mp: 114–118 °C.

¹H-NMR (400 MHz, CDCl₃) δ : 1.26 (3H, s), 1.35 (1H, ddd, J = 13.5, 6.8, 1.5 Hz), 1.48 (1H, dd, J = 10.8, 2.4 Hz), 1.69 (1H, s), 1.62–1.72 (2H, m), 2.02 (1H, dd, J = 10.8, 2.4 Hz), 2.05–2.15 (2H, m), 2.20 (1H, m), 2.25 (1H, dt, J = 17.6, 2.4 Hz), 2.32 (1H, dq, J = 17.6, 2.4 Hz), 2.80 (1H, dd, J = 17.6, 6.8 Hz), 2.89 (1H, ddd, J = 17.6, 12.2, 6.8 Hz), 4.73 (1H, m), 4.95 (1H, t, J = 2.4 Hz), 7.04 (1H, m), 7.09 (1H, dt, J = 1.5, 7.2 Hz), 7.14 (1H, m), 7.24 (1H, m).

¹³C-NMR (100 MHz, CDCl₃) δ : 26.67, 26.74, 30.6, 33.5, 37.1, 39.6, 39.8, 41.9, 47.4, 80.3, 102.5, 125.4, 126.1, 126.3, 128.8, 134.6, 146.1, 155.9. IR (KBr) cm⁻¹: 3357, 2968, 2937, 2887, 2860, 1661, 1489, 1457, 1337, 1130, 1080, 880, 764. EI-MS m/z (%): 254 (M⁺, 95), 239 (100), 221 (17), 141 (15), 131 (37). HR-EI-MS m/z: Calcd for C₁₈H₂₇O: 254.1671. Found: 254.1667 [M⁺].

$(1S^*,5S^*)$ -5-[3-(Benzyloxy)propyl]-7-methylenebicyclo[3.2.1]octan-1-ol (1m)

The reaction was carried out under condition C and worked up by procedure II using substrate **2m** (28.4 mg, 0.10 mmol) in THF (1.0 mL), a 0.1 M solution of SmI₂ in THF (4.0 mL, 0.40 mmol), TBABr (258 mg, 0.80 mmol), and HMPA (0.28 mL, 1.61 mmol). The crude product was purified by column chromatography on silica gel (hexane:AcOEt = 3:1) to give product **1m** as a colorless oil (15.4 mg, 54% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 1.26 (1H, m), 1.37–1.73 (12H, m), 2.14–2.25 (2H, m), 3.45 (2H, t, J = 6.5 Hz), 4.50 (2H, s), 4.83 (1H, m), 4.98 (1H, t, J = 2.5 Hz), 7.28–7.37 (5H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 20.7, 25.0, 35.1, 37.5, 39.9, 40.9, 51.5, 71.0, 72.9, 80.2, 103.3, 127.5, 127.6, 128.3, 138.5, 156.7. IR (neat) cm⁻¹: 3407, 2937, 2849, 1454, 1329, 1244, 1091, 884, 735, 697. EI-MS m/z (%): 286 (M⁺, 9), 268 (15), 196 (11), 195 (81), 177 (22), 149 (13), 137 (33), 135 (22), 92 (11), 91 (100). HR-EI-MS m/z: Calcd for C₁₉H₂₆O₂: 286.1933. Found: 286.1931 [M⁺]. *Anal*. Calcd for C₁₉H₂₆O₂: C, 79.68; H, 9.15. Found: C, 79.48; H, 9.42.

$(1S^*,5R^*)$ -5-Butyl-7-methylenebicyclo[3.2.1]octan-1-ol (1n)

The reaction was carried out under condition C and worked up by procedure II using substrate **2n** (76.9 mg, 0.40 mmol) in THF (4.0 mL), a 0.1 M solution of SmI₂ in THF (16.0 mL, 1.60 mmol), TBABr (1.03 g, 3.20 mmol), and HMPA (1.1 mL, 6.32 mmol). The crude product was purified by column chromatography on silica gel (hexane:Et₂O = 3:1) to give product **1n** as a colorless oil (56.8 mg, 73% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 0.89 (3H, t, J = 7.0 Hz), 1.19–1.34 (7H, m), 1.37–1.54 (3H, m), 1.57–1.61 (3H, m), 1.64–1.72 (2H, m), 2.13–2.23 (2H, m), 4.83 (1H, m), 4.97 (1H, t, J = 4.6 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 14.1, 20.8, 23.5, 26.7, 35.2, 39.9, 40.1, 40.96, 40.98, 51.5, 80.2, 103.1, 157.0. IR (neat) cm⁻¹: 3357, 2928, 2856, 1456, 1329, 1136, 1076, 885. EI-MS m/z (%): 194 (M⁺, 33), 152 (15), 151 (99), 138 (15), 137 (100), 109 (16), 95 (23). HR-EI-MS m/z: Calcd for C₁₃H₂₂O: 194.1671. Found: 194.1668 [M⁺].

(1S*,5S*)-5-(tert-Butyl)-7-methylenebicyclo[3.2.1]octan-1-ol (1o)

The reaction was carried out under condition C and worked up by procedure II using substrate **2o** (27.0 mg, 0.14 mmol) in THF (1.4 mL), a 0.1 M solution of SmI₂ in THF (5.6 mL, 0.56 mmol), TBABr (362 mg, 1.12 mmol), and HMPA (0.42 mL, 2.18 mmol). The reaction was performed under reflux for 3 h until all the substrate disappeared, as monitored by TLC. The crude product was purified by column chromatography on silica gel (hexane:Et₂O = 4:1) to give product **1o** as a colorless oil (23.0 mg, 85% yield). Mp: 71–74 °C. 1 H-NMR (400 MHz, CDCl₃) δ : 0.86 (9H, s), 1.33–1.37 (2H, m), 1.43–1.73 (6H, m), 1.79 (1H, m), 2.01 (1H, dq, J = 17.4, 2.3 Hz), 2.46 (1H, dq, J = 17.4, 2.2 Hz), 4.83 (1H, m), 4.97 (1H, m). 13 C-NMR (100 MHz, CDCl₃) δ : 20.8, 25.8, 30.8, 33.9, 36.1, 39.8, 45.6, 46.3, 80.6, 103.1, 157.3. IR (KBr) cm⁻¹: 2951, 2871, 1698, 1668, 1367, 1232, 1175, 883. EI-MS m/z (%): 194 (M⁺, 15), 138 (17), 137 (100), 95 (13). HR-EI-MS m/z: Calcd for C₁₃H₂₂O: 194.1671. Found: 194.1669 [M⁺].

(1R*,6S*,9S*)-10-Methylenetricyclo[7.2.1.0^{1,6}]dodecan-5-ol (1p)

The reaction was carried out under condition C and worked up by procedure II using substrate **2p** (20.3 mg, 0.11 mmol) in THF (1.1 mL), a 0.1 M solution of SmI₂ in THF (4.3 mL, 0.43 mmol), TBABr (275 mg, 0.85 mmol), and HMPA (0.31 mL, 1.78 mmol). The reaction time was conducted for 2 h until all the substrate disappeared, as monitored by TLC. The crude product was purified by column chromatography on silica gel (hexane:Et₂O = 2:1) to give product **1p** as a colorless oil (18.1 mg, 89% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 0.97–1.67 (15H, m), 1.76 (1H, ddd, J = 18.5, 11.7, 5.5 Hz), 1.95 (1H, ddt, J = 17.2, 0.8, 2.6 Hz), 2.52 (1H,

dq, J = 17.2, 2.6 Hz), 4.82 (1H, m), 4.95 (1H, t, J = 2.6 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 23.0, 26.4, 28.8, 29.7, 36.6, 38.5, 40.0, 40.2, 42.5, 54.0, 79.5, 102.9, 157.0. IR (neat) cm⁻¹: 3365, 2920, 2851, 1661, 1453, 1328, 1246, 1169, 1154, 1109, 1073, 882. EI-MS m/z (%): 192 (M⁺, 100), 163 (16), 149 (21), 135 (11), 134 (11), 121 (66), 108 (26), 95 (10). HR-EI-MS m/z: Calcd for C₁₃H₂₀O: 192.1514. Found: 192.1513 [M⁺]. *Anal*. Calcd for C₁₃H₂₀O: C, 81.20; H, 10.48. Found: C, 81.12; H, 10.39.

$(1R^*,6R^*,9S^*)$ -10-Methylene-4-oxatricyclo[7.2.1.0^{1,6}]dodecan-9-ol (1q)

The reaction was carried out under condition C and worked up by procedure II using substrate 2q (31.0 mg, 0.16 mmol) in THF (1.6 mL), a 0.1 M solution of SmI₂ in THF (6.5 mL, 0.65 mmol), TBABr (416 mg, 1.29 mmol), and HMPA (0.46 mL, 2.64 mmol). The reaction time was conducted for 12 h until all the substrate disappeared, as monitored by TLC. The crude product was purified by column chromatography on silica gel (hexane:Et₂O = 1:4) to give product 1q as a colorless oil (20.7 mg, 66% yield) and the recovered substrate 2q (6.4 mg, 21%). ¹H-NMR (400 MHz, CDCl₃) δ : 1.01 (1H, ddt, J = 13.5, 5.9, 12.8 Hz), 1.30 (1H, dt, J = 13.4, 1.8 Hz), 1.49–1.53 (2H, m), 1.60 (1H, br s), 1.62–1.68 (2H, m), 1.69 (1H, dd, J = 10.4, 2.6 Hz), 1.80 (1H, ddd, J = 12.8, 11.6, 5.5 Hz), 1.84 (1H, dt, J = 4.9, 13.4 Hz), 2.05 (1H, m), 2.71 (1H, dq, J = 17.2, 2.6 Hz), 3.16 (1H, t, J = 11.6 Hz), 3.35 (1H, ddd, J = 13.4, 11.4, 1.8 Hz), 3.67 (1H, dd, J = 11.6, 4.5 Hz), 3.80 (1H, m), 4.87 (1H, m), 5.00 (1H, t, J = 2.6 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 22.9, 35.7, 37.7, 38.1, 39.2, 41.9, 52.9, 64.8, 69.1, 79.1, 103.5, 155.5. IR (neat) cm⁻¹: 3417, 2929, 2850, 1661, 1329, 1224, 1078, 883. EI-MS m/z (%): 194 (M*, 100), 137 (38), 136 (11), 122 (84), 121 (25), 120 (11), 109 (14), 108 (37), 107 (13), 95 (11), 91 (13), 79 (12). HR-EI-MS m/z: Calcd for C₁₂H₁₈O₂: C, 74.19; H, 9.34. Found: C, 74.05; H, 9.25.

