Supporting Information

Structurally Diverse Diterpenoids from *Isodon scoparius* and Their Bioactivity

Hua-Yi Jiang,^{†,‡,§} Wei-Guang Wang,[†] Jian-Wei Tang,[†] Miao Liu,[†] Xing-Ren Li,[†] Kun Hu,[†] Xue Du,[†] Xiao-Nian Li,[†] Hong-Bin Zhang,[§] Jian-Xin Pu,^{*,†} and Han-Dong Sun^{*,†}

[†]State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

[‡]University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

[§]Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming 650091, People's Republic of

China

Corresponding author contact detail: Tel.: +86-871-65223616;

E-mail: pujianxin@mail.kib.ac.cn, hdsun@mail.kib.ac.cn

Contents of Supporting Information

No.	Contents	Page				
1.	Figure 1. ¹ H NMR spectrum of 3-epi-isodopharicin A (1) recorded in C_5D_5N at 400 MHz					
2.	Figure 2. ¹³ C NMR spectrum of 3-epi-isodopharicin A (1) recorded in C ₅ D ₅ N at 125	5				
	MHz					
3.	Figure 3. HSQC spectrum of 3-epi-isodopharicin A (1) recorded in C_5D_5N	6				
4.	Figure 4. HMBC spectrum of 3-epi-isodopharicin A (1) recorded in C ₅ D ₅ N	6				
5.	Figure 5. ${}^{1}\text{H}$ - ${}^{1}\text{H}$ COSY spectrum of 3-epi-isodopharicin A (1) recorded in C ₅ D ₅ N	7				
6.	Figure 6. ROESY spectrum of 3-epi-isodopharicin A (1) recorded in C_5D_5N	7				
7.	Figure 7. HRESIMS spectrum of 3-epi-isodopharicin A (1)	8				
8.	Figure 8. IR spectrum of 3-epi-isodopharicin A (1)	9				
9.	Figure 9. UV spectrum of 3-epi-isodopharicin A (1)	10				
10.	Figure 10. X-ray structure of 3-epi-isodopharicin A (1)	11				
11.	Figure 11. ¹ H NMR spectrum of scopariusol A (2) recorded in C_5D_5N at 500 MHz	12				
12.	Figure 12. ¹³ C NMR spectrum of scopariusol A (2) recorded in C ₅ D ₅ N at 125 MHz					
13.	Figure 13. HSQC spectrum of scopariusol A (2) recorded in C ₅ D ₅ N	13				
14.	Figure 14. HMBC spectrum of scopariusol A (2) recorded in C_5D_5N	13				
15.	Figure 15. 1 H- 1 H COSY spectrum of scopariusol A (2) recorded in C ₅ D ₅ N					
16.	Figure 16. ROESY spectrum of scopariusol A (2) recorded in C_5D_5N	14				
17.	Figure 17. HRESIMS spectrum of scopariusol A (2)	15				
18.	Figure 18. IR spectrum of scopariusol A (2)	16				
19.	Figure 19. UV spectrum of scopariusol A (2)	16				
20.	Figure 20. ¹ H NMR spectrum of scopariusol B (3) recorded in C ₅ D ₅ N at 500 MHz	17				
21.	Figure 21. ¹³ C NMR spectrum of scopariusol B (3) recorded n C_5D_5N at 125 MHz	17				
22.	Figure 22. HSQC spectrum of scopariusol B (3) recorded in C ₅ D ₅ N	18				
23.	Figure 23. HMBC spectrum of scopariusol B (3) recorded in C_5D_5N	18				
24.	Figure 24. ¹ H- ¹ H COSY spectrum of scopariusol B (3) recorded in C ₅ D ₅ N	19				
25.	Figure 25. ROESY spectrum of scopariusol B (3) recorded in C_5D_5N	19				
26.	Figure 26. HRESIMS spectrum of scopariusol B (3)	20				
27.	Figure 27. UV spectrum of scopariusol B (3)	21				
28.	Figure 28. X-ray structure of scopariusol B (3)	22				
29.	Figure 29. ¹ H NMR spectrum of scopariusol C (4) recorded in C_5D_5N at 500 MHz	23				
30.	Figure 30. 13 C NMR spectrum of scopariusol C (4) recorded in C ₅ D ₅ N at 125 MHz	23				
31.	Figure 31. HRESIMS spectrum of scopariusol C (4)	24				
32.	Figure 32. ¹ H NMR spectrum of scopariusol D (5) recorded in C_5D_5N at 500 MHz	25				
33.	Figure 33. 13 C NMR spectrum of scopariusol D (5) recorded in C ₅ D ₅ N at 125 MHz	25				
34.	Figure 34. HRESIMS spectrum of scopariusol D (5)	26				
35.	Figure 35. X-ray structure of scopariusol D (5)	27				
		2				

36.	Figure 36. ¹ H NMR spectrum of 3-epi-scopariusol D (6) recorded in C_5D_5N at 500 MHz	28
37.	Figure 37. ¹³ C NMR spectrum of 3-epi-scopariusol D (6) recorded in C ₅ D ₅ N at 125 MHz	28
38.	Figure 38. HRESIMS spectrum of 3-epi-scopariusol D (6)	29
39.	Figure 39. ¹ H NMR spectrum of scopariusol E (7) recorded in C_5D_5N at 500 MHz	30
40.	Figure 40. 13 C NMR spectrum of scopariusol E (7) recorded in C ₅ D ₅ N at 125 MHz	30
41.	Figure 41. HRESIMS spectrum of scopariusol E (7)	31
42.	Figure 42. ¹ H NMR spectrum of scopariusol F (8) recorded in C_5D_5N at 500 MHz	32
43.	Figure 43. 13 C NMR spectrum of scopariusol F (8) recorded in C ₅ D ₅ N at 125 MHz	32
44.	Figure 44. HRESIMS spectrum of scopariusol F (8)	33
45.	Figure 45. ¹ H NMR spectrum of 11-O-acetyl-scopariusol F (9) recorded in C ₅ D ₅ N at 500	34
	MHz	
46.	Figure 46. ¹³ C NMR spectrum of 11-O-acetyl-scopariusol F (9) recorded in C ₅ D ₅ N at	34
	125 MHz	
47.	Figure 47. HRESIMS spectrum of 11-O-acetyl-scopariusol F (9)	35
48.	Figure 48. ¹ H NMR spectrum of scopariusol G (10) recorded in C_5D_5N at 500 MHz	36
49.	Figure 49. 13 C NMR spectrum of scopariusol G (10) recorded in C ₅ D ₅ N at 125 MHz	36
50.	Figure 50. HRESIMS spectrum of scopariusol G (10)	37
51.	Figure 51. ¹ H NMR spectrum of scopariusol H (11) recorded in C_5D_5N at 500 MHz	38
52.	Figure 52. 13 C NMR spectrum of scopariusol H (11) recorded in C ₅ D ₅ N at 125 MHz	38
53.	Figure 53. HRESIMS spectrum of scopariusol H (11)	39
54.	Figure 54. ¹ H NMR spectrum of scopariusol I (12) recorded in C_5D_5N at 500 MHz	40
55.	Figure 55. 13 C NMR spectrum of scopariusol I (12) recorded in C ₅ D ₅ N at 125 MHz	40
56.	Figure 56. HSQC spectrum of scopariusol I (12) recorded in C_5D_5N	41
57.	Figure 57. HMBC spectrum of scopariusol I (12) recorded in C_5D_5N	41
58.	Figure 58. 1 H- 1 H COSY spectrum of scopariusol I (12) recorded in C ₅ D ₅ N	42
59.	Figure 59. HSQC-TOCSY spectrum of scopariusol I (12) recorded in C_5D_5N	42
60.	Figure 60. ROESY spectrum of scopariusol I (12) recorded in C_5D_5N	43
61.	Figure 61. HRESIMS spectrum of scopariusol I (12)	44
62.	Figure 62. IR spectrum of scopariusol I (12)	45
63.	Figure 63. UV spectrum of scopariusol I (12)	45
64.	Figure 64. ¹ H NMR spectrum of scopariusol J (13) recorded in C_5D_5N at 500 MHz	46
65.	Figure 65. 13 C NMR spectrum of scopariusol J (13) recorded in C ₅ D ₅ N at 125 MHz	46
66.	Figure 66. HSQC spectrum of scopariusol J (13) recorded in C_5D_5N	47
67.	Figure 67. HMBC spectrum of scopariusol J (13) recorded in C_5D_5N	47
68.	Figure 68. ¹ H- ¹ H COSY spectrum of scopariusol J (13) recorded in C ₅ D ₅ N	48
69.	Figure 69. ROESY spectrum of scopariusol J (13) recorded in C_5D_5N	48
70.	Figure 70. HRESIMS spectrum of scopariusol J (13)	49
71.	Figure 71. IR spectrum of scopariusol J (13)	50

72.	Figure 72. UV spectrum of scopariusol J (13)	50
73.	Figure 73. ¹ H NMR spectrum of scopariusol K (14) recorded in C ₅ D ₅ N at 500 MHz	51
74.	Figure 74. 13 C NMR spectrum of scopariusol K (14) recorded in C ₅ D ₅ N at 125 MHz	51
75.	Figure 75. HSQC spectrum of scopariusol K (14) recorded in C ₅ D ₅ N	52
76.	Figure 76. HMBC spectrum of scopariusol K (14) recorded in C ₅ D ₅ N	52
77.	Figure 77. ¹ H- ¹ H COSY spectrum of scopariusol K (14) recorded in C ₅ D ₅ N	53
78.	Figure 78. ROESY spectrum of scopariusol K (14) recorded in C_5D_5N	53
79.	Figure 79. HRESIMS spectrum of scopariusol K (14)	54
80.	Figure 80. IR spectrum of scopariusol K (14)	55
81.	Figure 81. UV spectrum of scopariusol K (14)	55
82.	SI-1. Computational details of scopariusol K (14) and ent-scopariusol L (ent-14)	56
83.	Table 1. Input orientation of conformers of scopariusol K (14)	56–64
84.	Table 2. Input orientation of conformers of ent-scopariusol K (ent-14)	64–72
85.	Table 3. Important thermodynamic parameters of optimized 14 at B3LYP/6-31G(d) level	72
	in gas phase.	
86.	Table 4. Conformational analysis of 14 at B3LYP/6-31+G(d) level in gas phase.	73
87.	Table 5. Atomic coordinates (\times 10 ⁴) and equivalent isotropic displacement parameters	73, 74
	$(Å^2 \times 10^3)$ for 3-epi-isodopharicin A (1). U(eq) is defined as one third of the trace of the	
	orthogonalized Uij tensor.	
88.	Table 6. Bond lengths [Å] and angles [°] for 3-epi-isodopharicin A (1).	74–79
89.	Table 7. Atomic coordinates (\times 10 ⁴) and equivalent isotropic displacement parameters	80, 81
	$(\text{\AA}^2 \times 10^3)$ for scopariusol B (3). U(eq) is defined as one third of the trace of the	
	orthogonalized Uij tensor.	
90.	Table 8. Bond lengths [Å] and angles [°] for scopariusol B (3).	81–90
91.	Table 9. Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters	91
	$(\text{\AA}^2 \times 10^3)$ for scopariusol D (5). U(eq) is defined as one third of the trace of the	
	orthogonalized Uij tensor.	
92.	Table 10. Bond lengths [Å] and angles [°] for scopariusol D (5).	91–96

