High-Pressure Synthesis and Local Structure of

Corundum-Type $In_{2-2x}Zn_xSn_xO_3$ ($x \le 0.7$)

Supporting Information

Cathleen A. Hoel[†], José Manuel Gallardo Amores[‡], Emilio Morán[‡], Miguel Angel Álario-Franco[‡], Jean-François Gaillard[§], Kenneth R. Poeppelmeier[†]

[†]Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208,

USA

[‡]Departamento de Química Inorgánica I, Universidad Complutense, 28040 Madrid, Spain

§Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan

Road, Evanston, IL 60208, USA

Email: krp@northwestern.edu

X-ray diffraction (XRD) patterns of cor-In_{0.8}Zn_{0.6}Sn_{0.6}O₃ (x = 0.6) were calculated based on the space groups R3c (average LiNbO₃-type arrangement, Table S1) and R-3c (average corundum-type arrangement, Table S2). The fractional coordinates of the In, Sn and Zn cations were the same for each Wyckoff position. The program PowderCell^{S1} was used to calculate the diffraction pattern with a selected wavelength of 0.412 Å and a 0.002° step in 2 θ . The peaks were computed using a pseudo-Voigt profile and a constant FWHM = 0.012° in 2 θ to simulate the experimental high-resolution XRD data.

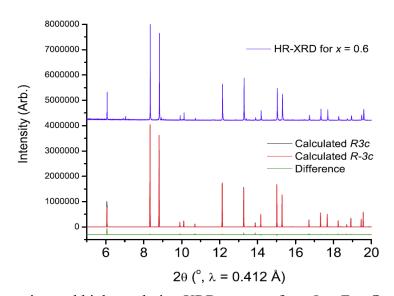
The calculated XRD pattern of cor-In_{0.8}Zn_{0.6}Sn_{0.6}O₃ (x = 0.6), based on the R3c space group, used the fractional coordinates that were determined for the LiNbO₃-type ZnSnO₃ unit cell reported by Inaguma, $et\ al.$ (reference 13 in the main text). Half of the In were substituted on the Zn site and half of the In were substituted on the Sn site.

	Wyckoff	x/a	y/b	z/c	SOF	B (temp)
Zn	6a	0	0	0.2859	0.6	0.5
In	6a	0	0	0.2859	0.4	0.5
Sn	6a	0	0	0.0000	0.6	0.5
In	6a	0	0	0.0000	0.4	0.5
O	18b	0.0405	0.350	0.0709	1.0	0.5

Table S1. Unit cell used to calculate expected XRD pattern of LiNbO₃-type cor-In_{0.8}Zn_{0.6}Sn_{0.6}O₃ (x = 0.6). Space group R3c, a = 5.365, c = 14.322 Å.

The calculated XRD pattern of cor-In_{0.8}Zn_{0.6}Sn_{0.6}O₃ (x = 0.6), based on the R-3c space group, used the fractional coordinates that were determined for the corundum In₂O₃ unit cell reported by Prewitt, $et\ al$. (reference 11 in the paper). Zn and Sn were substituted onto the In site. Although short-range ordering may be present, the average structure would appear corundum-like.

	Wyckoff	x/a	y/b	z/c	SOF	B (temp)
In	12c	0	0	0.3573	0.4	0.5
Zn	12c	0	0	0.3573	0.3	0.5
Sn	12c	0	0	0.3573	0.3	0.5
O	18e	0.298	0	0.25	1.0	0.5


Table S2. Unit cell used to calculated expected XRD pattern of corundum-type *cor*-In_{0.8}Zn_{0.6}Sn_{0.6}O₃ (x = 0.6). Space group R-3c, a = 5.365, c = 14.322 Å.

The simulated diffraction patterns show a small difference in relative intensities, which are listed in Table S3 for the first ten reflections. The relative intensities of the experimental high-resolution XRD data (x = 0.6) are also listed in Table S3 for comparison. The calculated

and experimental diffraction patterns are plotted in Figure S1 and it is apparent that the expected diffraction patterns of cor-In_{0.8}Zn_{0.6}Sn_{0.6}O₃ (x = 0.6) based on the space groups R3c and R-3c are very similar to each other. The relative intensities of the first three peaks suggests LiNbO₃-type ordering is present. The origin of the differences of the experimental and calculated relative peak intensities for the (113) and (116) reflections remains unknown.

hkl	d (Å)	$I_{rel}(R3c)$	$I_{rel}\left(R-3c\right)$	$I_{rel}(x = 0.6)$
012	3.8977	24.78	19.13	23
104	2.8361	100.00	100.00	100
110	2.6825	88.84	89.58	89
006	2.3870	4.70	4.09	5
113	2.3386	5.86	5.92	8
202	2.2097	2.84	1.98	3
024	1.9489	42.69	42.52	45
116	1.7832	38.52	37.21	53
211	1.7431	0.27	0.32	0

Table S3. Relative intensities of the calculated diffraction peaks for cor-In_{0.8}Zn_{0.6}Sn_{0.6}O₃ (x = 0.6) based on the R3c and R-3c space groups and the high-resolution XRD data.

Figure S1. The experimental high-resolution XRD pattern of cor-In_{0.8}Zn_{0.6}Sn_{0.6}O₃ (x = 0.6, top blue line) and the calculated XRD patterns of cor-In_{0.8}Zn_{0.6}Sn_{0.6}O₃ based on the R3c space group (black line) and the R-3c space group (red line). The difference pattern of the calculated XRD patterns based on the space groups R3c and R-3c is plotted on the bottom (green line). The peaks observed in the experimental pattern (top) at $2\theta \sim 7^\circ$ are due to trace amounts of SnO₂ and an unknown phase.

References

S1. Kraus, W. and Nolze, G., J. Appl. Cryst. 1996, 29, 301-303.