(1R,3aR,3bS,5aS,7R,10S,10aR,10bS,12aR)-3b,10a,12a-Trimethyl-8-methylene-1-[(R)-6-methyl-heptan-2-yl]octadecahydro-7,10-methanocyclohepta[a]cyclopenta[f]naphthalen-7-ol (1r)

The reaction was carried out under condition C and worked up by procedure II using substrate **2r** (42.5 mg, 0.10 mmol) in THF (1.0 mL), a 0.1 M solution of SmI₂ in THF (4.0 mL, 0.40 mmol), TBABr (258 mg, 0.80 mmol), and HMPA (0.28 mL, 1.61 mmol). The reaction time was conducted for 1 h until all the substrate disappeared, as monitored by TLC. The crude product was purified by column chromatography on silica gel (hexane:Et₂O = 5:1) to give product **1r** as a white solid (17.9 mg, 42% yield). Mp: 117–119 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 0.65 (3H, s), 0.85 (3H, s), 0.860 (3H, d, J = 6.4 Hz), 0.865 (3H, d, J = 6.9 Hz), 0.90 (3H, d, J = 6.6 Hz), 0.93–1.15 (9H, m), 1.18–1.27 (5H, m), 1.30–1.44 (6H, m), 1.46–1.66 (7H, m), 1.80 (1H, m), 1.88–1.97 (2H, m), 2.08 (1H, m), 2.30 (1H, ddt, J = 17.4, 6.5, 2.7 Hz), 2.39 (1H, dq, J = 17.4, 2.4 Hz), 4.84

(1H, m), 4.96 (1H, m). 13 C-NMR (100 MHz, CDCl₃) δ : 12.2, 15.7, 18.7, 21.1, 22.6, 22.8, 23.8, 24.2, 27.2, 28.0, 28.3, 31.4, 31.8, 35.75, 35.78, 36.1, 37.7, 39.2, 39.5, 40.0, 41.3, 41.4, 42.8, 43.2, 48.9, 56.3, 56.5, 79.8, 102.7, 156.8. IR (KBr) cm⁻¹: 3349, 2933, 2864, 2848, 1465, 1381, 1171, 1117, 1089, 957, 881. EI-MS m/z (%): 426 (M⁺, 51), 411 (41), 368 (27), 331 (100), 272 (26), 271 (42). HR-EI-MS m/z: Calcd for C₃₀H₅₀O: 426.3862. Found: 426.3863 [M⁺]. *Anal.* Calcd for C₃₀H₅₀O: C, 84.44; H, 11.81. Found: C, 84.54; H, 11.97. $\lceil \alpha \rceil_D^{25} + 33.9$ (c 1.00, CHCl₃).

Preparation of the substrates

General procedure for [2+2] photocycloaddition of the enone and allene

To a solution of enone in CH_2Cl_2 or MeOH was introduced allene² at -78 °C by distillation. The mixture was irradiated at -78 °C through a Pyrex filter with a 100 W high-pressure mercury lamp until all the enone disappeared, as monitored by TLC. Excess allene and the solvent were removed under atmospheric and reduced pressure, respectively. The residue was purified by column chromatography on silica gel (hexane:AcOEt = 4:1) to give cyclobutyl ketone **2**.

Preparation of 2a

$$\begin{array}{c} \text{CO}_2\text{Me} \\ \hline \\ \text{O} \\ \hline \\ \text{CH}_2\text{Cl}_2, -78 \,^{\circ}\text{C}, 3.5 \, \text{h} \\ \end{array}$$

Methyl $(1R^*,4S^*,8R^*)$ -3-methylene-5-oxotricyclo $[6.4.0.0^{1.4}]$ dodecane-8-carboxylate (2a)

The photocycloaddition reaction was carried out using 14^3 (1.05 g, 5.04 mmol) in CH₂Cl₂ (2.0 mL) and allene (5.0 mL) by irradiating for 3.5 h. Purification by column chromatography on silica gel (hexane:AcOEt = 4:1) afforded 2a as a white solid (1.06 g, 85% yield). A single crystal for X-ray crystallographic analysis was obtained by crystallization from AcOEt–hexane. Mp: 76–78 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 1.15–1.30 (2H, m), 1.34 (1H, tq, J = 4.4, 13.2 Hz), 1.55–1.62 (3H, m), 1.75–1.88 (2H, m), 2.00–2.20 (3H, m), 2.50–2.61 (2H, m), 2.90 (1H, dquint, J = 17.1, 2.4 Hz), 3.37 (1H, m), 3.67 (3H, s), 4.97 (1H, q, J = 2.4 Hz), 5.03 (1H, q, J = 2.4 Hz). 13 C-NMR (100 MHz, CDCl₃) δ : 20.9, 23.3, 29.5, 30.3, 34.3, 34.4, 38.4, 41.3, 48.0, 51.4, 61.5, 111.0, 140.9, 175.6, 207.3. IR (KBr) cm $^{-1}$: 2958, 2928, 2862, 1720, 1695, 1664, 1459, 1426, 1232, 1190, 1159, 1131, 1025, 907, 894. EI-MS m/z: (%): 248 (M $^+$, 17), 216 (21), 189 (100), 161 (33), 133 (38), 91 (27). HR-EI-MS m/z: Calcd for C₁₅H₂₀O₃: 248.1412. Found: 248.1408 [M $^+$]. *Anal*. Calcd for C₁₅H₂₀O₃: C, 72.55; H, 8.12. Found: C, 72.42; H, 8.12.

Preparation of 2b

4a-Methyl-2,3,4,4a,5,6,7,8-octahydronaphthalen-2-one (16)

A solution of **15** (2.23 g, 19.9 mmol), methyl vinyl ketone (2.0 mL, 24.0 mmol), and p-TsOH • H₂O (190 mg, 1.00 mmol) in benzene (29 mL) was refluxed for 4 h. The mixture was cooled in an ice bath, then neutralized with saturated aqueous NaHCO₃ (10 mL). The aqueous layer was extracted with Et₂O. The combined organic layers were washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane:AcOEt = 5:1) to give **16** as a slightly yellow oil (1.61 g, 49% yield). 1 H-NMR (400 MHz, CDCl₃) δ : 1.24 (3H, s), 1.32–1.45 (2H, m), 1.65–1.72 (3H, m), 1.77 (1H, ddd, J = 13.2, 5.8, 3.4 Hz), 1.83 (1H, dd, J = 14.2, 4.4 Hz), 1.91 (1H, m), 2.25 (1H, m), 2.31–2.41 (2H, m), 2.50 (1H, ddd, J = 17.1, 14.2, 5.8 Hz), 5.72 (1H, s). 13 C-NMR (100 MHz, CDCl₃) δ : 21.7, 22.0, 27.1, 32.7, 34.0, 35.9, 38.0, 41.5, 124.1, 170.5, 199.6. IR (neat) cm⁻¹: 2930, 2860, 1676, 1617, 1448, 1327, 1260, 1226, 1186, 858. EI-MS m/z (%): 164 (M⁺, 100), 136 (65), 122 (85), 107 (39). HR-EI-MS m/z: Calcd for C₁₁H₁₆O: 164.1201. Found: 164.1200 [M⁺].

(1R*,4S*,8S*)-8-Methyl-3-methylenetricyclo[6.4.0.0^{1,4}]dodecane-5-one (2b)

The photocycloaddition reaction was carried out using **16** (903 mg, 5.50 mmol) in MeOH (3.0 mL) and allene (4.0 mL) by irradiating for 7 h. Purification by column chromatography on silica gel (hexane:Et₂O= 4:1) afforded **2b** as a colorless oil (969 mg, 86% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 0.87 (3H, s), 1.22–1.28 (2H, m), 1.31 (1H, dt, J = 8.8, 4.4 Hz), 1.36–1.52 (4H, m), 1.58 (1H, m), 1.70 (1H, ddt, J = 4.0 2.0, 13.2 Hz), 2.08 (1H, dt, J = 14.0, 9.3 Hz), 2.38 (1H, ddd, J = 19.2, 9.3, 1.5 Hz), 2.42 (1H, dt, J = 16.8, 2.4 Hz), 2.60 (1H, m), 2.98 (1H, dquint, J = 16.8, 2.4 Hz), 3.09 (1H, m), 4.97 (1H, q, J = 2.4 Hz), 4.99 (1H, q, J = 2.4 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 18.1, 20.9, 21.2, 32.8, 33.5, 33.6, 33.9, 34.1, 37.4, 43.7, 61.3, 111.0, 140.7, 211.2. IR (neat) cm⁻¹: 2986, 2927, 2863, 1698, 1670, 1464, 1446, 1236, 1200, 1193, 886, 870. EI-MS m/z (%): 204 (M⁺, 74), 189 (49), 175 (48), 147 (100), 105 (50), 91 (51). HR-EI-MS m/z: Calcd for C₁₄H₂₀O: 204.1514. Found: 204.1511 [M⁺].

Preparation of 2c4

1,2,3,6,7,7a-hexahydro-5*H*-inden-5-one (2c)

The photocycloaddition reaction was carried out using 17^5 (2.10 g, 15.4 mmol) in CH₂Cl₂ (15 mL) and allene (15 mL) by irradiating for 5 h. Purification by column chromatography on silica gel (hexane:Et₂O = 5:1) afforded 2c as a colorless solid (2.20 g, 81% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 1.40 (1H, dddd, J = 15.1, 8.4, 6.6, 5.0 Hz),, 1.53–1.67 (3H, m), 1.69–1.83 (2H, m), 1.88–2.00 (2H, m), 2.04 (1H, m), 2.28 (1H, ddd, J = 17.0, 7.9, 5.7 Hz), 2.40 (1H, ddd, J = 17.0, 9.7, 5.5 Hz), 2.55 (1H, dq, J = 15.3, 2.6 Hz), 2.67 (1H, ddt, J =

15.3, 0.7, 2.6 Hz), 3.36 (1H, m), 4.86 (1H, q, J = 2.6 Hz), 4.87 (1H, q, J = 2.6 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 23.7, 26.7, 30.1, 36.3, 39.1, 42.9, 43.5, 46.8, 58.9, 107.4, 142.0, 209.9. IR (neat) cm⁻¹: 2941, 2865, 1702, 1671, 1454, 1414, 1232, 1183, 883. EI-MS m/z (%): 176 (M⁺, 100), 161 (22), 148 (44), 147 (28), 134 (87), 133 (60), 121 (26), 120 (86), 119 (96), 106 (33), 105 (64), 93 (34), 92 (43), 91 (81), 79 (49), 77 (27). HR-EI-MS m/z: Calcd for C₁₂H₁₆O: 176.1201. Found: 176.1198 [M⁺].