Figure 1: ¹H NMR spectrum of 3-epi-isodopharicin A (1) recorded in C₅D₅N at 400 MHz

Figure 2: ¹³C NMR spectrum of 3-epi-isodopharicin A (1) recorded in C₅D₅N at 125 MHz

Figure 3: HSQC spectrum of 3-epi-isodopharicin A (1) recorded in C₅D₅N

Figure 4: HMBC spectrum of 3-epi-isodopharicin A (1) recorded in C_5D_5N

Figure 5: ${}^{1}H$ - ${}^{1}H$ COSY spectrum of 3-epi-isodopharicin A (1) recorded in C₅D₅N

Figure 6: ROESY spectrum of 3-epi-isodopharicin A (1) recorded in C_5D_5N

Figure 7: HRESIMS spectrum of 3-epi-isodopharicin A (1)

 Sample : SISJ75
 Frequency Range : 399.246 - 3996.32
 Measured on : 05/01/2017

 Technique : KBr厌片
 Resolution : 4
 Instrument : Tensor27
 Sample Scans : 16

 Customer : 170105/R4
 Zerofilling : 2
 Acquisition : Double Sided, For
 For State Scans : 16

Figure 8: IR spectrum of 3-epi-isodopharicin A (1)

Figure 9: UV spectrum of 3-epi-isodopharicin A (1)

Figure 10: X-ray structure of 3-epi-isodopharicin A (1)

Figure 11: ¹H NMR spectrum of scopariusol A (2) recorded in C₅D₅N at 500 MHz

Figure 12: ¹³C NMR spectrum of scopariusol A (2) recorded in C₅D₅N at 125 MHz

Figure 13: HSQC spectrum of scopariusol A (2) recorded in C₅D₅N

Figure 14: HMBC spectrum of scopariusol A (2) recorded in C_5D_5N

Figure 15: ${}^{1}H$ - ${}^{1}H$ COSY spectrum of scopariusol A (2) recorded in C₅D₅N

Figure 16: ROESY spectrum of scopariusol A (2) recorded in C_5D_5N

--- End Of Report ---

Figure 17: HRESIMS spectrum of scopariusol A (2)

Figure 18: IR spectrum of scopariusol A (2)

Figure 19: UV spectrum of scopariusol A (2)

Figure 20: ¹H NMR spectrum of scopariusol B (3) recorded in C₅D₅N at 500 MHz

Figure 21: ¹³C NMR spectrum of scopariusol B (3) recorded in C₅D₅N at 125 MHz

Figure 22: HSQC spectrum of scopariusol B (3) recorded in C₅D₅N

Figure 23: HMBC spectrum of scopariusol B (3) recorded in C_5D_5N

Figure 24: ${}^{1}H$ - ${}^{1}H$ COSY spectrum of scopariusol B (3) recorded in C₅D₅N

Figure 25: ROESY spectrum of scopariusol B (3) recorded in C_5D_5N

Data File: E:\DATA\2017\0104\SISJ28-1.lcd

Figure 26: HRESIMS spectrum of scopariusol B (3)

Figure 27: UV spectrum of scopariusol B (3)

Figure 28: X-ray structure of scopariusol B (3)

Figure 29: ¹H NMR spectrum of scopariusol C (4) recorded in C₅D₅N at 500 MHz

Figure 30: ¹³C NMR spectrum of scopariusol C (4) recorded in C₅D₅N at 125 MHz

Data Filename Sample Type Instrument Name Acq Method IRM Calibration Statu: Comment Sample Group Acquisition SW Version		tatus 6200 se Q-TOF I	SISJ78.d Sample Instrument 1 SIBU.m Is Success Info. 6200 series TOF/6500 series Q-TOF B.05.01 (B5125.2)		mpie Name sition er Name quired Time wethod	SISJ/8 P1-A2 9/23/2016 9: ESI+.m	25:16 AM	:16 AM			OH OH
User Spec	tra										
Fragmen	tor Vo	tage	Collision Energ	gy Ionizatio ES	n Mode I						
10 4 +FSI	Scan /	1 182-0 215 m	in 3 Scans) Eraam	175 0V SIS 178 d Sub	tract						
2.5 2.25 2- 1.75 1.5 1.25 1.25 1.25 0.75 0.5 0.25 0.25 0.25	414	4 414.6	414.8	415.2095 (M+Na)+ 415 415.2 201415 vs. 415.2	415.4 415 arge (m/z)	6 415.8	416				
Poak List											
m/z	z	Abund	Formula	Ior	1						
415.2095	1	22427.37	C22 H32 O6	(M-	+Na)+						
416.2133	1	5749.34	C22 H32 O6	(M-	+Na)+						
548.3367	1	5631.74		0.1							
553,2934	1	46707.39									
554,2967	ī	17705.56									
807.4326	1	8704.18									
945.5128	1	8919									
1083.5965	1	7057.73									
Formula Calo	ulato	r Element L	imits								
lement	Min	Max	4								
2		3 60	4								
1		0 120	4								
0	L	0 30	· ·								
Formula Calo	ulato	r Results	1266 0.0	culatodMz	M ₇	Diff (mDa)	15:4	(nnm)			
22 H32 OF		curculateur	392 2100	415 2001	415 2005	our (inna)	-1.1	. (ppm)	2.7	7.0000	
End Of Rep	ort			.15.2071	1.0.2000				2.7		

Agilent Technologies

Page 1 of 1

Printed at: 9:35 AM on: 9/23/2016

Figure 31: HRESIMS spectrum of scopariusol C (4)

Figure 33: ¹³C NMR spectrum of scopariusol D (5) recorded in C₅D₅N at 125 MHz

Figure 34: HRESIMS spectrum of scopariusol D (5)

Figure 35: X-ray structure of scopariusol D (5)

Figure 36: ¹H NMR spectrum of 3-episcopariusol D (6) recorded in C₅D₅N at 500 MHz

Figure 37: ¹³C NMR spectrum of 3-episcopariusol D (6) recorded in C₅D₅N at 125 MHz

Figure 38: HRESIMS spectrum of 3-episcopariusol D (6)

Figure 40: ¹³C NMR spectrum of scopariusol E (7) recorded in C₅D₅N at 125 MHz

Figure 41: HRESIMS spectrum of scopariusol E (7)

Figure 42: ¹H NMR spectrum of scopariusol F (8) recorded in C₅D₅N at 500 MHz

Figure 43: ¹³C NMR spectrum of scopariusol F (8) recorded in C₅D₅N at 125 MHz

Figure 44: HRESIMS spectrum of scopariusol F (8)

Figure 45: ¹H NMR spectrum of 11-O-acetyl-scopariusol F (9) recorded in C₅D₅N at 500 MHz

Figure 46: ¹³C NMR spectrum of 11-O-acetyl-scopariusol F (9) recorded in C₅D₅N at 125 MHz

Figure 47: HRESIMS spectrum of 11-O-acetyl-scopariusol F (9)

Figure 48: ¹H NMR spectrum of scopariusol G (10) recorded in C₅D₅N at 500 MHz

Figure 49: ¹³C NMR spectrum of scopariusol G (10) recorded in C₅D₅N at 125 MHz
Qualitative Analysis Report

Figure 50: HRESIMS spectrum of scopariusol G (10)

Figure 51: ¹H NMR spectrum of scopariusol H (11) recorded in C₅D₅N at 500 MHz

Figure 52: ¹³C NMR spectrum of scopariusol H (11) recorded in C₅D₅N at 125 MHz

Qualitative Analysis Report

Agilent Technologies

Page 1 of 1 Prin

Printed at: 10:50 AM on: 10/18/2016

Figure 53: HRESIMS spectrum of scopariusol H (11)

Figure 54: ¹H NMR spectrum of scopariusol I (12) recorded in C₅D₅N at 500 MHz

Figure 55: ¹³C NMR spectrum of scopariusol I (12) recorded in C₅D₅N at 125 MHz

Figure 56: HSQC spectrum of scopariusol I (12) recorded in C5D5N

Figure 57: HMBC spectrum of scopariusol I (12) recorded in C5D5N

Figure 58: ${}^{1}H$ - ${}^{1}H$ COSY spectrum of scopariusol I (12) recorded in C₅D₅N

Figure 59: HSQC-TOCSY spectrum of scopariusol I (12) recorded in C_5D_5N

Figure 60: ROESY spectrum of scopariusol I (12) recorded in C_5D_5N

Data File: E:\DATA\2017\0104\SISJ156.lcd

Figure 61: HRESIMS spectrum of scopariusol I (12)

Figure 62: IR spectrum of scopariusol I (12)

Figure 63: UV spectrum of scopariusol I (12)

Figure 64: ¹H NMR spectrum of scopariusol J (13) recorded in C₅D₅N at 500 MHz

Figure 65: ¹³C NMR spectrum of scopariusol J (13) recorded in C₅D₅N at 125 MHz

Figure 66: HSQC spectrum of scopariusol J (13) recorded in C₅D₅N

Figure 67: HMBC spectrum of scopariusol J (13) recorded in C_5D_5N

Figure 68: ${}^{1}H$ - ${}^{1}H$ COSY spectrum of scopariusol J (13) recorded in C₅D₅N

Figure 69: ROESY spectrum of scopariusol J (13) recorded in C_5D_5N

Agilent Technologies

Page 1 of 1

Printed at: 11:01 AM on: 10/18/2016

Figure 70: HRESIMS spectrum of scopariusol J (13)

Figure 71: IR spectrum of scopariusol J (13)

Figure 72: UV spectrum of scopariusol J (13)

Figure 73: ¹H NMR spectrum of scopariusol K (14) recorded in C₅D₅N at 500 MHz

Figure 74: ¹³C NMR spectrum of scopariusol K (14) recorded in C₅D₅N at 125 MHz

Figure 75: HSQC spectrum of scopariusol K (14) recorded in C₅D₅N

Figure 76: HMBC spectrum of scopariusol K (14) recorded in C_5D_5N

Figure 77: ¹H-¹H COSY spectrum of scopariusol K (14) recorded in C₅D₅N

Figure 78: ROESY spectrum of scopariusol K (14) recorded in C_5D_5N

Figure 79: HRESIMS spectrum of scopariusol K (14)

Figure 80: IR spectrum of scopariusol K (14)

Figure 81: UV spectrum of scopariusol K (14)

SI-1: Computational details of scopariusol K (14) and ent-scopariusol K (ent-14)

The theoretical calculations of **14** and *ent*-**14** were carried out by using Gaussian 09 program package.¹ Conformational analysis was performed by using CONFLEX software² in MMFF94S force fields. The stable conformers were optimized by the density functional theory method at the B3LYP/6-31G(d) level. The optimized geometries were further checked by frequency calculation and resulted in no imaginary frequencies. The theoretical calculations of ECD were performed by using TDDFT at B3LYP/6-31G(d,p) level in the gas phase of the B3LYP/6-31G(d) optimized geometries. The calculated ECD curve was further generated by weighting the Boltzmann distribution rate of each geometric conformation in SpecDis 1.50 software³ with σ =0.25 eV, and UV shift= -10nm.