Preparation of 2d

Methyl 6-oxo-1,3,4,6,7,8,8a-heptahydroisochromene-8a-carboxylate (19)

To a solution of 18⁶ (790 mg, 5.00 mmol) in benzene (10 mL) were added methyl vinyl ketone (0.57 mL, 7.03 mmol) and K₂CO₃ (276 mg, 2.00 mmol) at 0 °C. The mixture was stirred for 17 h at room temperature, diluted with Et₂O, and passed through a Celite pad. The filtrate was concentrated in vacuo. The residue was dissolved in CH₂Cl₂(10 mL), then pyrrolidine (0.42 mL, 5.03 mmol) and acetic acid (0.29 mL, 5.07 mmol) were added at 0 °C. The mixture was stirred for 5 h at room temperature, water (2.0 mL) and acetic acid (2.0 mL) were added, and the mixture was stirred for a further 12 h. Most of the solvent was removed under reduced pressure, and water was added to the concentrate. The aqueous layer was extracted with Et₂O, then the combined organic layers were washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane: $Et_2O = 1:6$) to give 19 as a white solid (656 mg, 62% yield). Mp: 74–77 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 1.80 (1H, dt, J = 13.6, 5.4, 13.6Hz), 2.20 (1H, dt, J = 13.6, 3.4 Hz), 2.32 (1H, dd, J = 15.6, 2.4 Hz), 2.32–2.46 (2H, m), 2.83 (1H, m), 3.16 (1H, d, J = 11.2 Hz), 3.50 (1H, m), 3.81 (3H, s), 4.13 (1H, dd, J = 10.7, 6.8 Hz), 4.50 (1H, d, J = 11.2 Hz),6.00 (1H, s). ¹³C-NMR (100 MHz, CDCl₃) δ: 28.9, 33.4, 34.1, 49.5, 52.9, 68.4, 75.8, 127.1, 157.8, 172.5, 197.7. IR (KBr) cm⁻¹: 2956, 2856, 1731, 1673, 1630, 1457, 1273, 1256, 1229, 1173, 1118, 1101, 968. EI-MS m/z (%): 210 (M⁺, 31), 180 (100), 150 (53), 109 (37), 93 (23). HR-EI-MS m/z: Calcd for $C_{11}H_{14}O_4$: 210.0892. Found: 210.0893 [M⁺]. Anal. Calcd for C₁₁H₁₄O₄: C, 62.85; H, 6.71. Found: C, 62.76; H, 6.49.

Methyl (15*,45*,8R*)-3-methylene-5-oxo-10-oxatricyclo[6.4.0.0^{1,4}]dodecane-8-carboxylate (2d)

The photocycloaddition reaction was carried out using **19** (675 mg, 3.61 mmol) in CH_2Cl_2 (2.0 mL) and allene (5.0 mL) by irradiating for 4 h. Purification by column chromatography on silica gel (hexane:AcOEt = 4:1) afforded **2d** as a white solid (501 mg, 62% yield). Mp: 115–117 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 1.54 (1H, d, J = 13.2 Hz), 1.77 (1H, dd, J = 13.2, 7.8 Hz), 2.07 (1H, ddd, J = 13.7, 11.2, 7.3 Hz), 2.17 (1H, m), 2.29 (1H, m), 2.59–2.66 (2H, m), 3.06 (1H, dquint, J = 16.8, 2.4 Hz), 3.19 (1H, d, J = 11.2 Hz), 3.46–3.53 (2H, m), 3.73 (3H, s), 3.88 (1H, dd, J = 11.7, 4.9 Hz), 4.19 (1H, d, J = 11.2 Hz), 5.02 (1H, q, J = 2.4 Hz), 5.09 (1H, m). 13 C-NMR (100 MHz, CDCl₃) δ : 24.2, 33.8, 34.7, 38.0, 39.4, 48.4, 52.0, 61.0, 64.1, 69.4, 111.8, 139.5, 174.2, 205.9. IR (KBr) cm⁻¹: 2992, 2970, 2952, 2930, 2904, 2874, 2864, 1735, 1690, 1468, 1281, 1254, 1205, 1193, 1101, 1071, 961, 951, 905, 840. EI-MS m/z (%): 250 (M⁺, 42), 218 (57), 191 (100), 176 (89), 105 (40), 91 (64). HR-EI-MS m/z: Calcd for $C_{14}H_{18}O_4$: 250.1205. Found: 250.1202 [M⁺]. *Anal*. Calcd for $C_{14}H_{18}O_4$: C,

Preparation of 2e

Ethyl 2-(tert-butoxycarbonyl)-6-oxo-1,3,4,6,7,8,8a-heptahydroisoquinoline-8a-carboxylate (21)

To a solution of 20^6 (1.17 g, 4.31 mmol) in benzene (7.2 mL) were added methyl vinyl ketone (0.52 mL, 6.41 mmol) and K₂CO₃ (276 mg, 2.00 mmol) at 0 °C. The mixture was stirred for 4 h at room temperature, diluted with Et₂O, and passed through a Celite pad. The filtrate was concentrated in vacuo. The residue was dissolved in CH₂Cl₂(7.2 mL), then pyrrolidine (0.36 mL, 4.31 mmol) and acetic acid (0.25 mL, 4.37 mmol) were added at 0 °C. The mixture was stirred for 18 h at room temperature. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (hexane:AcOEt = 3:2, then hexane:Et₂O = 1:2) to give 21 as a yellow oil (1.18 g, 85% yield). ¹H-NMR (300 MHz, CDCl₃, 50 °C) &: 1.27 (3H, t, J = 7.1 Hz), 1.46 (9H, s), 1.83 (1H, m), 2.29–2.42 (4H, m), 2.62 (1H, d, J = 13.4 Hz), 2.82 (1H, d, J = 9.0 Hz), 2.82 (1H, m), 4.20 (2H, q, J = 7.1 Hz), 4.21 (1H, m), 4.68 (1H, dd, J = 13.4, 1.2 Hz), 5.97 (1H, s). ¹³C-NMR (75 MHz, CDCl₃,50 °C) &: 14.1, 28.3, 30.9, 33.0, 34.4, 43.7, 49.1, 52.8, 61.8, 80.2, 127.5, 153.9, 158.8, 171.4, 197.9. IR (neat) cm⁻¹: 2978, 2933, 2871, 1726, 1696, 1627, 1467, 1426, 1366, 1294, 1256, 1230, 1160, 1126. EI-MS m/z (%): 323 (M⁺, 4.0), 223 (100), 222 (37), 194 (26), 150 (98), 57 (57). HR-EI-MS m/z: Calcd for C₁₇H₂₅NO₅: 323.1733. Found: 323.1734 [M⁺].

Ethyl $(1S^*,4S^*,8R^*)$ -10-(tert-butoxycarbonyl)-3-methylene-5-oxo-10-azatricyclo $[6.4.0.0^{1.4}]$ -dodecane-8-carboxylate (2e)

The photocycloaddition reaction was carried out using **21** (399 mg, 1.23 mmol) in MeOH (1.6 mL) and allene (4.0 mL) by irradiating for 1.5 h. Purification by column chromatography on silica gel (hexane:AcOEt = 1:1) afforded **2e** as a white solid (328 mg, 73% yield). Mp: 116–117 °C. ¹H-NMR (300 MHz, CDCl₃, 50 °C) δ : 1.23 (3H, t, J = 7.2 Hz), 1.45 (9H, s), 1.57 (1H, m), 1.86 (1H, m), 2.07–2.25 (3H, m), 2.47–2.66 (3H, m), 2.75 (1H, dt, J = 2.9, 13.2 Hz), 2.97 (1H, m), 3.43 (1H, m), 4.06 (1H, m), 4.13 (2H, q, J = 7.2 Hz), 4.49 (1H, br d, J = 13.2 Hz), 5.00 (1H, q, J = 2.4 Hz), 5.08 (1H, q, J = 2.4 Hz). ¹³C-NMR (75 MHz, CDCl₃, 50 °C) δ : 14.0, 25.9, 28.4, 33.6, 33.9, 37.3, 39.5, 40.2, 46.6, 47.8, 60.9, 61.0, 79.8, 111.7, 139.7, 154.6, 173.2, 205.8. IR (KBr) cm⁻¹: 3002, 2979, 2945, 2929, 2860, 1709, 1683, 1415, 1365, 1334, 1283, 1199, 1173, 1150, 1127, 1058. EI-MS m/z (%): 363 (M⁺, 4.9), 306 (85), 262 (100), 234 (38), 190 (57), 57 (81). HR-EI-MS m/z: Calcd for C₂₀H₂₉NO₅: 363.2046. Found: 363.2050 [M⁺]. *Anal*. Calcd for C₂₀H₂₉NO₅: C, 66.09; H, 8.04; N, 3.85. Found: C, 65.91; H, 8.08; N, 3.81.

Preparation of 2f

Methyl 2-oxo-2,3,4,4a,9,10-hexahydrophenanthrene-4a-carboxylate (23)

To a solution of 22⁷ (860 mg, 4.21 mmol) in benzene (14 mL) were added methyl vinyl ketone (0.48 mL, 4.61 mmol) and K₂CO₃ (232 mg, 1.68 mmol) at 0 °C. The mixture was stirred for 16 h at room temperature, diluted with Et₂O, and passed through a Celite pad. The filtrate was concentrated in vacuo. The residue was dissolved in CH₂Cl₂(7.0 mL), then pyrrolidine (0.35 mL, 4.21 mmol) and acetic acid (0.24 mL, 4.21 mmol) were added at 0 °C. The mixture was stirred for 7 h at room temperature, water (3.0 mL) and acetic acid (1.0 mL) were added, and the mixture was stirred for a further 12 h. Most of the solvent was removed under reduced pressure, and water was added to the concentrate. The aqueous layer was extracted with AcOEt, then the combined organic layers were washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane:AcOEt = 2:1) to give 23 as a yellow solid (952 mg, 88% yield). Mp: 61-64 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 2.04 (1H, dt, J = 4.9, 13.7 Hz), 2.54 (1H, m), 2.63–2.78 (2H, m), 2.89 (1H, m), 3.00 (1H, ddd, J = 13.7, 4.9, 2.4 Hz), 3.03–3.13 (2H, m), 3.68 (3H, s), 6.04 (1H, s), 7.15 (1H, m), 7.20–7.27 (2H, m), 7.47 (1H, dd, J = 7.3, 1.4 Hz). ¹³C-NMR (100) MHz, CDCl₂) δ: 30.2, 32.6, 35.9, 50.2, 52.9, 126.4, 126.8, 127.2, 127.4, 129.0, 136.0, 136.6, 162.3, 171.8, 198.5. IR (KBr) cm⁻¹: 3021, 2948, 2846, 1726, 1714, 1674, 1626, 1449, 1440, 1228, 1205, 1162, 1092, 771, 750. EI-MS m/z (%): 256 (M⁺, 21), 197 (100), 169 (23), 141 (22). HR-EI-MS m/z: Calcd for $C_{16}H_{16}O_3$: 256.1099. Found: 256.1095 [M⁺]. Anal. Calcd for C₁₆H₁₆O₃: C, 74.98; H, 6.29. Found: C, 74.84; H, 6.34.

Methyl $(3aS^*,5aR^*,11bR^*)$ -4-methylene-3-oxo-1,2,3,3a,4,5,6,7,11b-nonahydrocyclobuta[j]-phenanthrene-11b-carboxylate (2f)

The photocycloaddition reaction was carried out using **23** (925 mg, 3.61 mmol) in CH₂Cl₂ (5.0 mL) and allene (3.0 mL) by irradiating for 6 h. Purification by column chromatography on silica gel (hexane:AcOEt = 4:1) afforded **2f** as a white solid (799 mg, 75% yield). Mp: 85–88 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 1.95 (1H, ddd, J = 14.1, 8.8, 2.4 Hz), 2.33–2.41 (2H, m), 2.42–2.55 (3H, m), 2.72–2.78 (2H, m), 2.86 (1H, ddd, J = 17.6, 8.8, 2.4 Hz), 3.01 (1H, dt, J = 17.6, 8.8 Hz), 3.54 (1H, m), 3.58 (3H, s), 4.93 (1H, q, J = 2.4 Hz), 5.06 (1H, q, J = 2.4 Hz), 7.11 (1H, dt, J = 9.2, 4.0 Hz), 7.20–7.24 (2H, m), 7.40 (1H, dt, J = 9.2, 4.0 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 25.5, 26.7, 31.0, 34.2, 38.5, 40.8, 49.4, 52.1, 61.2, 111.1, 125.8, 126.8, 127.2, 128.9, 136.1, 136.4, 140.3, 174.4, 206.7. IR (KBr) cm⁻¹: 2954, 2931, 2910, 1715, 1699, 1671, 1459, 1431, 1253, 1235, 1213, 1188, 1163, 1043, 910, 769. EI-MS m/z (%): 296 (M⁺, 58), 237 (91), 219 (46), 195 (33), 181 (100), 165 (36), 141 (25). HR-EI-MS m/z: Calcd for C₁₉H₂₀O₃: 296.1412. Found: 296.1413 [M⁺]. *Anal.* Calcd for C₁₉H₂₀O₃: C, 77.00; H, 6.80. Found: C, 76.80; H, 6.82.

Preparation of 2g

4a-Hydroxy-2,3,4,4a,5,6,7,8-octahydronaphthalen-2-one (25)

A solution of t-BuOH (3.3 mL, 36.1 mmol) in THF (14 mL) was placed in a 2-necked flask equipped with a dry ice condenser and a gas inlet, and the solution was cooled to -78 °C. Liquid ammonia (40 mL) was introduced through the gas inlet, and Li (167 mg, 24.1 mmol) was added. The mixture was stirred for 5 min, and a solution of 24 (1.05 g, 4.00 mmol) in THF was added dropwise. The mixture was refluxed (in dry iceacetone bath at -25 °C) for 1 h and cooled again to -78 °C. The reaction was quenched with NH₄Cl and MeOH. The mixture was allowed to warm to room temperature to remove ammonia, then water was added and the mixture was extracted with hexane three times. The combined organic layers were washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was dissolved in THF (40 mL), and an aqueous solution of NH₄Cl (214 mg, 4.00 mmol, in 10 mL) and a 1.0 M solution of TBAF in THF (8.0 mL, 8.0 mmol) were added. The mixture was stirred for 12 h at room temperature, and extracted with Et₂O. The organic layer was washed with water and brine, dried over MgSO₄, and concentrated under reduced pressure at 80 mmHg and 30 °C. The residue was dissolved in CH₂Cl₂ (20 mL), and mCPBA (77%, 1.34 g, 5.98 mmol) was added at 0 °C. The mixture was stirred for 30 min, then the reaction was guenched by addition of a 20% aqueous Na₂S₂O₃ solution (5 mL) at 0 °C. After stirring for 30 min at room temperature, the mixture was poured into saturated aqueous NaHCO₃ (5 mL) and the aqueous layer was extracted with Et₂O. The combined organic layers were washed with saturated aqueous NaHCO₃, water, and brine, dried over MgSO₄, and concentrated in vacuo. The residue was dissolved in THF (10 mL) and t-BuOK (89.8 mg, 0.800 mmol) was added at 0 °C. The mixture was stirred for 3 h at room temperature. Saturated aqueous NH₄Cl (1.0 mL) was added to the mixture, and the mixture was extracted with Et₂O. The organic layer was washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane:AcOEt = 1:2) to give 25 as a yellow solid (631 mg, 95% yield). Mp: 65–67 °C (crystallization from Et₂O–hexane). 1 H-NMR (400 MHz, CDCl₃) δ : 1.40 (1H, tq, J = 4.0, 13.6 Hz), 1.57 (1H, dt, J = 4.0, 13.6 Hz), 1.67 (1H, m), 1.71 (1H, br s), 1.83 (1H, tt, J = 13.6, 3.6 Hz), 1.89–1.97 (2H, m), 2.02-2.08 (2H, m), 2.30 (1H, dquint, J = 14.4, 2.0 Hz), 2.37 (1H, ddt, J = 16.8, 0.8, 4.8 Hz), 2.59 (1H, m), 2.65 (1H, ddd, J = 16.8, 10.8, 6.4 Hz), 5.78 (1H, d, J = 2.0 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 21.0, 26.8, 32.1, 33.8, 36.8, 40.2, 68.6, 124.9, 163.8, 199.5. IR (KBr) cm⁻¹: 3400, 2949, 2939, 2924, 2887, 2862, 1655, 1617, 1432, 1335, 1312, 1265, 1221, 1179, 1088, 1003, 955, 869. EI-MS m/z (%): 166 (M⁺, 32), 138 (100), 124 (27), 109 (89), 67 (21). HR-EI-MS m/z: Calcd for $C_{10}H_{14}O_2$: 166.0994. Found: 166.0992 [M⁺]. Anal. Calcd for $C_{10}H_{14}O_2$: C, 72.26; H, 8.49. Found: C, 72.02; H, 8.59.

4a-Trimethylsilyloxy-2,3,4,4a,5,6,7,8-octahydronaphthalen-2-one (26)

To a solution of **25** (500 mg, 3.01 mmol) in DMF (1.5 mL) were added imidazole (409 mg, 6.01 mmol) and TMSCl (0.49 mL, 3.88 mmol) at 0 °C. The mixture was stirred for 24 h at room temperature, saturated aqueous NaHCO₃ (1.0 mL) was added, and the mixture was diluted with Et₂O. The organic layer was washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane:Et₂O = 2:1) to give **26** as a yellow oil (694 mg, 97% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 0.15 (9H, s), 1.34 (1H, tq, J = 3.9, 13.2 Hz), 1.51 (1H, dt, J = 3.9, 13.2 Hz), 1.58 (1H, m), 1.79 (1H, tt, J = 13.2, 3.9 Hz), 1.86–1.95 (2H, m), 1.97 (1H, ddd, J = 13.7, 10.2, 4.9 Hz), 2.15 (1H, dd, J = 6.8, 4.9 Hz), 2.19 (1H, m), 2.31 (1H, ddd, J = 16.6, 6.8, 4.9 Hz), 2.54 (1H, ddd, J = 16.6, 10.2, 4.9 Hz), 2.58 (1H, ddt, J = 4.9, 2.0, 13.7 Hz), 5.70 (1H, d, J = 2.0 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 2.2, 21.2, 27.6, 32.4, 34.5, 36.3, 40.5, 72.3, 123.6, 166.1, 199.3. IR (neat) cm⁻¹: 2940, 2861, 1683, 1630, 1445, 1327, 1253, 1220, 1188, 1176, 1156, 1122, 1092, 1043, 1010, 989, 959, 878, 861, 841, 754. EI-MS m/z (%): 238 (M⁺, 22), 223 (18), 210 (100), 209 (29), 181 (49), 73 (23). HR-EI-MS m/z: Calcd for C₁₃H₂₂O₂Si: 238.1389. Found: 238.1391 [M⁺]. *Anal.* Calcd for C₁₃H₂₂O₂Si: C, 65.50; H, 9.30. Found: C, 65.52; H, 9.24.

$(1R^*,4S^*,8R^*)$ -3-Methylene-8-trimethylsilyloxytricyclo[6.4.0.0^{1,4}]dodecane-5-one (2g)

The photocycloaddition reaction was carried out using **26** (478 mg, 2.01 mmol) in CH₂Cl₂ (2.5 mL) and allene (4.0 mL) by irradiating for 2 h. Purification by column chromatography on silica gel (hexane:Et₂O = 6:1) afforded **2g** as a colorless oil (380 mg, 68% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 0.12 (9H, s), 1.22 (1H, tq, J = 4.4, 13.2 Hz), 1.32 (1H, m), 1.35 (1H, dt, J = 4.4, 14.2 Hz), 1.46 (1H, m), 1.51–1.67 (3H, m), 1.77 (1H, m), 1.95 (1H, m), 2.26 (1H, m), 2.34 (1H, dq, J = 1.5, 8.3 Hz), 2.51 (1H, dt, J = 17.1, 2.4 Hz), 2.57 (1H, m), 2.70 (1H, m), 3.05 (1H, m), 4.95–4.98 (2H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 2.1, 21.0, 21.3, 32.3, 32.6, 33.3, 33.6, 38.7, 45.5, 60.9, 75.0, 111.0, 140.7, 209.5. IR (neat) cm⁻¹: 2938, 2856, 1704, 1670, 1460, 1446, 1251, 1235, 1142, 1039, 997, 962, 887, 861, 839, 754. EI-MS m/z (%): 278 (M⁺, 36), 197 (39), 160 (35), 146 (55), 133 (100), 131 (31), 73 (63). HR-EI-MS m/z: Calcd for C₁₆H₂₆O₂Si: 278.1702. Found: 278.1704 [M⁺]. *Anal.* Calcd for C₁₆H₂₆O₂Si: C, 69.01; H, 9.41. Found: C, 69.11; H, 9.49.