The ECD spectra were simulated by overlapping Gaussian functions for each transition according to:

$$\Delta \varepsilon(E) = \frac{1}{2.297 \times 10^{-29}} \times \frac{1}{\sqrt{2\pi\sigma}} \sum_{i}^{A} \Delta E_{i} R_{i} e^{-\left[\frac{(z-z_{i})}{2\sigma}\right]^{2}}$$

The σ represented the width of the band at 1/e height, and ΔE_i and R_i were the excitation energies and rotational strengths for transition *i*, respectively.

References:

- Frisch, M.-J.; Trucks, G.-W.; Schlegel, H.-B.; Scuseria, G.-E.; Robb, M.-A. Gaussian 09, revision C.O1; Gaussian, Inc.: Wallingford, CT, 2010.
- (2) CONFLEX program, CONFLEX Corporation, AIOS Meguro 6F, 2-15-19, Kami-Osaki, Shinagawa-ku, Tokyo 141-0021, Japan; <u>www.conflex.us</u>.
- (3) Bruhn, T.; Hemberger, Y.; Schaumloffel, A.; Bringmann, G. Spec Dis, version 1.50, University of Wurzburg, Germany, 2010.

Conformer 1					
Center Number	Atomic Number	Atomic Type	pe Coordinates (Angstroms)		
1	6	0	2.219925	-2.43672	-0.40988
2	6	0	3.128162	-1.21273	-0.56526
3	6	0	2.72986	-0.03778	0.360198

Table 1: Input orientation of conformers of scopariusol K (14)

4	6	0	1.207709	0.25478	0.170031
5	6	0	0.203735	-0.9452	0.191314
6	6	0	0.757365	-2.0814	-0.70448
7	6	0	0.686119	1.41234	1.039611
8	6	0	-0.62658	1.942834	0.463121
9	6	0	-1.6499	0.839597	0.279492
10	6	0	-1.1639	-0.41678	-0.45127
11	6	0	-2.9288	1.027346	0.648478
12	6	0	-4.02506	0.098929	0.283894
13	6	0	-3.64956	-0.95698	-0.73869
14	6	0	-2.24709	-1.51454	-0.46765
15	6	0	3.52791	1.231608	-0.07213
16	6	0	3.188137	-0.33025	1.804314
17	6	0	-0.0573	-1.47302	1.623488
18	1	0	1.165045	0.608581	-0.86365
19	8	0	-0.95528	-0.05363	-1.83089
20	8	0	3.033457	1.913288	-1.22563
21	8	0	-5.1556	0.238276	0.726133
22	8	0	-0.40278	2.507445	-0.85656
23	1	0	2.547999	-3.22736	-1.09661
24	1	0	2.319413	-2.8546	0.600566
25	1	0	4.17713	-1.48242	-0.38032
26	1	0	3.073693	-0.88251	-1.61555
27	1	0	0.13473	-2.97734	-0.59369
28	1	0	0.672831	-1.76459	-1.75039
29	1	0	1.400588	2.244021	1.078254
30	1	0	0.523999	1.101166	2.077547
31	1	0	-1.04176	2.729392	1.106702
32	1	0	-3.23249	1.931092	1.174309
33	1	0	-4.41082	-1.74246	-0.73707
34	1	0	-3.66132	-0.47793	-1.72749
35	1	0	-1.98056	-2.23959	-1.24228
36	1	0	-2.26258	-2.04725	0.487617
37	1	0	4.582337	0.948864	-0.21635
38	1	0	3.50714	1.981494	0.723981
39	1	0	2.773748	0.388592	2.519459
40	1	0	2.916526	-1.3333	2.142552
41	1	0	4.282322	-0.26095	1.869118
42	1	0	-0.71355	-0.81129	2.198685
43	1	0	0.868492	-1.58362	2.191618
44	1	0	-0.53369	-2.45812	1.601639
45	1	0	-0.76315	0.904863	-1.84969
46	1	0	3.146325	1.330139	-1.9927

47	1	0	0.544706	2.719833	-0.93818
Conformer 2					
1	6	0	-2.05085	2.605617	-0.16701
2	6	0	-3.0275	1.493556	-0.55461
3	6	0	-2.73094	0.133939	0.12754
4	6	0	-1.21289	-0.22784	-0.085
5	6	0	-0.15731	0.909416	0.184926
6	6	0	-0.61088	2.215324	-0.51431
7	6	0	-0.7735	-1.53523	0.601172
8	6	0	0.598589	-2.00468	0.10168
9	6	0	1.64948	-0.9075	0.150418
10	6	0	1.22805	0.442989	-0.43164
11	6	0	2.901332	-1.16016	0.579721
12	6	0	4.029461	-0.2193	0.422381
13	6	0	3.750859	0.97398	-0.47998
14	6	0	2.329512	1.514148	-0.2684
15	6	0	-3.62222	-0.90014	-0.62234
16	6	0	-3.21223	0.171889	1.594761
17	6	0	0.050455	1.170347	1.699401
18	1	0	-1.15586	-0.40639	-1.16619
19	8	0	0.986854	0.226663	-1.8564
20	8	0	-3.74039	-2.18699	-0.02543
21	8	0	5.124785	-0.42546	0.922549
22	8	0	0.525147	-2.51321	-1.2369
23	1	0	-2.31574	3.528613	-0.69823
24	1	0	-2.13783	2.836912	0.90268
25	1	0	-4.05866	1.795586	-0.32587
26	1	0	-2.98082	1.35826	-1.64616
27	1	0	0.064602	3.036565	-0.24548
28	1	0	-0.53255	2.081985	-1.59971
29	1	0	-1.49559	-2.32994	0.401002
30	1	0	-0.72983	-1.40503	1.690484
31	1	0	0.936755	-2.8523	0.706973
32	1	0	3.154369	-2.1271	1.010863
33	1	0	4.503848	1.745193	-0.29391
34	1	0	3.898839	0.640419	-1.51973
35	1	0	2.125392	2.330216	-0.96804
36	1	0	2.282891	1.938092	0.738443
37	1	0	-3.21734	-1.08238	-1.62344
38	1	0	-4.62271	-0.45415	-0.75045
39	1	0	-2.89554	-0.71176	2.157623
40	1	0	-2.85901	1.051917	2.137231
41	1	0	-4.31035	0.21505	1.624183

42	1	0	0.65967	0.395958	2.175487
43	1	0	-0.89709	1.208567	2.23573
44	1	0	0.549477	2.129424	1.871563
45	1	0	1.847482	0.032437	-2.26324
46	1	0	-4.2388	-2.08597	0.79956
47	1	0	0.416594	-1.73644	-1.81415
Conformer 3					
1	6	0	2.222162	-2.43257	-0.43742
2	6	0	3.128836	-1.20604	-0.58406
3	6	0	2.73079	-0.04566	0.359023
4	6	0	1.207903	0.249455	0.166699
5	6	0	0.203774	-0.95066	0.185576
6	6	0	0.756392	-2.07955	-0.72036
7	6	0	0.687535	1.405752	1.03904
8	6	0	-0.61907	1.941406	0.455479
9	6	0	-1.64678	0.841574	0.276527
10	6	0	-1.1672	-0.41956	-0.45048
11	6	0	-2.9244	1.03587	0.647158
12	6	0	-4.02489	0.110535	0.289003
13	6	0	-3.65501	-0.95344	-0.72724
14	6	0	-2.25389	-1.51412	-0.45543
15	6	0	3.525932	1.223017	-0.05103
16	6	0	3.18202	-0.35558	1.802525
17	6	0	-0.0548	-1.48612	1.615244
18	1	0	1.16964	0.595234	-0.86902
19	8	0	-0.97023	-0.06287	-1.83281
20	8	0	2.967007	1.826584	-1.22411
21	8	0	-5.15481	0.257912	0.730831
22	8	0	-0.38292	2.503106	-0.86386
23	1	0	2.547364	-3.21338	-1.13682
24	1	0	2.326629	-2.866	0.5664
25	1	0	4.176777	-1.48079	-0.39758
26	1	0	3.075646	-0.84551	-1.62031
27	1	0	0.13647	-2.97793	-0.6117
28	1	0	0.665467	-1.75477	-1.76286
29	1	0	1.404974	2.234809	1.083935
30	1	0	0.518459	1.091286	2.074925
31	1	0	-1.03328	2.733861	1.092217
32	1	0	-3.22354	1.943317	1.169369
33	1	0	-4.41921	-1.7361	-0.71899
34	1	0	-3.66682	-0.48078	-1.7191
35	1	0	-1.99164	-2.24595	-1.22516
36	1	0	-2.2691	-2.03943	0.503808

37	1	0	4.570462	0.929805	-0.23355
38	1	0	3.532189	1.949016	0.776207
39	1	0	2.764236	0.351977	2.527046
40	1	0	2.908708	-1.36372	2.12261
41	1	0	4.275977	-0.2887	1.873511
42	1	0	-0.71099	-0.82786	2.19487
43	1	0	0.871466	-1.59929	2.181785
44	1	0	-0.53026	-2.47155	1.588856
45	1	0	-0.76426	0.892275	-1.85842
46	1	0	3.619479	2.449018	-1.57825
47	1	0	0.576971	2.637476	-0.96568
Conformer 4					
1	6	0	2.126493	-2.42835	-0.17314
2	6	0	3.049793	-1.2562	-0.51018
3	6	0	2.670121	0.056802	0.221115
4	6	0	1.13937	0.346744	-0.00833
5	6	0	0.138482	-0.84632	0.206396
6	6	0	0.671902	-2.1002	-0.52609
7	6	0	0.62592	1.600855	0.726807
8	6	0	-0.76569	2.012275	0.254137
9	6	0	-1.75804	0.869274	0.200305
10	6	0	-1.25443	-0.42392	-0.44787
11	6	0	-3.03344	1.054419	0.588501
12	6	0	-4.11478	0.078293	0.317478
13	6	0	-3.73264	-1.05325	-0.61789
14	6	0	-2.3059	-1.54759	-0.34794
15	6	0	3.460191	1.206222	-0.45201
16	6	0	3.121712	-0.00785	1.697528
17	6	0	-0.08365	-1.16529	1.707283
18	1	0	1.083163	0.564521	-1.08243
19	8	0	-1.10154	-0.17598	-1.85998
20	8	0	4.851084	0.891565	-0.43091
21	8	0	-5.24198	0.234577	0.762897
22	8	0	-0.60666	2.52309	-1.09939
23	1	0	2.444641	-3.31715	-0.73301
24	1	0	2.212108	-2.69462	0.888825
25	1	0	4.093055	-1.50092	-0.28716
26	1	0	3.001126	-1.07908	-1.59514
27	1	0	0.033478	-2.9619	-0.29625
28	1	0	0.596153	-1.92832	-1.60661
29	1	0	1.285469	2.459983	0.569337
30	1	0	0.582406	1.428916	1.807675
31	1	0	-1.15551	2.817039	0.892244

32	1	0	-3.34579	1.979784	1.071912
33	1	0	-4.46879	-1.85689	-0.52373
34	1	0	-3.79084	-0.66561	-1.64451
35	1	0	-2.04179	-2.32196	-1.07334
36	1	0	-2.27501	-2.00584	0.644778
37	1	0	3.282972	2.155173	0.075876
38	1	0	3.107697	1.329821	-1.489
39	1	0	2.712676	0.817491	2.290942
40	1	0	2.838962	-0.94357	2.186503
41	1	0	4.212659	0.063711	1.736664
42	1	0	-0.72971	-0.43184	2.201618
43	1	0	0.855534	-1.19256	2.25998
44	1	0	-0.55513	-2.14489	1.834043
45	1	0	-0.78013	0.73971	-1.96037
46	1	0	5.330574	1.650606	-0.79389
47	1	0	-1.46979	2.876847	-1.37241
Conformer 5		L			
1	6	0	2.111165	-2.43438	-0.17494
2	6	0	3.040961	-1.26547	-0.50467
3	6	0	2.663332	0.047174	0.228597
4	6	0	1.133998	0.343061	-0.00174
5	6	0	0.127488	-0.84672	0.201372
6	6	0	0.660531	-2.0981	-0.53538
7	6	0	0.615719	1.589188	0.742976
8	6	0	-0.76396	2.021618	0.236784
9	6	0	-1.75994	0.881976	0.179627
10	6	0	-1.26072	-0.41555	-0.45956
11	6	0	-3.02998	1.0711	0.57603
12	6	0	-4.11279	0.090273	0.323867
13	6	0	-3.74144	-1.03629	-0.62085
14	6	0	-2.31628	-1.53663	-0.35524
15	6	0	3.460783	1.193782	-0.44066
16	6	0	3.110836	-0.02209	1.706036
17	6	0	-0.10204	-1.1729	1.699921
18	1	0	1.071955	0.567831	-1.07476
19	8	0	-1.09325	-0.177	-1.87106
20	8	0	4.84966	0.876546	-0.4132
21	8	0	-5.23168	0.240411	0.791107
22	8	0	-0.68463	2.502031	-1.13048
23	1	0	2.429139	-3.32289	-0.73528
24	1	0	2.190073	-2.70339	0.886875
25	1	0	4.082335	-1.5146	-0.27766
26	1	0	2.997344	-1.08554	-1.58939

27	1	0	0.016944	-2.95811	-0.3146
28	1	0	0.592396	-1.91917	-1.61515
29	1	0	1.29897	2.442555	0.631512
30	1	0	0.54756	1.403646	1.820622
31	1	0	-1.16246	2.826807	0.869527
32	1	0	-3.3399	2.005539	1.040876
33	1	0	-4.48056	-1.83755	-0.53008
34	1	0	-3.79819	-0.64028	-1.64427
35	1	0	-2.05675	-2.31061	-1.08271
36	1	0	-2.28561	-1.99693	0.636686
37	1	0	3.284232	2.144318	0.086453
38	1	0	3.113556	1.316166	-1.48044
39	1	0	2.704706	0.804521	2.299864
40	1	0	2.819914	-0.95675	2.191857
41	1	0	4.202073	0.042011	1.749396
42	1	0	-0.76231	-0.44936	2.190021
43	1	0	0.832492	-1.19014	2.261154
44	1	0	-0.56204	-2.15867	1.81982
45	1	0	-0.90316	0.772577	-1.99118
46	1	0	5.334694	1.631763	-0.77683
47	1	0	0.085745	3.089988	-1.19643
Conformer 6					
1	6	0	-2.05002	2.613866	-0.16633
2	6	0	-3.02474	1.500232	-0.55358
3	6	0	-2.72752	0.138911	0.126782
4	6	0	-1.20412	-0.21046	-0.05293
5	6	0	-0.15189	0.927958	0.201422
6	6	0	-0.61063	2.220996	-0.51229
7	6	0	-0.76583	-1.49613	0.675734
8	6	0	0.599031	-1.98027	0.18063
9	6	0	1.651012	-0.89023	0.169413
10	6	0	1.22674	0.44617	-0.44495
11	6	0	2.903217	-1.1479	0.584328
12	6	0	4.035541	-0.21426	0.376081
13	6	0	3.735815	0.950589	-0.54758
14	6	0	2.331744	1.512424	-0.29379
15	6	0	-3.59441	-0.89101	-0.65256
16	6	0	-3.23204	0.16326	1.585996
17	6	0	0.062658	1.209176	1.710942
18	1	0	-1.12113	-0.41456	-1.12821
19	8	0	1.072433	0.249557	-1.86407
20	8	0	-3.65489	-2.21281	-0.11729
21	8	0	5.137595	-0.42722	0.859022

22	8	0	0.512803	-2.41986	-1.20061
23	1	0	-2.31797	3.534345	-0.70042
24	1	0	-2.13884	2.847751	0.902911
25	1	0	-4.05773	1.798156	-0.32727
26	1	0	-2.97426	1.36684	-1.64507
27	1	0	0.06512	3.046057	-0.25727
28	1	0	-0.53061	2.067642	-1.59526
29	1	0	-1.50319	-2.29186	0.523889
30	1	0	-0.70623	-1.33503	1.758822
31	1	0	0.948206	-2.82159	0.795247
32	1	0	3.159305	-2.10756	1.03023
33	1	0	4.510736	1.712866	-0.42484
34	1	0	3.791976	0.576284	-1.57912
35	1	0	2.122924	2.316648	-1.00498
36	1	0	2.305282	1.9482	0.709417
37	1	0	-3.19985	-1.01077	-1.66745
38	1	0	-4.61308	-0.48065	-0.74604
39	1	0	-2.94458	-0.73552	2.141999
40	1	0	-2.86227	1.024606	2.146961
41	1	0	-4.32885	0.230755	1.600143
42	1	0	0.676389	0.443055	2.195726
43	1	0	-0.88062	1.259808	2.256917
44	1	0	0.56712	2.168412	1.863629
45	1	0	0.844726	-0.6893	-2.00739
46	1	0	-4.14883	-2.17162	0.715877
47	1	0	-0.31471	-2.92018	-1.29876
Conformer 7					
1	6	0	-2.11323	2.431709	-0.16687
2	6	0	-3.0441	1.259375	-0.48431
3	6	0	-2.66007	-0.05542	0.240768
4	6	0	-1.13278	-0.34434	0.002713
5	6	0	-0.12763	0.846008	0.20344
6	6	0	-0.665	2.094352	-0.5349
7	6	0	-0.61274	-1.592	0.742883
8	6	0	0.765484	-2.02204	0.230643
9	6	0	1.760519	-0.88126	0.176218
10	6	0	1.260113	0.417501	-0.45963
11	6	0	3.030914	-1.06967	0.571727
12	6	0	4.112587	-0.08675	0.322089
13	6	0	3.740189	1.041312	-0.62048
14	6	0	2.314553	1.539478	-0.35358
15	6	0	-3.45946	-1.20907	-0.43485
16	6	0	-3.11051	0.007172	1.716014

17	6	0	0.100439	1.173615	1.70161
18	1	0	-1.07398	-0.56849	-1.07098
19	8	0	1.089377	0.182587	-1.87129
20	8	0	-4.86898	-1.02099	-0.42738
21	8	0	5.231344	-0.23622	0.789526
22	8	0	0.682743	-2.49575	-1.13834
23	1	0	-2.43653	3.318463	-0.7267
24	1	0	-2.18727	2.699838	0.895068
25	1	0	-4.07892	1.523966	-0.23
26	1	0	-3.01502	1.087353	-1.57277
27	1	0	-0.02302	2.956767	-0.3198
28	1	0	-0.60136	1.912658	-1.61448
29	1	0	-1.29634	-2.44469	0.631256
30	1	0	-0.54083	-1.40889	1.82068
31	1	0	1.165929	-2.82958	0.858968
32	1	0	3.342099	-2.00495	1.033943
33	1	0	4.478307	1.84325	-0.52794
34	1	0	3.797503	0.647539	-1.64472
35	1	0	2.054215	2.314692	-1.07956
36	1	0	2.283736	1.997781	0.639326
37	1	0	-3.30737	-2.15024	0.102202
38	1	0	-3.09348	-1.34926	-1.46599
39	1	0	-2.69251	-0.81285	2.309991
40	1	0	-2.83986	0.946427	2.205628
41	1	0	-4.20108	-0.08116	1.754062
42	1	0	0.765232	0.453501	2.190451
43	1	0	-0.83419	1.183698	2.263325
44	1	0	0.554432	2.162098	1.822471
45	1	0	0.902935	-0.76761	-1.99376
46	1	0	-5.07031	-0.27845	-1.01682
47	1	0	-0.08395	-3.08859	-1.205

Table 2: Input orientation of conformers of ent-scopariusol K (ent-14)

Conformer 1					
Center Number	Atomic Number	Atomic Type	Coordinates (Angstroms)		
1	6	0	-2.21985	-2.43673	-0.40987
2	6	0	-3.12822	-1.21282	-0.56509
3	6	0	-2.72985	-0.03781	0.360278
4	6	0	-1.2077	0.254819	0.170047
5	6	0	-0.2037	-0.94514	0.191237
6	6	0	-0.75734	-2.08131	-0.70458

7	6	0	-0.6861	1.412467	1.039524
8	6	0	0.626644	1.942909	0.463027
9	6	0	1.649926	0.839652	0.27947
10	6	0	1.163921	-0.41669	-0.45136
11	6	0	2.928815	1.027352	0.64852
12	6	0	4.025069	0.098968	0.28389
13	6	0	3.649595	-0.95694	-0.73872
14	6	0	2.247083	-1.51447	-0.46775
15	6	0	-3.52803	1.231537	-0.07194
16	6	0	-3.18803	-0.33026	1.804424
17	6	0	0.057368	-1.47307	1.623329
18	1	0	-1.16514	0.608625	-0.86364
19	8	0	0.955264	-0.05349	-1.83096
20	8	0	-3.03396	1.913159	-1.22563
21	8	0	5.1555	0.238044	0.726469
22	8	0	0.40301	2.507367	-0.85673
23	1	0	-2.3192	-2.85467	0.600562
24	1	0	-2.54792	-3.22735	-1.09662
25	1	0	-4.17713	-1.48262	-0.37994
26	1	0	-3.07401	-0.88266	-1.6154
27	1	0	-0.13465	-2.97723	-0.5939
28	1	0	-0.67291	-1.76444	-1.75048
29	1	0	-1.40056	2.244149	1.078131
30	1	0	-0.52399	1.101337	2.077474
31	1	0	1.041804	2.729482	1.106597
32	1	0	3.232529	1.931058	1.17441
33	1	0	3.661469	-0.4779	-1.72752
34	1	0	4.410834	-1.74245	-0.73702
35	1	0	1.980592	-2.23949	-1.24243
36	1	0	2.262496	-2.04721	0.487505
37	1	0	-3.50708	1.981467	0.724125
38	1	0	-4.58249	0.948759	-0.2159
39	1	0	-2.77356	0.388535	2.519562
40	1	0	-2.91649	-1.33337	2.14261
41	1	0	-4.28221	-0.2609	1.869268
42	1	0	-0.86839	-1.5835	2.191558
43	1	0	0.533499	-2.4583	1.601357
44	1	0	0.713884	-0.81155	2.198472
45	1	0	0.762888	0.904962	-1.84983
46	1	0	-3.14609	1.329545	-1.99247
47	1	0	-0.54435	2.720338	-0.93826
Conformer 2	1				1
1	6	0	2.046605	2.615818	-0.15883