Preparation of 2h

4a-[(tert-Butyldimethylsilyloxy)methyl]-2,3,4,4a,5,6,7,8-octahydronaphthalen-2-one (27)

To a solution of **14** (230 mg, 1.10 mmol) in THF (2.8 mL) was added LiAlH₄ (104 mg, 2.75 mmol) at 0 °C. The mixture was stirred for 1 h at room temperature, then diluted with excess Et₂O. Brine (0.65 mL) was added, and the mixture was vigorously stirred until the supernatant was clear. The precipitate was removed by filtration, and the supernatant was concentrated in vacuo. The residue was dissolved in CHCl₃ (5.5 mL), then MnO₂ (956 mg, 11.0 mmol) was added. The mixture was stirred for 36 h at room temperature, then passed through a Celite pad. The filtrate was concentrated in vacuo. To a solution of the residue in DMF (2.8 mL) were added imidazole (150 mg, 2.20 mmol) and TBSCl (215 mg, 1.43 mmol) at 0 °C. The mixture was stirred for 3 h at room temperature, diluted with Et₂O, and washed with water. The aqueous layer was extracted with

Et₂O, and the combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane:Et₂O = 2:1) to give **27** as a slightly yellow oil (302 mg, 93% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 0.04 (3H, s), 0.05 (3H, s), 0.88 (9H, s), 1.13 (1H, dt, J = 4.9, 13.2 Hz), 1.41 (1H, m), 1.53 (1H, dt, J = 13.7, 3.4 Hz), 1.56–1.63 (2H, m), 1.89 (1H, m), 2.02 (1H, m), 2.15 (1H, ddd, J = 13.2, 5.4, 2.4 Hz), 2.25–2.32 (3H, m), 2.54 (1H, ddd, J = 17.1, 14.1, 5.4 Hz), 3.66 (1H, d, J = 10.2 Hz), 3.70 (1H, d, J = 10.2 Hz), 5.84 (1H, s). ¹³C-NMR (100 MHz, CDCl₃) δ : -5.6, 18.2, 21.7, 25.8, 26.9, 33.1, 33.3, 34.2, 35.4, 41.4, 63.4, 126.6, 167.1, 200.0. IR (neat) cm⁻¹: 2949, 2930, 2896, 2858, 1682, 1618, 1254, 1101, 1090, 839, 777. EI-MS m/z (%): 294 (M⁺, 2.1), 264 (55), 237 (100), 121 (98), 89 (23), 73 (31). HR-EI-MS m/z: Calcd for C₁₇H₃₀O₂Si: 294.2015. Found: 294.2016 [M⁺].

(1R*,4S*,8R*)-8-[(tert-Butyldimethylsilyloxy)methyl]-3-methylenetricyclo[6.4.0.0^{1,4}]dodecane-5-one (2h) The photocycloaddition reaction was carried out using 27 (250 mg, 0.85mmol) in MeOH (0.85 mL) and allene (6.0 mL) by irradiating for 1.5 h. Purification by column chromatography on silica gel (hexane:AcOEt = 10:1) afforded 2h as a white solid (258 mg, 91% yield). Mp: 48–51 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 0.02 (3H, s), 0.03 (3H, s), 0.87 (9H, s), 1.00 (1H, m), 1.32–1.62 (7H, m), 1.77 (1H, dt, J = 14.2, 9.3 Hz), 1.86 (1H, ddd, J = 13.7, 8.8, 1.5 Hz), 2.32–2.56 (3H, m), 3.02 (1H, m), 3.09 (1H, m), 3.25 (1H, d, J = 10.2 Hz), 3.79 (1H, d, J = 10.2 Hz), 4.95 (1H, q, J = 2.4 Hz), 4.99 (1H, q, J = 2.4 Hz). 13 C-NMR (100 MHz, CDCl₃) δ : -5.62, -5.58, 18.2, 20.6, 20.8, 25.8, 27.6, 28.1, 32.2, 34.3, 37.9, 38.7, 41.8, 60.6, 61.1, 110.8, 141.5, 210.4. IR (KBr) cm⁻¹: 2929, 2858, 1699, 1671, 1470, 1463, 1254, 1095, 871, 838, 776. EI-MS m/z (%): 334 (M*, 0.52), 277 (43), 185 (100), 73 (14). HR-EI-MS m/z: Calcd for C₂₀H₃₄O₂Si: 334.2328. Found: 334.2325 [M*].

Preparation of 2i

tert-Butyl 8a-[(tert-butyldimethylsilyloxy)methyl]-6-oxo-1,3,4,6,7,8,8a-heptahydroisoquinoline-2(1H)-carboxylate (28)

To a solution of **21** (551 mg, 1.70 mmol) in THF (4.3 mL) was added LiAlH₄ (161 mg, 4.25 mmol) at 0 °C. The mixture was stirred for 1 h at room temperature, then diluted with excess Et₂O. Brine (0.65 mL) was added, and the mixture was vigorously stirred until the supernatant was clear. The precipitate was removed by filtration, and the supernatant was concentrated in vacuo. The residue was dissolved in CH₂Cl₂ (8.5 mL), then MnO₂ (1.18 g, 13.6 mmol) was added. The mixture was stirred for 19 h at room temperature, then passed through a Celite pad. The filtrate was concentrated in vacuo. To a solution of the residue in DMF (4.3 mL) were added imidazole (232 mg, 3.41 mmol) and TBSCl (333 mg, 2.21 mmol) at 0 °C. The mixture was stirred for 4 h at room temperature, diluted with Et₂O, and washed with water. The aqueous layer was extracted with Et₂O, and the combined organic layers were washed with brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane:AcOEt = 3:1) to give **28** as a slightly yellow oil (652 mg, 97% yield). ¹H-NMR (300 MHz, CDCl₃, 50 °C) δ : 0.03 (3H, s), 0.05 (3H, s), 0.87 (9H, s), 1.47 (9H, s), 1.65 (1H, dt, J = 5.1, 13.9 Hz), 2.11 (1H, ddd, J = 13.5, 5.7, 2.6 Hz), 2.24 (1H, m), 2.34

(1H, dddd, J = 17.0, 4.9, 2.6, 0.7 Hz), 2.42–2.54 (2H, m), 2.65 (1H, m), 2.80 (1H, dt, J = 3.3, 12.5 Hz), 3.66 (1H, d, J = 9.9 Hz), 3.72 (1H, d, J = 9.9 Hz), 4.17 (1H, br d, J = 13.4 Hz), 4.26 (1H, m), 5.90 (1H, d, J = 1.8 Hz). ¹³C-NMR (75 MHz, CDCl₃, 50 °C) δ : -5.7, -5.6, 18.2, 25.8, 28.4, 30.2, 32.3, 34.1, 42.6, 44.0, 50.9, 64.7, 80.1, 127.5, 154.7, 161.7, 198.9. IR (neat) cm⁻¹: 2954, 2929, 2899, 2858, 1698, 1681, 1625, 1426, 1253, 1227, 1166, 1103, 840, 776. HR-FAB-MS (*m*-nitrobenzyl alcohol) *m*/z: Calcd for C₂₁H₃₈NO₄Si: 396.2570. Found: 396.2566 [MH⁺].

tert-Butyl (1S*,4S*,8R*)-8-[(tert-butyldimethylsilyloxy)methyl]-3-methylen-5-oxo-10-azatricyclo-[6.4.0.0^{1,4}]dodecane-10-carboxylate (2i)

The photocycloaddition reaction was carried out using **28** (400 mg, 1.01 mmol) in MeOH (1.3 mL) and allene (4.0 mL) by irradiating for 1.5 h. Purification by column chromatography on silica gel (hexane:AcOEt = 4:1) afforded **2i** as a white solid (380 mg, 87% yield). Mp: 128–131 °C. ¹H-NMR (300 MHz, CDCl₃, 50 °C) δ : 0.02 (3H, s), 0.04 (3H, s), 0.89 (9H, s), 1.43 (1H, m), 1.46 (9H, s), 1.76–1.87 (3H, m), 2.35–2.62 (4H, m), 2.77 (1H, dt, J = 3.3, 13.0 Hz), 3.07 (1H, m), 3.18 (1H, m), 3.32 (1H, d, J = 10.3 Hz), 3.75 (1H, d, J = 10.3 Hz), 3.85 (1H, br d, J = 12.6 Hz), 4.11 (1H, m), 4.99 (1H, q, J = 2.4 Hz), 5.05 (1H, q, J = 2.4 Hz). ¹³C-NMR (75 MHz, CDCl₃, 50 °C) δ : -5.74, -5.65, 18.2, 25.0, 25.9, 28.5, 31.7, 33.9, 37.8, 38.4, 39.2, 40.5, 45.6, 60.7, 61.9, 79.7, 111.4, 140.3, 155.5, 208.3. IR (KBr) cm⁻¹: 2957, 2928, 2914, 2857, 1699, 1679, 1419, 1272, 1174, 1061, 852, 841, 771. HR-FAB-MS (m-nitrobenzyl alcohol) m/z: Calcd for C₂₄H₄₂NO₄Si: 436.2883. Found: 436.2881 [MH⁺]. *Anal*. Calcd for C₂₄H₄₁NO₄Si: C, 66.16; H, 9.49; N, 3.21. Found: C, 66.21; H, 9.62; N, 3.17.

Preparation of 2j

(2aS,5aR,5bS,7aS,8S,10aS,10bR,12aR)-8-Hydroxy-5a,7a-dimethyl-2-methyleneoctadecahydrocyclopenta[a]cyclobuta[j]phenanthren-3-one (2j)

The photocycloaddition reaction was carried out using testosterone (**29**, 499 mg, 1.73 mmol) in MeOH (3.0 mL) and allene (4.0 mL) by irradiating for 2.5 h. Purification by crystallization from CHCl₃—hexane afforded **2j** as white prisms (467 mg, 82% yield). Mp: 182–184 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 0.75 (3H, s), 0.84 (3H, s), 0.80–1.02 (3H, m), 1.09 (1H, dt, J = 4.4, 13.2 Hz), 1.20–1.34 (2H, m), 1.39–1.63 (6H, m), 1.70 (1H, ddd, J = 13.2, 5.9, 2.0 Hz), 1.74–1.94 (3H, m), 2.06 (1H, ddt, J = 13.2, 5.9, 9.3 Hz), 2.28–2.42 (2H, m), 2.61 (1H, ddd, J = 18.5, 8.8, 2.0 Hz), 2.96 (1H, dquint, J = 16.6, 2.4 Hz), 3.08 (1H, m), 3.64 (1H, t, J = 8.8 Hz), 4.96 (1H, q, J = 2.4 Hz), 5.00 (1H, q, J = 2.4 Hz). ¹³C-NMR (100MHz, CDCl₃) δ : 11.2, 14.9, 21.1, 23.3, 26.4, 30.5, 30.8, 32.6, 33.8, 35.2, 36.4, 36.7, 37.4, 43.1, 45.2, 46.8, 50.7, 61.5, 81.8, 111.0, 140.8, 211.3. IR (KBr) cm⁻¹: 3331, 2984, 2969, 2952, 2926, 2867, 1703, 1669, 1203, 1074, 1059, 1025, 888, 735. EI-MS m/z (%): 328 (M⁺, 100), 272 (25), 230 (58), 173 (24), 107 (26), 105 (30). 91 (29). HR-EI-MS m/z: Calcd for C₂₂H₃₂O₂: 328.2402. Found: 328.2399 [M⁺]. [α]²⁵_D +66.6 (c 1.00, CHCl₃).