2	6	0	3.025943	1.505596	-0.5417
3	6	0	2.731345	0.140129	0.135918
4	6	0	1.206584	-0.21199	-0.04316
5	6	0	0.15254	0.928407	0.200223
6	6	0	0.611914	2.218691	-0.51695
7	6	0	0.765164	-1.48697	0.702839
8	6	0	-0.59883	-1.97577	0.210754
9	6	0	-1.65139	-0.88725	0.179106
10	6	0	-1.22319	0.44193	-0.4477
11	6	0	-2.90636	-1.14086	0.588267
12	6	0	-4.03735	-0.21028	0.361965
13	6	0	-3.73105	0.946682	-0.5696
14	6	0	-2.3282	1.510241	-0.31284
15	6	0	3.596135	-0.87372	-0.65124
16	6	0	3.238089	0.15782	1.593711
17	6	0	-0.06889	1.218944	1.707375
18	1	0	1.123273	-0.4273	-1.1163
19	8	0	-1.06316	0.229618	-1.86445
20	8	0	3.604052	-2.16616	-0.04031
21	8	0	-5.14358	-0.41978	0.837074
22	8	0	-0.50608	-2.43558	-1.16503
23	1	0	2.126823	2.847321	0.911364
24	1	0	2.316601	3.537712	-0.68956
25	1	0	4.056184	1.805645	-0.30677
26	1	0	2.981256	1.376803	-1.63409
27	1	0	-0.06861	3.042743	-0.27159
28	1	0	0.542118	2.060112	-1.60001
29	1	0	1.498568	-2.2885	0.567206
30	1	0	0.705949	-1.30973	1.78286
31	1	0	-0.95053	-2.80929	0.834389
32	1	0	-3.16483	-2.09535	1.043799
33	1	0	-3.78129	0.563493	-1.59821
34	1	0	-4.50644	1.710254	-0.45819
35	1	0	-2.1152	2.307772	-1.03029
36	1	0	-2.3068	1.955276	0.686455
37	1	0	4.622564	-0.47681	-0.69583
38	1	0	3.224591	-0.9415	-1.68692
39	1	0	2.99597	-0.76644	2.123825
40	1	0	2.836999	0.998243	2.165666
41	1	0	4.330618	0.258017	1.601553
42	1	0	0.871922	1.269262	2.257235
43	1	0	-0.57154	2.18059	1.851267
44	1	0	-0.68723	0.457699	2.19386

45	1	0	-0.83633	-0.71124	-1.99507
46	1	0	4.315517	-2.68108	-0.44926
47	1	0	0.335571	-2.91307	-1.25452
Conformer 3					
1	6	0	-2.22216	-2.43257	-0.43742
2	6	0	-3.12884	-1.20604	-0.58406
3	6	0	-2.73079	-0.04566	0.359023
4	6	0	-1.2079	0.249455	0.166699
5	6	0	-0.20377	-0.95066	0.185576
6	6	0	-0.75639	-2.07955	-0.72036
7	6	0	-0.68754	1.405752	1.03904
8	6	0	0.619074	1.941406	0.455479
9	6	0	1.646783	0.841574	0.276527
10	6	0	1.167199	-0.41956	-0.45048
11	6	0	2.924399	1.03587	0.647158
12	6	0	4.024887	0.110535	0.289003
13	6	0	3.655011	-0.95344	-0.72724
14	6	0	2.253893	-1.51412	-0.45543
15	6	0	-3.52593	1.223017	-0.05103
16	6	0	-3.18202	-0.35558	1.802525
17	6	0	0.054803	-1.48612	1.615244
18	1	0	-1.16964	0.595234	-0.86902
19	8	0	0.970226	-0.06287	-1.83281
20	8	0	-2.96701	1.826584	-1.22411
21	8	0	5.154812	0.257912	0.730831
22	8	0	0.382917	2.503106	-0.86386
23	1	0	-2.32663	-2.866	0.5664
24	1	0	-2.54736	-3.21338	-1.13682
25	1	0	-4.17678	-1.48079	-0.39758
26	1	0	-3.07565	-0.84551	-1.62031
27	1	0	-0.13647	-2.97793	-0.6117
28	1	0	-0.66547	-1.75477	-1.76286
29	1	0	-1.40497	2.234809	1.083935
30	1	0	-0.51846	1.091287	2.074925
31	1	0	1.033276	2.733861	1.092217
32	1	0	3.223543	1.943317	1.169369
33	1	0	3.66682	-0.48078	-1.7191
34	1	0	4.419208	-1.7361	-0.71899
35	1	0	1.991641	-2.24595	-1.22516
36	1	0	2.269102	-2.03943	0.503808
37	1	0	-3.53219	1.949016	0.776207
38	1	0	-4.57046	0.929805	-0.23355
39	1	0	-2.76424	0.351977	2.527046

40	1	0	-2.90871	-1.36372	2.12261
41	1	0	-4.27598	-0.2887	1.873511
42	1	0	-0.87147	-1.59929	2.181785
43	1	0	0.530262	-2.47155	1.588856
44	1	0	0.710993	-0.82786	2.19487
45	1	0	0.764259	0.892275	-1.85842
46	1	0	-3.61948	2.449018	-1.57825
47	1	0	-0.57697	2.637476	-0.96568
Conformer 4					
1	6	0	2.126541	2.428421	-0.17287
2	6	0	3.049762	1.256265	-0.51011
3	6	0	2.670084	-0.0568	0.221049
4	6	0	1.139312	-0.34678	-0.0083
5	6	0	0.138421	0.846297	0.206524
6	6	0	0.671929	2.100308	-0.52573
7	6	0	0.625962	-1.60087	0.726985
8	6	0	-0.76563	-2.01231	0.254217
9	6	0	-1.75801	-0.86931	0.200292
10	6	0	-1.2544	0.423976	-0.44783
11	6	0	-3.03341	-1.05441	0.588404
12	6	0	-4.11475	-0.07832	0.317374
13	6	0	-3.73266	1.053282	-0.61795
14	6	0	-2.30585	1.54762	-0.34807
15	6	0	3.460097	-1.2061	-0.45231
16	6	0	3.121675	0.007581	1.697461
17	6	0	-0.08389	1.165062	1.707381
18	1	0	1.083001	-0.56459	-1.08239
19	8	0	-1.10157	0.175976	-1.85999
20	8	0	4.851031	-0.8914	-0.43111
21	8	0	-5.24197	-0.23472	0.762674
22	8	0	-0.60635	-2.52299	-1.0993
23	1	0	2.212297	2.694579	0.889119
24	1	0	2.444647	3.317256	-0.7327
25	1	0	4.09306	1.500902	-0.28713
26	1	0	3.000987	1.079312	-1.59509
27	1	0	0.033543	2.962	-0.29572
28	1	0	0.596122	1.928656	-1.6063
29	1	0	1.285559	-2.45995	0.569527
30	1	0	0.582486	-1.42883	1.80783
31	1	0	-1.15568	-2.81711	0.892146
32	1	0	-3.34586	-1.97978	1.071796
33	1	0	-3.79088	0.665644	-1.64457
34	1	0	-4.46872	1.85699	-0.52374

35	1	0	-2.0418	2.321869	-1.07362
36	1	0	-2.27505	2.006047	0.644581
37	1	0	3.10769	-1.32938	-1.48936
38	1	0	3.282998	-2.15522	0.075281
39	1	0	2.712749	-0.81803	2.290599
40	1	0	2.838616	0.943045	2.186715
41	1	0	4.212621	-0.06383	1.73659
42	1	0	0.855378	1.193052	2.259908
43	1	0	-0.55606	2.144317	1.834201
44	1	0	-0.72934	0.431171	2.201822
45	1	0	-0.77961	-0.73953	-1.96037
46	1	0	5.33053	-1.65054	-0.79387
47	1	0	-1.4695	-2.87649	-1.37261
Conformer 5					
1	6	0	2.111243	2.434353	-0.1749
2	6	0	3.040959	1.265431	-0.50476
3	6	0	2.663355	-0.04722	0.228522
4	6	0	1.134005	-0.34304	-0.00173
5	6	0	0.127534	0.846757	0.201449
6	6	0	0.660567	2.098161	-0.53528
7	6	0	0.615713	-1.58911	0.743031
8	6	0	-0.76397	-2.02153	0.236931
9	6	0	-1.75994	-0.8819	0.179724
10	6	0	-1.26073	0.415598	-0.45944
11	6	0	-3.03001	-1.07106	0.576081
12	6	0	-4.11286	-0.09032	0.323734
13	6	0	-3.74142	1.036426	-0.62071
14	6	0	-2.31627	1.53669	-0.35508
15	6	0	3.460746	-1.19387	-0.44076
16	6	0	3.110935	0.022047	1.705936
17	6	0	-0.10192	1.172864	1.700021
18	1	0	1.071875	-0.56779	-1.07475
19	8	0	-1.09324	0.177083	-1.87096
20	8	0	4.849653	-0.87671	-0.4134
21	8	0	-5.23189	-0.24074	0.790549
22	8	0	-0.68468	-2.50194	-1.13037
23	1	0	2.190212	2.703274	0.886932
24	1	0	2.429236	3.322893	-0.73519
25	1	0	4.082361	1.514526	-0.27785
26	1	0	2.997214	1.085503	-1.58948
27	1	0	0.017038	2.95819	-0.3144
28	1	0	0.592353	1.919294	-1.61506
29	1	0	1.298955	-2.4425	0.631569