Preparation of 2k

$(1R^*,4S^*,8S^*,9S^*)$ -9-Hydroxy-8-methyl-3-methylenetricyclo[6.4.0.0^{1,4}]dodecan-5-one (2k)

The photocycloaddition reaction was carried out using 30^8 (557 mg, 3.09 mmol) in MeOH (2.0 mL) and allene (5.0 mL) by irradiating for 6 h. Purification by column chromatography on silica gel (hexane:AcOEt = 1:1) afforded 2k as a white solid (562 mg, 83% yield). Mp: 81-84 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 0.84 (3H, s), 1.29 (1H, br s), 1.37 (1H, m), 1.47 (1H, tt, J = 13.7, 4.4 Hz), 1.52–1.77 (4H, m), 2.01 (1H, ddd, J = 13.7, 9.8, 2.4 Hz), 2.07 (1H, dt, J = 13.7, 8.8 Hz), 2.37 (1H, ddd, J = 19.0, 9.8, 1.5 Hz), 2.40 (1H, m), 2.64 (1H, ddd, J = 19.0, 8.3, 2.4 Hz), 3.04 (1H, dquint, J = 16.6, 2.4 Hz), 3.17 (1H, m), 3.44 (1H, dd, J = 10.7, 4.9 Hz), 4.98 (1H, q, J = 2.4 Hz), 5.01 (1H, q, J = 2.4 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ : 12.4, 19.8, 28.9, 30.2, 31.9, 33.7, 37.1, 38.8, 44.2, 61.2, 73.2, 111.3, 140.5, 210.6. IR (KBr) cm⁻¹: 3442, 2936, 2864, 1696, 1467, 1448, 1408, 1246, 1201, 1077, 1010, 890. EI-MS m/z (%): 220 (M⁺, 9.3), 147 (100), 145 (16), 119 (23), 105 (19), 91 (20). HR-EI-MS m/z: Calcd for C₁₄H₂₀O₂: 220.1463. Found: 220.1464 [M⁺].

Preparation of 21

4a-Methyl-2,3,4,4a,9,10-hexahydrophenanthren-2-one (32)

To a solution of 31⁹ (600 mg, 3.75 mmol) and water (0.75 mL) in THF (7.5 mL) were added methyl vinyl ketone (0.55 mL, 6.78 mmol) and K₂CO₃ (207 mg, 1.50 mmol) at 0 °C. The mixture was vigorously stirred for 5 h at room temperature, then saturated aqueous NH₄Cl was added. The aqueous layer was extracted with Et₂O, and the combined organic layers were washed with water and brine, dried over MgSO₄, and concentrated in vacuo. To a solution of the residue in benzene (3.8 mL) were added pyrrolidine (0.31 mL, 3.71 mmol) and acetic acid (0.22 mL, 3.85 mmol) at 0 °C. The mixture was stirred for 24 h at room temperature. The solvent was removed under reduced pressure, and the residue was purified by column chromatography on silica gel (hexane:AcOEt = 4:1) to give 32 as an orange solid (529 mg, 66% yield). Mp: 82–85 °C. ¹H-NMR (300 MHz, CDCl₃) δ : 1.58 (3H, s), 2.07 (1H, dt, J = 5.0, 13.9 Hz), 2.39 (1H, ddd, J = 5.0) 13.6, 5.1, 2.4 Hz), 2.48–2.58 (2H, m), 2.71 (1H, ddt, J = 6.0 1.5, 12.4 Hz), 2.73 (1H, ddd, J = 17.6, 14.6, 5.1 Hz), 2.90 (1H, ddd, J = 15.9, 12.4, 4.9 Hz), 3.07 (1H, ddd, J = 15.9, 6.0, 2.7 Hz), 5.91 (1H, s), 7.09–7.18 (2H, m), 7.22–7.32 (2H, m). ¹³C-NMR (75 MHz, CDCl₃) δ: 27.6, 31.1, 31.2, 34.7, 36.9, 39.2, 124.2, 126.1, 126.2, 127.0, 128.6, 134.7, 143.7, 169.9, 198.9. IR (KBr) cm⁻¹: 3058, 3023, 2966, 2930, 2849, 1671, 1627, 1489, 1445, 1236, 762, 696. EI-MS m/z (%): 212 (M⁺, 77), 197 (100), 184 (32), 170 (51), 169 (41), 141 (40). HR-EI-MS m/z: Calcd for C₁₅H₁₆O: 212.1201. Found: 212.1201 [M⁺]. Anal. Calcd for C₁₅H₁₆O: C, 84.87; H, 7.60. Found: C, 84.61; H, 7.52.

(3aS*,5aR*,11bS*)-11b-Methyl-4-methylene-1,2,3,3a,4,5,6,7,11b-nonahydrocyclobuta[j]-phenanthren-3-one (2l)

The photocycloaddition reaction was carried out using **32** (331 mg, 1.56 mmol) in CH₂Cl₂ (2.0 mL) and allene (5.0 mL) by irradiating for 12 h. Purification by column chromatography on silica gel (hexane:AcOEt = 8:1) afforded **21** as a white solid (273 mg, 69% yield). 1 H-NMR (400 MHz, CDCl₃) δ : 1.12 (3H, s), 1.82 (1H, ddd, J = 13.7, 8.3, 1.5 Hz), 2.26 (1H, m), 2.38–2.47 (3H, m), 2.52 (1H, m), 2.60 (1H, m), 2.76 (1H, ddd, J = 19.0, 5.9, 3.4 Hz), 2.95 (1H, m), 3.05 (1H, dt, J = 18.0, 9.3 Hz), 3.32 (1H, m), 4.95 (1H, q, J = 2.4 Hz), 5.03 (1H, q, J = 2.4 Hz), 7.09–7.18 (3H, m), 7.28 (1H, m). 13 C-NMR (100 MHz, CDCl₃) δ : 25.1, 25.6, 28.8, 29.9, 34.3, 37.6, 38.1, 42.5, 61.0, 111.1, 124.4, 125.8, 126.1, 129.4, 135.3, 139.9, 143.5, 210.1. IR (KBr) cm⁻¹: 3067, 3013, 2938, 2871, 2842, 1696, 1669, 1463, 1433, 1246, 1190, 890, 761. EI-MS m/z (%): 252 (M⁺, 81), 237 (42), 195 (75), 181 (72), 165 (37), 155 (100), 141 (44). HR-EI-MS m/z: Calcd for C₁₈H₂₀O: 252.1514. Found: 252.1512 [M⁺]. *Anal*. Calcd for C₁₈H₂₀O: C, 85.67; H, 7.99. Found: C, 85.63; H, 7.97.

Preparation of 2m

3-[3-(Benzyloxy)propyl]cyclohex-2-enone (35)

To a stirred solution of **34** (4.58 g, 20.0 mmol) in Et₂O (50 mL) was added dropwise a 1.6 M solution of t-BuLi in pentane (25.0 mL, 40.0 mmol) at -78 °C. The mixture was allowed to warm to 0 °C for 20 min and then re-cooled to -78 °C. A solution of **33** (631 mg, 5.00 mmol) in THF (50 mL) was added dropwise, and the mixture was stirred for 1 h. The reaction was quenched by the addition of 1 M HCl. The aqueous layer was extracted with Et₂O, and the combined organic layers were washed with water and brine, dried over MgSO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane:AcOEt:CHCl₃ = 10:3:2) to give **35** as a colorless oil (863 mg, 71% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 1.77–1.86 (2H, m), 1.97 (2H, quint, J = 6.2 Hz), 2.27–2.37 (6H, m), 3.49 (2H, t, J = 6.2 Hz), 4.49 (2H, s), 5.88 (1H, m), 7.26–7.38 (5H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 22.7, 27.0, 29.7, 34.7, 37.3, 69.3, 73.0, 125.7, 127.6, 127.7, 128.4, 138.2, 166.0, 199.9. IR (neat) cm⁻¹: 2942, 2863, 1664, 1624, 1454, 1252, 1102, 738, 699. EI-MS m/z (%): 244 (M⁺, 4), 200 (26), 124 (11), 123 (15), 110 (36), 92 (10), 91 (100). HR-EI-MS m/z: Calcd for C₁₆H₂₀O₂: 224.1463. Found: 244.1466 [M⁺].

$(1S^*,6S^*)$ -6-[3-(Benzyloxy)propyl]-8-methylenebicyclo[4.2.0]octan-2- one (2m)

The photocycloaddition reaction was carried out using **35** (620 mg, 2.54 mmol) in CH₂Cl₂ (6.0 mL) and allene (6.0 mL) by irradiating for 3 h. Purification by column chromatography on silica gel (hexane:AcOEt = 4:1) afforded **2m** as a colorless oil (570 mg, 79% yield). 1 H-NMR (400 MHz, CDCl₃) δ : 1.49–1.69 (5H, m), 1.69–1.87 (2H, m), 1.94–2.18 (2H, m), 2.45–2.62 (3H, m), 3.23 (1H, m), 3.45–3.49 (2H, m), 4.50 (2H, s), 4.89 (1H, q, J = 2.7 Hz), 4.91 (1H, q, J = 2.7 Hz), 7.25–7.38 (5H, m). 13 C-NMR (100 MHz, CDCl₃) δ : 19.1, 24.7, 32.3, 38.3, 38.7, 38.8, 40.3, 60.1, 70.4, 72.9, 108.7, 127.55, 127.60, 128.4, 138.4, 141.4, 209.7. IR (neat) cm⁻¹: 2938, 2852, 1698, 1670, 1454, 1103, 884, 737, 698. EI-MS m/z (%): 284 (M⁺, 3), 193 (27), 163 (10), 150 (14), 149 (11), 91 (100). HR-EI-MS m/z: Calcd for $C_{19}H_{24}O_2$: 284.1776. Found: 284.1774 [M⁺]. *Anal*. Calcd for

Preparation of 2n

$(1S^*,6R^*)$ -6-Butyl-8-methylenebicyclo[4.2.0]octan-2-one (2n)

The photocycloaddition reaction was carried out using 36^{10} (1.10 g, 7.23 mmol) in CH₂Cl₂ (10 mL) and allene (10 mL) by irradiating for 5 h. Purification by column chromatography on silica gel (hexane:Et₂O = 6:1) afforded 2n as a colorless oil (973 mg, 70% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 0.91 (3H, t, J = 7.1 Hz), 1.19–1.36 (4H, m), 1.51–1.57 (3H, m), 1.72 (1H, dddd, J = 13.5, 6.2, 2.7, 1.1 Hz), 1.81 (1H, m), 2.01 (1H, m), 2.12 (1H, m), 2.46–3.26 (3H, m), 3.21 (1H, m), 4.87–4.91 (2H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 14.1, 19.2, 23.1, 26.4, 32.4, 38.87, 38.91, 40.5, 41.6, 60.2, 108.5, 141.7, 210.0. IR (neat) cm⁻¹: 2929, 2857, 1702, 1670, 1459, 1272, 883. EI-MS m/z (%): 192 (M⁺, 65), 164 (25), 150 (31), 149 (42), 136 (22), 135 (100), 121 (27), 108 (33), 107 (41), 94 (20), 93 (50), 91 (28), 79 (36), 77 (20), 55 (23). HR-EI-MS m/z: Calcd for $C_{13}H_{20}O$: 192.1514. Found: 192.1513 [M⁺].

Preparation of 20

3-(tert-Butyl)cyclohex-2-enone (38)

To a stirred mixture of 37^{11} (1.20 g, 7.78 mmol), MgSO₄ (968 mg, 8.04 mmol) and water (0.15 mL, 8.32 mmol) in CH₂Cl₂(16 mL) were added PhI(OAc)₂ (3.88 g, 12.0 mmol) and PDC (151 mg, 0.40 mmol) at 0 °C. The mixture was stirred for 5 h at room temperature under an O₂ atmosphere. This was followed by the addition of saturated aqueous NaHCO₃ and 20% aqueous Na₂S₂O₃ solution. After stirring for 15 min, the suspension was diluted with Et₂O. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (hexane:E₂O = 3:2) to give 38 as a slightly yellow oil (1.02 g, 87% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 1.12 (9H, s), 1.97 (2H, quint, J = 6.4 Hz), 2.33–2.37 (4H, m), 5.14 (1H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 23.1, 25.7, 28.0, 36.5, 37.3, 122.7, 173.6, 200.5. IR (neat) cm⁻¹: 2965, 2870, 1670, 1612, 1346, 1326, 1258, 1242, 889. EI-MS m/z (%): 152 (M⁺, 68), 137 (16), 110 (15), 109 (100), 96 (68), 82 (12), 81 (26), 67 (20), 57 (15). HR-EI-MS m/z: Calcd for C₁₀H₁₆O: 152.1201. Found: 152.1205 [M⁺].

(1S*,6S*)-6-(tert-Butyl)-8-methylenebicyclo[4.2.0]octan-2-one (2o)

The photocycloaddition reaction was carried out using **38** (790 mg, 5.19 mmol) in CH_2Cl_2 (10 mL) and allene (8.0 mL) by irradiating for 5 h. Purification by column chromatography on silica gel (hexane: $Et_2O = 6:1$) afforded **20** as a colorless oil (843 mg, 84% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 0.89 (9H, s), 1.61–1.71 (2H, m), 1.87 (1H, m), 1.99–2.16 (2H, m), 2.38 (1H, ddt, J = 16.8, 4.5, 1.8 Hz), 2.53 (1H, m), 2.92 (1H, dt, J = 16.8, 2.7 Hz), 3.51 (1H, m), 4.88–4.91 (2H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 18.8, 24.6, 29.9, 34.7, 36.0,

38.5, 44.7, 55.5, 108.8, 140.9, 210.5. IR (neat) cm⁻¹: 2951, 2871, 1698, 1668, 1367, 1232, 1175, 883. EI-MS m/z (%): 192 (M⁺, 14), 177 (100), 149 (55), 136 (14), 122 (15), 121 (52), 109 (13), 108 (14), 107 (29), 41 (14). HR-EI-MS m/z: Calcd for $C_{13}H_{20}O$: 192.1514. Found: 192.1513 [M⁺].

Preparation of 2p

$(1R^*,4S^*,8S^*)$ -3-Methylenetricyclo[6.4.0.0^{1,4}]dodecan-5-one (2p)

The photocycloaddition reaction was carried out using 39^{12} (780 mg, 5.19 mmol) in CH₂Cl₂ (6.0 mL) and allene (6.0 mL) by irradiating for 3.5 h. Purification by column chromatography on silica gel (hexane:Et₂O = 4:1) afforded **2p** as a colorless oil (719 mg, 73% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 1.08 (1H, m), 1.19–1.48 (4H, m), 1.50–1.64 (3H, m), 1.65–1.75 (2H, m), 1.85 (1H, m), 2.21 (1H, dddd, J = 19.1, 11.7, 7.5, 1.2 Hz), 2.36 (1H, dt, J = 16.7, 2.7 Hz), 2.60 (1H, dddd, J = 19.1, 6.2, 1.6, 0.9 Hz), 2.77 (1H, m), 3.15 (1H, m), 4.92–4.96 (2H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 22.0, 25.6, 26.2, 28.5, 35.5, 39.0, 39.1, 40.0, 42.1, 61.5, 110.0, 141.3, 210.5. IR (neat) cm⁻¹: 2923, 2851, 1698, 1668, 1459, 1447, 1234, 1199, 1029, 985, 828, 804. EI-MS m/z (%): 190 (M⁺, 50), 162 (25), 161 (20), 148 (22), 147 (34), 133 (100), 119 (25), 105 (37), 93 (23), 91 (49), 79 (29). HR-EI-MS m/z: Calcd for C₁₃H₁₈O: 190.1358. Found: 190.1356 [M⁺]. *Anal*. Calcd for C₁₃H₁₈O: C, 82.06; H, 9.53. Found: C, 81.82; H, 9.58.

Preparation of 2q

(1R*,4S*,8R*)-3-Methylene-10-oxatricyclo[6.4.0.0^{1,4}]dodecan-5-one (2q)

The photocycloaddition reaction was carried out using 40^{13} (800 mg, 5.26 mmol) in CH₂Cl₂ (10 mL) and allene (10 mL) by irradiating for 3 h. Purification by column chromatography on silica gel (hexane:AcOEt = 1:1) afforded 2q as a colorless oil (921 mg, 91% yield). ¹H-NMR (400 MHz, CDCl₃) δ : 1.59–1.65 (2H, m), 1.72–1.89 (3H, m), 2.28 (1H, m), 2.49 (1H, dt, J = 16.7, 2.6 Hz), 2.68 (1H, m), 2.95 (1H, m), 3.18 (1H, t, J = 11.1 Hz), 3.24 (1H, m), 3.42 (1H, dt, J = 2.1, 12.1 Hz), 3.75 (1H, dd, J = 11.1, 3.1 Hz), 3.90 (1H, ddd, J = 12.1, 4.6, 0.9 Hz), 5.00–5.03 (2H, m). ¹³C-NMR (100 MHz, CDCl₃) δ : 20.5, 35.0, 37.9, 38.2, 38.8, 41.3, 60.8, 64.0, 68.2, 111.0, 139.9, 208.9. IR (neat) cm⁻¹: 2928, 2845, 1698, 1669, 1466, 1224, 1108, 851. EI-MS m/z (%): 192 (M⁺, 100), 149 (46), 148 (60), 136 (63), 135 (85), 119 (57), 106 (57), 105 (85), 92 (47), 91 (91), 79 (59), 77 (45). HR-EI-MS m/z: Calcd for C₁₂H₁₆O₂: 192.1150. Found: 192.1146 [M⁺].

Preparation of 2r

$$= -$$

$$CH_2Cl_2, -78 \,^{\circ}C, 3 \, h$$

$$O = -$$

$$H \quad H \quad H \quad H$$

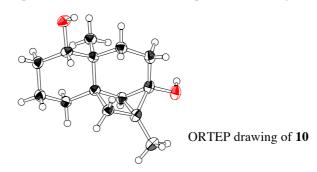
$$2r$$

(2aS,4aS,4bR,4cS,6aR,7R,9aR,9bS,11aS)-4b,6a,9b-Trimethyl-3-methylene-7-[(R)-6-methylheptan-2-yl]-hexadecahydro-1H-cyclobuta[g]cyclopenta[a]phenanthren-2-one (2r)

The photocycloaddition reaction was carried out using **41**¹⁴ (100 mg, 0.26 mmol) in CH₂Cl₂ (5.0 mL) and allene (10 mL) by irradiating for 3 h. Purification by column chromatography on silica gel (hexane:Et₂O = 5:1) afforded **2r** as a white solid (66 mg, 60% yield). Mp: 93–95 °C. ¹H-NMR (400 MHz, CDCl₃) δ : 0.66 (3H, s), 0.81 (3H, s), 0.86 (3H, d, J = 6.6 Hz), 0.87 (3H, d, J = 6.6 Hz), 0.90 (3H, d, J = 6.6 Hz), 0.93–1.17 (9H, m), 1.21–1.43 (9H, m), 1.45–1.72 (4H, m), 1.83 (1H, m), 1.95–2.07 (3H, m), 2.34 (1H, m), 2.62–2.75 (3H, m), 3.60 (1H, m), 4.88 (1H, q, J = 2.2 Hz), 4.95 (1H, q, J = 2.2 Hz). 13 C-NMR (100 MHz, CDCl₃) δ : 11.9, 13.0, 18.7, 21.3, 22.5, 22.8, 23.8, 24.2, 28.0, 28.2, 28.6, 29.8, 31.5, 35.2, 35.70, 35.71, 35.8, 36.1, 39.5, 39.67, 39.72, 42.3, 42.4, 46.9, 54.2, 56.2, 56.3, 109.0, 142.7, 210.1. IR (KBr) cm⁻¹: 2934, 2867, 1701, 1668, 1466, 1382, 1196, 1178, 954, 916, 888. EI-MS m/z (%): 424 (M⁺, 100), 409 (21), 382 (18), 367 (23), 353 (35), 270 (18), 269 (23), 227 (13). HR-EI-MS m/z: Calcd for C₃₀H₄₈O: 424.3705. Found: 424.3703 [M⁺]. *Anal*. Calcd for C₃₀H₄₈O: C, 84.84; H, 11.39. Found: C, 84.59; H, 11.55. [α]²⁵ +58.0 (c 1.00, CHCl₃).