30	1	0	0.547617	-1.40355	1.820687
31	1	0	-1.16245	-2.82673	0.869674
32	1	0	-3.33992	-2.00549	1.040926
33	1	0	-3.7983	0.640594	-1.6442
34	1	0	-4.48053	1.837685	-0.52979
35	1	0	-2.05671	2.310719	-1.08249
36	1	0	-2.28557	1.996948	0.636874
37	1	0	3.113478	-1.31629	-1.48052
38	1	0	3.28421	-2.14439	0.086399
39	1	0	2.704895	-0.80461	2.299765
40	1	0	2.820008	0.956684	2.191806
41	1	0	4.202179	-0.04199	1.749243
42	1	0	0.832631	1.190118	2.261226
43	1	0	-0.56197	2.158599	1.820022
44	1	0	-0.76211	0.449251	2.190129
45	1	0	-0.90356	-0.77258	-1.99116
46	1	0	5.334612	-1.63189	-0.77722
47	1	0	0.085778	-3.08979	-1.19639
Conformer 6					
1	6	0	2.049951	2.613835	-0.16628
2	6	0	3.024772	1.500261	-0.5534
3	6	0	2.727555	0.138905	0.126854
4	6	0	1.204092	-0.21044	-0.05267
5	6	0	0.151841	0.928021	0.201456
6	6	0	0.610659	2.220894	-0.51245
7	6	0	0.765769	-1.49608	0.676075
8	6	0	-0.59907	-1.98025	0.180902
9	6	0	-1.651	-0.89018	0.169668
10	6	0	-1.22671	0.446102	-0.44499
11	6	0	-2.90323	-1.14778	0.584534
12	6	0	-4.03555	-0.21422	0.375988
13	6	0	-3.73579	0.95037	-0.54804
14	6	0	-2.33177	1.512352	-0.29417
15	6	0	3.594409	-0.89095	-0.65267
16	6	0	3.232288	0.163194	1.586004
17	6	0	-0.06277	1.209539	1.710913
18	1	0	1.121092	-0.41465	-1.12792
19	8	0	-1.07219	0.249045	-1.86404
20	8	0	3.65449	-2.21292	-0.11779
21	8	0	-5.13758	-0.42696	0.859069
22	8	0	-0.51286	-2.41975	-1.20037
23	1	0	2.13861	2.847739	0.902969
24	1	0	2.317901	3.534317	-0.70038

25	1	0	4.057739	1.798204	-0.32698
26	1	0	2.974421	1.366903	-1.64489
27	1	0	-0.06515	3.045978	-0.25763
28	1	0	0.530847	2.067347	-1.5954
29	1	0	1.503139	-2.29182	0.52444
30	1	0	0.706008	-1.33484	1.759131
31	1	0	-0.94832	-2.82154	0.79551
32	1	0	-3.15931	-2.10734	1.030652
33	1	0	-3.7917	0.575749	-1.57947
34	1	0	-4.51075	1.712665	-0.4257
35	1	0	-2.12296	2.316434	-1.00551
36	1	0	-2.3054	1.948328	0.708962
37	1	0	4.613171	-0.48076	-0.74587
38	1	0	3.200039	-1.01037	-1.66767
39	1	0	2.944802	-0.73553	2.142043
40	1	0	2.8628	1.024664	2.146976
41	1	0	4.329117	0.230557	1.599937
42	1	0	0.880451	1.259854	2.257009
43	1	0	-0.56687	2.169012	1.863337
44	1	0	-0.67693	0.443755	2.195696
45	1	0	-0.84438	-0.68984	-2.00702
46	1	0	4.148941	-2.17227	0.715097
47	1	0	0.315049	-2.91937	-1.2987
Conformer 7					
1	6	0	2.113142	2.431765	-0.16683
2	6	0	3.044046	1.25946	-0.48434
3	6	0	2.660065	-0.05536	0.24074
4	6	0	1.132794	-0.34438	0.002595
5	6	0	0.127583	0.845945	0.203347
6	6	0	0.664932	2.094359	-0.5349
7	6	0	0.612808	-1.59208	0.742724
8	6	0	-0.76546	-2.0221	0.230596
9	6	0	-1.7605	-0.88131	0.176159
10	6	0	-1.2601	0.417432	-0.45976
11	6	0	-3.03087	-1.06966	0.571758
12	6	0	-4.11253	-0.08673	0.322181
13	6	0	-3.74019	1.041251	-0.62052
14	6	0	-2.31452	1.539418	-0.35375
15	6	0	3.459566	-1.20904	-0.43474
16	6	0	3.110372	0.007402	1.716011
17	6	0	-0.10063	1.173491	1.701495
18	1	0	1.074052	-0.56852	-1.07109
19	8	0	-1.08929	0.182471	-1.87143

20	8	0	4.869095	-1.0211	-0.42711
21	8	0	-5.23116	-0.23598	0.789959
22	8	0	-0.68287	-2.4958	-1.13837
23	1	0	2.187179	2.699828	0.895118
24	1	0	2.436415	3.318555	-0.72663
25	1	0	4.078863	1.524167	-0.23006
26	1	0	3.01494	1.087469	-1.5728
27	1	0	0.022902	2.956728	-0.31975
28	1	0	0.601325	1.912739	-1.6145
29	1	0	1.296414	-2.44474	0.63101
30	1	0	0.540918	-1.40902	1.82054
31	1	0	-1.16585	-2.82962	0.858991
32	1	0	-3.34203	-2.00489	1.034091
33	1	0	-3.7975	0.647388	-1.64473
34	1	0	-4.47825	1.843247	-0.52805
35	1	0	-2.05425	2.314557	-1.07984
36	1	0	-2.2836	1.99784	0.639124
37	1	0	3.093727	-1.34925	-1.46593
38	1	0	3.307401	-2.15019	0.102321
39	1	0	2.692147	-0.81241	2.310117
40	1	0	2.839847	0.946824	2.20538
41	1	0	4.200919	-0.08116	1.754188
42	1	0	0.833963	1.183709	2.263252
43	1	0	-0.55483	2.16189	1.822322
44	1	0	-0.76533	0.453252	2.19028
45	1	0	-0.90265	-0.76769	-1.9939
46	1	0	5.070477	-0.27766	-1.01542
47	1	0	0.083471	-3.08913	-1.20499

Table 3: Important thermodynamic parameters of optimized 14 at B3LYP/6-31G(d) level in gas phase.

Species	E	E'	Н	G
Conformer 1	-963.908728	-963.889237	-963.888293	-963.95353
Conformer 2	-963.902914	-963.882997	-963.882053	-963.948309
Conformer 3	-963.907258	-963.88765	-963.886706	-963.952229
Conformer 4	-963.90639	-963.886427	-963.885483	-963.951881
Conformer 5	-963.904046	-963.883983	-963.883039	-963.949604
Conformer 6	-963.90695	-963.88717	-963.886226	-963.952206
Conformer 7	-963.905623	-963.885757	-963.884812	-963.95093

E, E', H, G: total energy, total energy with zero point energy (ZPE), enthalpy, and Gibbs free energy.
Species	ΔE	$P_E\%$	$\Delta E'$	P _E ,%	ΔG	P_G %
Conformer 1	0.00	66.9625	0.00	72.49291	0.00	56.95487
Conformer 2	3.64	0.141733	3.91	0.097719	3.27	0.225914
Conformer 3	0.92	14.11405	0.99	13.49887	0.81	14.35783
Conformer 4	1.46	5.628384	1.76	3.696018	1.03	9.931468
Conformer 5	2.93	0.470084	3.29	0.277669	2.46	0.890481
Conformer 6	1.11	10.18535	1.29	8.119025	0.83	14.01229
Conformer 7	1.94	2.497895	2.18	1.817788	1.63	3.627158

Table 4: Conformational analysis of 14 at B3LYP/6-31+G(d) level in gas phase.

 ΔE , $\Delta E'$, ΔG : Relative energy, relative energy with ZPE, and relative Gibbs free energy in kcal/mol. $P_E\%$, $P_E\%$, $P_G\%$: Conformational distribution calculated by using the respective parameters in Table S2.

Table 5: Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters ($Å^2 × 10^3$)for 3-epi-isodopharicin A (1). U(eq) is defined as one third of the trace of the
orthogonalized Uij tensor.

	Х	У	Z	U(eq)
O(21)	1557(3)	704(1)	11708(1)	28(1)
O(11)	369(3)	275(1)	10557(1)	19(1)
O(3)	-1023(4)	2980(1)	8529(1)	44(1)
O(13)	4865(3)	-1400(1)	9815(1)	27(1)
O(14)	-1808(3)	-678(1)	9154(1)	24(1)
C(21)	307(4)	355(1)	11329(1)	20(1)
C(11)	2200(4)	540(1)	10147(1)	17(1)
C(9)	1430(4)	720(1)	9316(1)	16(1)
C(10)	2421(4)	1452(1)	8925(1)	18(1)
C(5)	1253(4)	1560(1)	8142(1)	18(1)
C(4)	1525(4)	2348(1)	7711(1)	24(1)
C(3)	1073(5)	3008(2)	8297(2)	33(1)
C(6)	1503(4)	841(1)	7625(1)	21(1)
C(7)	528(4)	133(1)	8012(1)	20(1)
C(8)	1388(3)	-39(1)	8811(1)	16(1)
C(15)	23(4)	-626(1)	9242(1)	18(1)
C(16)	1313(4)	-1120(1)	9748(1)	18(1)
C(17)	712(4)	-1746(2)	10140(2)	25(1)
C(13)	3442(4)	-801(1)	9668(1)	18(1)
C(12)	3792(3)	-105(1)	10216(1)	19(1)

C(22)	-1512(4)	-49(2)	11659(2)	29(1)
C(20)	4741(4)	1380(1)	8837(1)	22(1)
C(1)	1940(5)	2161(1)	9441(1)	26(1)
C(2)	2335(5)	2939(2)	9031(2)	33(1)
C(14)	3413(3)	-489(1)	8830(1)	17(1)
C(19)	3639(5)	2475(2)	7350(2)	28(1)
 C(18)	-30(5)	2408(2)	7049(2)	34(1)

_

Table 6: Bond lengths [Å] and angles [°] for 3-epi-isodopharicin A (1).

O(21)-C(21)	1.209(3)
O(11)-C(21)	1.337(3)
O(11)-C(11)	1.471(3)
O(3)-C(3)	1.439(4)
O(3)-H(3)	0.8400
O(13)-C(13)	1.414(3)
O(13)-H(13)	0.8400
O(14)-C(15)	1.220(3)
C(21)-C(22)	1.498(4)
C(11)-C(12)	1.530(3)
C(11)-C(9)	1.549(3)
C(11)-H(11)	1.0000
C(9)-C(8)	1.565(3)
C(9)-C(10)	1.568(3)
C(9)-H(9)	1.0000
C(10)-C(1)	1.539(3)
C(10)-C(20)	1.543(3)
C(10)-C(5)	1.564(3)
C(5)-C(6)	1.530(3)
C(5)-C(4)	1.551(3)
C(5)-H(5)	1.0000
C(4)-C(18)	1.537(4)
C(4)-C(19)	1.542(4)
C(4)-C(3)	1.545(4)
C(3)-C(2)	1.518(4)
C(3)-H(3A)	1.0000
C(6)-C(7)	1.526(3)

_

C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-C(8)	1.517(3)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(15)	1.540(3)
C(8)-C(14)	1.542(3)
C(15)-C(16)	1.484(3)
C(16)-C(17)	1.328(4)
C(16)-C(13)	1.513(3)
C(17)-H(17A)	0.9500
C(17)-H(17B)	0.9500
C(13)-C(12)	1.538(3)
C(13)-C(14)	1.540(3)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(1)-C(2)	1.532(3)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(21)-O(11)-C(11)	118.13(19)
С(3)-О(3)-Н(3)	109.5
С(13)-О(13)-Н(13)	109.5