Deuteration Experiment of 1b

(1R*,6S*,9R*,12S*)-6-Methyl-10-methylene[12- 2 H]tricyclo[7.2.1.0 1,6]dodecan-9-ol [1b(D)]


Bicyclo[4.2.0] octanone **2b** (28.6 mg, 0.140 mmol) and LiCl (35.6 mg, 0.840 mmol) were dissolved in an appropriate amount of CD₃OD under an argon atmosphere. The solution was concentrated in vacuo. This operation was repeated three times. To the residue was added THF and the solution was concentrated in vacuo to dry thoroughly. The resulting a mixture of **2b** and LiCl was dissolved by adding a solution of CD₃OD (5.7 μL, 0.140 mmol) in THF (1.8 mL). This solution was added dropwise to a refluxing 0.1 M solution of SmI₂ in THF (4.2 mL, 0.42 mmol). The mixture was refluxed for 5 min. After cooling to room temperature, D₂O (0.30 mL) was added, and the mixture was stirred for 30 min in air to quench the reaction. The product was isolated according to work-up procedure II, and purified by column chromatography on silica gel (hexane:Et₂O = 2:1) to give **1b(D)** as a slightly yellow oil (22.4 mg, 77% yield). ¹H-NMR (400 MHz, CDCl₃) δ: 1.02 (3H, s), 1.08 (1H, dt, J = 13.2, 3.4 Hz), 1.19–1.40 (5H, m), 1.41–1.56 (4H, m), 1.72 (1H, dt, J = 3.9, 13.7 Hz), 1.78 (1H, s), 1.95 (1H, dt, J = 5.9, 12.2 Hz), 2.02 (1H, dt, J = 17.6, 2.4 Hz), 2.76 (1H, dq, J = 17.6, 2.4 Hz), 4.79 (1H, m), 4.92 (1H, t, J = 2.4 Hz). ¹³C-NMR (100 MHz, CDCl₃) δ: 20.4, 21.7, 22.9, 34.6, 35.1, 36.0, 36.5, 36.7, 39.8, 42.4, 47.3 (t, J_{C-D} = 19.8 Hz), 80.2, 101.9, 156.7. IR (neat) cm⁻¹: 3357, 3073, 2969, 2921, 2858, 1663, 1468, 1460, 1426, 1378, 1172, 1143, 1100, 1082, 1061, 883, 757. EI-MS m/z (%):

207 (M $^+$, 100), 189 (30), 149 (17), 122 (79), 109 (43). HR-EI-MS m/z: Calcd for $C_{14}H_{21}OD$: 207.1733. Found: 207.1730 [M $^+$].

X-ray crystallographic analysis

(1R*,5S*,6S*,9S*,12R*)-6,10-Dimethyltetracyclo $[7.2.1.0^{1.6}.0^{10,12}]$ dodecane-5,9-diol (10)

X-ray crystallographic data were recorded on a Rigaku R-AXIS RAPID with a MicroMax-007HF diffractometer using filtered Cu- $K\alpha$ radiation. The structure was solved by direct methods (SIR92)¹⁵ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. All calculations were performed using the CrystalStructure 4.0 crystallographic software package except for refinement, which was performed using SHELXL-97.¹⁶

Crystal data for 10

Chemical formula $C_{14}H_{22}O_2$

MW 222.33

Crystal system, space group Orthorhombic, *Pbca*

Temperature (K) 93

a, *b*, *c* (Å) 9.3826 (3), 13.5881 (4), 18.6630 (5)

 $V(Å^3)$ 2379.39 (11)

Z 8

Radiation type $Cu K\alpha$

 $\mu \, (mm^{-1})$ 0.63

Crystal size (mm) $0.20 \times 0.09 \times 0.04$

Data collection

Diffractometer Rigaku R-AXIS RAPID

Absorption correction Multi-scan

ABSCOR (Rigaku, 1995)

 T_{\min}, T_{\max} 0.832, 0.975

No. of measured, independent, and

observed $[F^2 > 2.0\sigma(F^2)]$ reflections 24450, 2172, 1834

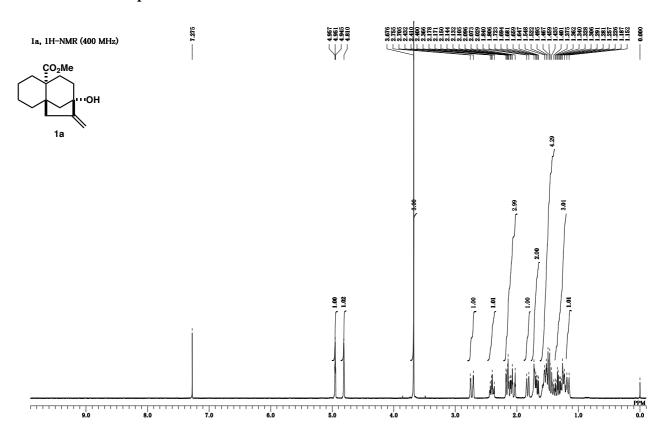
 $R_{\rm int}$ 0.053

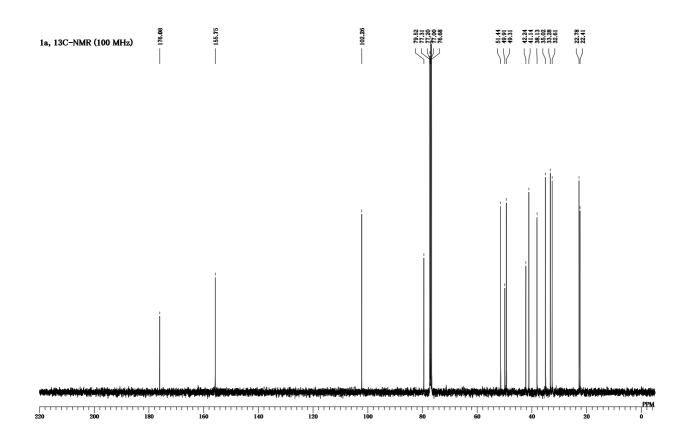
 $(\sin \theta/\lambda)_{\max} (\mathring{A}^{-1}) \qquad 0.602$

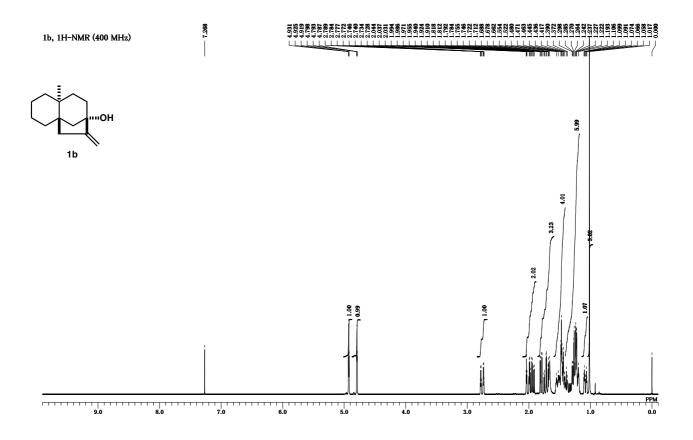
Refinement

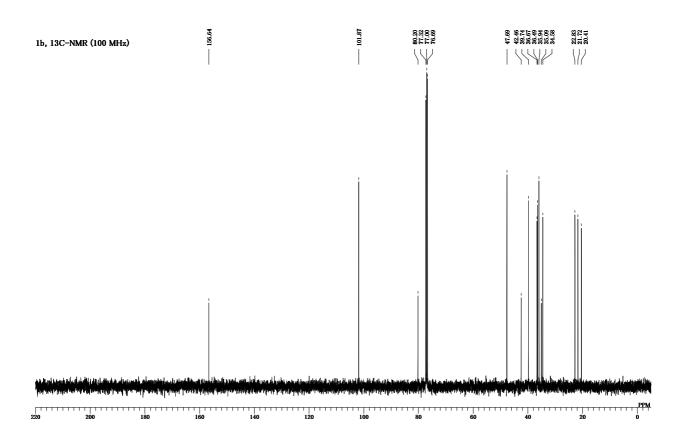
 $R[F^2 > 2\sigma(F^2)], wR(F^2), S$ 0.049, 0.126, 1.09

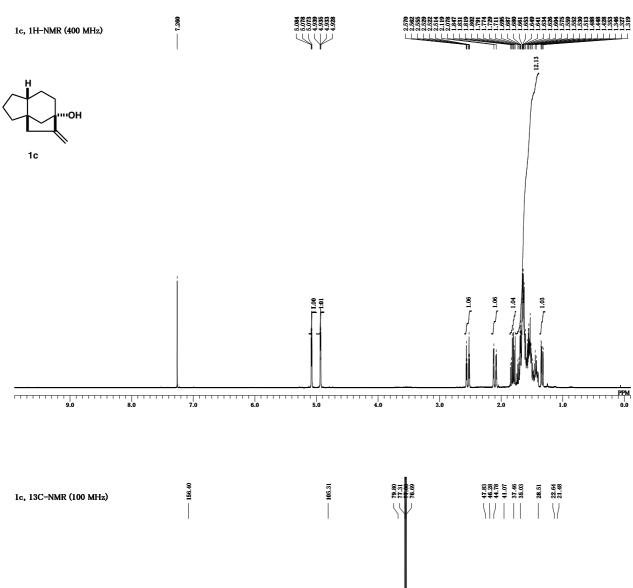
No. of reflections 2172 No. of parameters 149


H-atom treatment H-atom parameters constrained


 $\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}} (e \text{ Å}^{-3})$ 0.22, -0.25


References


- 1) Szostak, M.; Spain, M.; Procter, D. J., J. Org. Chem. 2012, 77, 3049–3059.
- 2) Crimmins, M. T.; Pulido, F. J.; Castreño, P.; Barbero, A., e-EROS Encyclopedia of Reagents for Organic Synthesis 2007, 1–7.
- 3) Takatori, K.; Nakayama, M.; Futaishi, N.; Yamada, S.; Hirayama, S.; Kajiwara, M., *Chem. Pharm. Bull.* **2003**, *51*, 455–457.
- 4) Marini-Bettòlo, G.; Sahoo, S. P.; Poulton, G. A.; Tsai, T. Y.; Wiesner, K., *Tetrahedron* **1980**, *36*, 719–721
- 5) Aujard, I.; Röme, D.; Arzel, E.; Johansson, M.; de Vos, D.; Sterner, O., *Bioorg. Med. Chem.* **2005**, *13*, 6145–6150.
- 6) Jana, N.; Zhou, F.; Driver, T. G., J. Am. Chem. Soc. 2015, 137, 6738–6741.
- 7) Oommen, P. K., Aust. J. Chem. 1976, 29, 1393–1396.
- 8) Lu, Y.-S.; Peng, X.-S., Org. Lett. **2011**, *13*, 2940–2943.
- 9) Stork, G.; Brizzolara, A.; Landesman, H.; Szmuszkovicz, J.; Terrell, R., J. Am. Chem. Soc. 1963, 85, 207–222.
- 10) Matsunaga, K.; Hirajima, H.; Kishida, A.; Takatori, K.; Nagaoka, H., *Tetrahedron Lett.* **2015**, *56*, 5941–5944.
- 11) Li, J.; Tan, C.; Gong, J.; Yang, Z., Org. Lett. **2014**, 16, 5370–5373.
- 12) Johansson, M.; Aujard, I.; Röme, D.; Anke, H.; Sterner, O., Z. Naturforsch. B 2005, 60, 984–989.
- 13) Anzalone, L.; Hirsch, J. A., J. Org. Chem. 1985, 50, 2607–2613.
- 14) Nicolaou, K.; Zhong, Y.; Baran, P., J. Am. Chem. Soc. 2000, 122, 7596–7597.
- 15) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Burla, M. C.; Polidori, G.; Camalli, M., *J. Appl. Cryst.* **1994**, *27*, 435–536.
- 16) Sheldrick, G. M., Acta Cryst. 2008, A64, 112–122.


¹H- and ¹³C-NMR Spectra of the Products and the Substrates