O(21)-C(21)-O(11)	124.5(2)
O(21)-C(21)-C(22)	124.7(2)
O(11)-C(21)-C(22)	110.8(2)
O(11)-C(11)-C(12)	107.59(18)
O(11)-C(11)-C(9)	103.64(18)
C(12)-C(11)-C(9)	116.14(18)
O(11)-C(11)-H(11)	109.7
С(12)-С(11)-Н(11)	109.7
C(9)-C(11)-H(11)	109.7
C(11)-C(9)-C(8)	110.76(18)
C(11)-C(9)-C(10)	114.81(18)
C(8)-C(9)-C(10)	115.70(17)
С(11)-С(9)-Н(9)	104.7
C(8)-C(9)-H(9)	104.7
С(10)-С(9)-Н(9)	104.7
C(1)-C(10)-C(20)	108.9(2)
C(1)-C(10)-C(5)	107.68(19)
C(20)-C(10)-C(5)	114.42(19)
C(1)-C(10)-C(9)	107.31(18)
C(20)-C(10)-C(9)	113.0(2)
C(5)-C(10)-C(9)	105.11(18)
C(6)-C(5)-C(4)	114.29(18)
C(6)-C(5)-C(10)	110.66(18)
C(4)-C(5)-C(10)	117.28(19)
C(6)-C(5)-H(5)	104.3
C(4)-C(5)-H(5)	104.3
C(10)-C(5)-H(5)	104.3
C(18)-C(4)-C(19)	107.1(2)
C(18)-C(4)-C(3)	107.8(2)
C(19)-C(4)-C(3)	109.5(2)
C(18)-C(4)-C(5)	109.6(2)
C(19)-C(4)-C(5)	114.9(2)
C(3)-C(4)-C(5)	107.65(19)
O(3)-C(3)-C(2)	107.0(2)
O(3)-C(3)-C(4)	110.0(3)
C(2)-C(3)-C(4)	112.4(2)
O(3)-C(3)-H(3A)	109.1
C(2)-C(3)-H(3A)	109.1

C(4)-C(3)-H(3A)	109.1
C(7)-C(6)-C(5)	109.97(18)
C(7)-C(6)-H(6A)	109.7
C(5)-C(6)-H(6A)	109.7
C(7)-C(6)-H(6B)	109.7
C(5)-C(6)-H(6B)	109.7
H(6A)-C(6)-H(6B)	108.2
C(8)-C(7)-C(6)	113.16(19)
C(8)-C(7)-H(7A)	108.9
C(6)-C(7)-H(7A)	108.9
C(8)-C(7)-H(7B)	108.9
C(6)-C(7)-H(7B)	108.9
H(7A)-C(7)-H(7B)	107.8
C(7)-C(8)-C(15)	110.22(18)
C(7)-C(8)-C(14)	116.10(19)
C(15)-C(8)-C(14)	99.75(17)
C(7)-C(8)-C(9)	110.44(18)
C(15)-C(8)-C(9)	106.55(17)
C(14)-C(8)-C(9)	112.86(18)
O(14)-C(15)-C(16)	126.7(2)
O(14)-C(15)-C(8)	124.5(2)
C(16)-C(15)-C(8)	108.71(19)
C(17)-C(16)-C(15)	126.1(2)
C(17)-C(16)-C(13)	128.0(2)
C(15)-C(16)-C(13)	105.79(18)
С(16)-С(17)-Н(17А)	120.0
C(16)-C(17)-H(17B)	120.0
H(17A)-C(17)-H(17B)	120.0
O(13)-C(13)-C(16)	109.69(18)
O(13)-C(13)-C(12)	110.74(19)
C(16)-C(13)-C(12)	111.34(19)
O(13)-C(13)-C(14)	115.36(19)
C(16)-C(13)-C(14)	101.49(19)
C(12)-C(13)-C(14)	107.91(18)
C(11)-C(12)-C(13)	114.23(18)
C(11)-C(12)-H(12A)	108.7
C(13)-C(12)-H(12A)	108.7
C(11)-C(12)-H(12B)	108.7

C(13)-C(12)-H(12B)	108.7
H(12A)-C(12)-H(12B)	107.6
C(21)-C(22)-H(22A)	109.5
C(21)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
C(21)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
C(10)-C(20)-H(20A)	109.5
C(10)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
С(10)-С(20)-Н(20С)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(2)-C(1)-C(10)	112.7(2)
C(2)-C(1)-H(1A)	109.1
C(10)-C(1)-H(1A)	109.1
C(2)-C(1)-H(1B)	109.1
C(10)-C(1)-H(1B)	109.1
H(1A)-C(1)-H(1B)	107.8
C(3)-C(2)-C(1)	111.0(2)
C(3)-C(2)-H(2A)	109.4
C(1)-C(2)-H(2A)	109.4
C(3)-C(2)-H(2B)	109.4
C(1)-C(2)-H(2B)	109.4
H(2A)-C(2)-H(2B)	108.0
C(13)-C(14)-C(8)	101.79(17)
C(13)-C(14)-H(14A)	111.4
C(8)-C(14)-H(14A)	111.4
C(13)-C(14)-H(14B)	111.4
C(8)-C(14)-H(14B)	111.4
H(14A)-C(14)-H(14B)	109.3
C(4)-C(19)-H(19A)	109.5
C(4)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(4)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
U(10P) C(10) U(10C)	109.5

C(4)-C(18)-H(18A)	109.5
C(4)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(4)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5

Symmetry transformations used to generate equivalent atoms.

	X	у	Z	U(eq)
O(18)	10002(4)	-267(6)	6709(2)	20(1)
O(11)	8227(4)	2022(6)	3488(2)	16(1)
O(18')	4583(4)	4806(7)	8317(2)	19(1)
O(11')	7130(4)	7051(6)	11418(2)	16(1)
C(18)	8783(6)	-916(10)	6805(3)	17(1)
C(4)	7698(6)	-13(9)	6357(3)	15(1)
C(5)	7968(6)	-238(9)	5651(3)	12(1)
C(6)	7981(6)	-2177(9)	5414(3)	15(1)
C(7)	8732(6)	-2294(9)	4831(3)	14(1)
C(8)	8164(6)	-1078(9)	4286(3)	12(1)
C(15)	9082(6)	-890(9)	3770(3)	14(1)
C(16)	8253(6)	182(9)	3253(3)	13(1)
C(17)	8697(6)	203(10)	2599(3)	21(2)
C(3)	7696(6)	1972(10)	6539(3)	15(1)
C(2)	6899(6)	3175(9)	6060(3)	15(1)
C(1)	7304(6)	2929(9)	5387(3)	14(1)
C(10)	7182(6)	1001(9)	5142(3)	11(1)
C(20)	5772(6)	492(9)	5036(3)	14(1)
C(9)	7860(6)	857(10)	4520(3)	14(1)
C(14)	7042(6)	-1919(9)	3856(3)	11(1)
C(13)	6877(6)	-540(9)	3299(3)	15(1)
C(11)	7291(6)	1981(10)	3937(3)	14(1)
C(12)	6194(6)	1099(9)	3520(3)	13(1)
C(19)	6470(6)	-914(10)	6514(3)	16(1)
C(18')	5741(6)	4111(10)	8133(3)	15(1)
C(4')	6912(6)	4982(9)	8509(3)	14(1)
C(5')	6847(6)	4762(8)	9235(3)	11(1)
C(6')	6872(6)	2821(9)	9472(3)	14(1)
C(7')	6334(6)	2710(9)	10113(3)	14(1)
C(8')	7017(6)	3931(9)	10622(3)	11(1)
C(15')	6247(6)	4137(9)	11198(3)	15(1)
C(16')	7169(6)	5228(10)	11660(3)	16(1)
C(17')	6905(7)	5257(10)	12350(3)	20(2)
C(11')	7933(6)	7009(9)	10905(3)	13(1)

Table 7: Atomic coordinates ($\times 10^4$) and equivalent isotropic displacement parameters (Å² × 10³) for scopariusol B (**3**). U(eq) is defined as one third of the trace of the orthogonalized Uii tensor

(C(19')	8049(7)	4065(10)	8254(3)	20(2)
(C(14')	8225(6)	3136(9)	10992(3)	14(1)
(C(13')	8516(7)	4510(9)	11531(3)	16(2)
(C(12')	9111(6)	6154(9)	11265(3)	15(1)
(C(3')	6887(6)	6971(10)	8330(3)	16(1)
(C(2')	7828(6)	8130(9)	8751(3)	16(2)
(C(1')	7640(6)	7909(9)	9456(3)	14(1)
(C(20')	9147(6)	5384(10)	9706(3)	15(1)
(C(10')	7761(6)	5962(9)	9692(3)	12(1)
(C(9')	7241(6)	5861(9)	10361(3)	14(1)

Table 8: Bond lengths [Å] and angles [°] for scopariusol B (3).

O(18)-C(18)	1.415(8)
O(18)-H(18)	0.8400
O(11)-C(11)	1.448(7)
O(11)-C(16)	1.456(8)
O(18')-C(18')	1.426(7)
O(18')-H(18')	0.8400
O(11')-C(16')	1.447(9)
O(11')-C(11')	1.449(7)
C(18)-C(4)	1.557(9)
C(18)-H(18A)	0.9900
C(18)-H(18B)	0.9900
C(4)-C(3)	1.525(10)
C(4)-C(19)	1.533(9)
C(4)-C(5)	1.556(8)
C(5)-C(6)	1.526(9)
C(5)-C(10)	1.578(9)
C(5)-H(5)	1.0000
C(6)-C(7)	1.541(8)
C(6)-H(6A)	0.9900
C(6)-H(6B)	0.9900
C(7)-C(8)	1.532(9)
C(7)-H(7A)	0.9900
C(7)-H(7B)	0.9900
C(8)-C(14)	1.544(9)
C(8)-C(15)	1.545(8)

C(8)-C(9)	1.567(10)
C(15)-C(16)	1.543(9)
C(15)-H(15A)	0.9900
C(15)-H(15B)	0.9900
C(16)-C(17)	1.506(8)
C(16)-C(13)	1.568(9)
C(17)-H(17A)	0.9800
C(17)-H(17B)	0.9800
C(17)-H(17C)	0.9800
C(3)-C(2)	1.531(9)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(2)-C(1)	1.539(8)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(1)-C(10)	1.524(10)
C(1)-H(1A)	0.9900
C(1)-H(1B)	0.9900
C(10)-C(20)	1.534(8)
C(10)-C(9)	1.569(8)
C(20)-H(20A)	0.9800
C(20)-H(20B)	0.9800
C(20)-H(20C)	0.9800
C(9)-C(11)	1.551(9)
C(9)-H(9)	1.0000
C(14)-C(13)	1.554(8)
C(14)-H(14A)	0.9900
C(14)-H(14B)	0.9900
C(13)-C(12)	1.518(9)
C(13)-H(13)	1.0000
C(11)-C(12)	1.525(9)
C(11)-H(11)	1.0000
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
C(18')-C(4')	1.539(9)

C(18')-H(18C)	0.9900
C(18')-H(18D)	0.9900
C(4')-C(3')	1.525(10)
C(4')-C(19')	1.534(9)
C(4')-C(5')	1.550(8)
C(5')-C(6')	1.526(9)
C(5')-C(10')	1.566(9)
C(5')-H(5')	1.0000
C(6')-C(7')	1.527(8)
C(6')-H(6'1)	0.9900
C(6')-H(6'2)	0.9900
C(7')-C(8')	1.525(9)
C(7')-H(7'1)	0.9900
C(7')-H(7'2)	0.9900
C(8')-C(14')	1.541(9)
C(8')-C(15')	1.544(8)
C(8')-C(9')	1.564(9)
C(15')-C(16')	1.533(9)
C(15')-H(15C)	0.9900
C(15')-H(15D)	0.9900
C(16')-C(17')	1.513(8)
C(16')-C(13')	1.576(9)
C(17')-H(17D)	0.9800
C(17')-H(17E)	0.9800
C(17')-H(17F)	0.9800
C(11')-C(12')	1.525(9)
C(11')-C(9')	1.546(9)
С(11')-Н(11')	1.0000
C(9')-C(10')	1.574(8)
C(9')-H(9')	1.0000
C(10')-C(20')	1.528(8)
C(10')-C(1')	1.531(10)
C(20')-H(20D)	0.9800
C(20')-H(20E)	0.9800
C(20')-H(20F)	0.9800
C(1')-C(2')	1.532(8)
C(1')-H(1'1)	0.9900
C(1')-H(1'2)	0.9900

C(2')-C(3')	1.525(9)
C(2')-H(2'1)	0.9900
C(2')-H(2'2)	0.9900
C(3')-H(3'1)	0.9900
C(3')-H(3'2)	0.9900
C(12')-C(13')	1.512(9)
C(12')-H(12C)	0.9900
C(12')-H(12D)	0.9900
C(13')-C(14')	1.534(9)
С(13')-Н(13')	1.0000
C(14')-H(14C)	0.9900
C(14')-H(14D)	0.9900
C(19')-H(19D)	0.9800
С(19')-Н(19Е)	0.9800
C(19')-H(19F)	0.9800
C(18)-O(18)-H(18)	109.5
C(11)-O(11)-C(16)	104.1(4)
C(18')-O(18')-H(18')	109.5
C(16')-O(11')-C(11')	104.3(5)
O(18)-C(18)-C(4)	113.0(5)
O(18)-C(18)-H(18A)	109.0
C(4)-C(18)-H(18A)	109.0
O(18)-C(18)-H(18B)	109.0
C(4)-C(18)-H(18B)	109.0
H(18A)-C(18)-H(18B)	107.8
C(3)-C(4)-C(19)	110.1(5)
C(3)-C(4)-C(5)	110.5(5)
C(19)-C(4)-C(5)	114.3(5)
C(3)-C(4)-C(18)	106.6(5)
C(19)-C(4)-C(18)	105.5(5)
C(5)-C(4)-C(18)	109.3(5)
C(6)-C(5)-C(4)	115.1(5)
C(6)-C(5)-C(10)	110.7(5)
C(4)-C(5)-C(10)	116.5(5)
C(6)-C(5)-H(5)	104.3
C(4)-C(5)-H(5)	104.3
C(10)-C(5)-H(5)	104.3

109.8(5)
109.7
109.7
109.7
109.7
108.2
111.8(5)
109.3
109.3
109.3
109.3
107.9
114.4(5)
110.8(5)
97.4(5)
112.5(5)
112.7(5)
107.9(5)
101.0(5)
111.6
111.6
111.6
111.6
109.4
108.7(5)
106.1(5)
116.1(5)
104.4(5)
116.7(5)
103.9(5)
109.5
109.5
109.5
109.5
109.5
109.5
114.5(5)
108.6

C(2)-C(3)-H(3A)	108.6
C(4)-C(3)-H(3B)	108.6
C(2)-C(3)-H(3B)	108.6
H(3A)-C(3)-H(3B)	107.6
C(3)-C(2)-C(1)	110.4(5)
C(3)-C(2)-H(2A)	109.6
C(1)-C(2)-H(2A)	109.6
C(3)-C(2)-H(2B)	109.6
C(1)-C(2)-H(2B)	109.6
H(2A)-C(2)-H(2B)	108.1
C(10)-C(1)-C(2)	113.7(5)
C(10)-C(1)-H(1A)	108.8
C(2)-C(1)-H(1A)	108.8
C(10)-C(1)-H(1B)	108.8
C(2)-C(1)-H(1B)	108.8
H(1A)-C(1)-H(1B)	107.7
C(1)-C(10)-C(20)	109.0(5)
C(1)-C(10)-C(9)	108.5(5)
C(20)-C(10)-C(9)	113.1(5)
C(1)-C(10)-C(5)	107.6(5)
C(20)-C(10)-C(5)	112.7(5)
C(9)-C(10)-C(5)	105.7(5)
C(10)-C(20)-H(20A)	109.5
C(10)-C(20)-H(20B)	109.5
H(20A)-C(20)-H(20B)	109.5
С(10)-С(20)-Н(20С)	109.5
H(20A)-C(20)-H(20C)	109.5
H(20B)-C(20)-H(20C)	109.5
C(11)-C(9)-C(8)	108.7(5)
C(11)-C(9)-C(10)	116.8(5)
C(8)-C(9)-C(10)	117.1(5)
С(11)-С(9)-Н(9)	104.1
C(8)-C(9)-H(9)	104.1
C(10)-C(9)-H(9)	104.1
C(8)-C(14)-C(13)	101.0(5)
C(8)-C(14)-H(14A)	111.6
C(13)-C(14)-H(14A)	111.6
C(8)-C(14)-H(14B)	111.6

C(13)-C(14)-H(14B)	111.6
H(14A)-C(14)-H(14B)	109.4
C(12)-C(13)-C(14)	108.3(5)
C(12)-C(13)-C(16)	102.9(5)
C(14)-C(13)-C(16)	104.2(5)
С(12)-С(13)-Н(13)	113.5
С(14)-С(13)-Н(13)	113.5
С(16)-С(13)-Н(13)	113.5
O(11)-C(11)-C(12)	99.6(5)
O(11)-C(11)-C(9)	107.2(5)
C(12)-C(11)-C(9)	115.4(6)
O(11)-C(11)-H(11)	111.3
С(12)-С(11)-Н(11)	111.3
C(9)-C(11)-H(11)	111.3
C(13)-C(12)-C(11)	99.4(5)
C(13)-C(12)-H(12A)	111.9
C(11)-C(12)-H(12A)	111.9
C(13)-C(12)-H(12B)	111.9
C(11)-C(12)-H(12B)	111.9
H(12A)-C(12)-H(12B)	109.6
C(4)-C(19)-H(19A)	109.5
C(4)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(4)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
O(18')-C(18')-C(4')	112.1(5)
O(18')-C(18')-H(18C)	109.2
C(4')-C(18')-H(18C)	109.2
O(18')-C(18')-H(18D)	109.2
C(4')-C(18')-H(18D)	109.2
H(18C)-C(18')-H(18D)	107.9
C(3')-C(4')-C(19')	109.7(5)
C(3')-C(4')-C(18')	106.9(5)
C(19')-C(4')-C(18')	104.7(5)
C(3')-C(4')-C(5')	110.1(5)
C(19')-C(4')-C(5')	115.1(5)
C(18')-C(4')-C(5')	109.9(5)

C(6')-C(5')-C(4')	115.0(5)
C(6')-C(5')-C(10')	110.5(5)
C(4')-C(5')-C(10')	117.0(5)
C(6')-C(5')-H(5')	104.2
C(4')-C(5')-H(5')	104.2
C(10')-C(5')-H(5')	104.2
C(5')-C(6')-C(7')	110.2(5)
C(5')-C(6')-H(6'1)	109.6
C(7')-C(6')-H(6'1)	109.6
C(5')-C(6')-H(6'2)	109.6
C(7')-C(6')-H(6'2)	109.6
H(6'1)-C(6')-H(6'2)	108.1
C(8')-C(7')-C(6')	113.3(5)
C(8')-C(7')-H(7'1)	108.9
C(6')-C(7')-H(7'1)	108.9
C(8')-C(7')-H(7'2)	108.9
C(6')-C(7')-H(7'2)	108.9
H(7'1)-C(7')-H(7'2)	107.7
C(7')-C(8')-C(14')	115.4(5)
C(7')-C(8')-C(15')	111.2(5)
C(14')-C(8')-C(15')	97.1(5)
C(7')-C(8')-C(9')	112.2(5)
C(14')-C(8')-C(9')	112.3(5)
C(15')-C(8')-C(9')	107.5(5)
C(16')-C(15')-C(8')	101.3(5)
C(16')-C(15')-H(15C)	111.5
C(8')-C(15')-H(15C)	111.5
C(16')-C(15')-H(15D)	111.5
C(8')-C(15')-H(15D)	111.5
H(15C)-C(15')-H(15D)	109.3
O(11')-C(16')-C(17')	109.0(5)
O(11')-C(16')-C(15')	106.3(5)
C(17')-C(16')-C(15')	116.4(6)
O(11')-C(16')-C(13')	104.3(5)
C(17')-C(16')-C(13')	116.1(5)
C(15')-C(16')-C(13')	103.7(5)
C(16')-C(17')-H(17D)	109.5
C(16')-C(17')-H(17E)	109.5

H(17D)-C(17')-H(17E)	109.5
C(16')-C(17')-H(17F)	109.5
H(17D)-C(17')-H(17F)	109.5
H(17E)-C(17')-H(17F)	109.5
O(11')-C(11')-C(12')	98.9(5)
O(11')-C(11')-C(9')	107.2(5)
C(12')-C(11')-C(9')	115.6(6)
O(11')-C(11')-H(11')	111.5
C(12')-C(11')-H(11')	111.5
C(9')-C(11')-H(11')	111.5
C(11')-C(9')-C(8')	108.9(5)
C(11')-C(9')-C(10')	116.9(5)
C(8')-C(9')-C(10')	116.2(5)
С(11')-С(9')-Н(9')	104.4
C(8')-C(9')-H(9')	104.4
С(10')-С(9')-Н(9')	104.4
C(20')-C(10')-C(1')	108.5(5)
C(20')-C(10')-C(5')	112.3(5)
C(1')-C(10')-C(5')	108.4(5)
C(20')-C(10')-C(9')	113.7(5)
C(1')-C(10')-C(9')	108.1(5)
C(5')-C(10')-C(9')	105.6(5)
C(10')-C(20')-H(20D)	109.5
C(10')-C(20')-H(20E)	109.5
H(20D)-C(20')-H(20E)	109.5
C(10')-C(20')-H(20F)	109.5
H(20D)-C(20')-H(20F)	109.5
H(20E)-C(20')-H(20F)	109.5
C(10')-C(1')-C(2')	113.6(5)
C(10')-C(1')-H(1'1)	108.8
C(2')-C(1')-H(1'1)	108.8
С(10')-С(1')-Н(1'2)	108.8
C(2')-C(1')-H(1'2)	108.8
H(1'1)-C(1')-H(1'2)	107.7
C(3')-C(2')-C(1')	110.8(5)
C(3')-C(2')-H(2'1)	109.5
C(1')-C(2')-H(2'1)	109.5
C(3')-C(2')-H(2'2)	109.5

C(1')-C(2')-H(2'2)	109.5
H(2'1)-C(2')-H(2'2)	108.1
C(2')-C(3')-C(4')	114.4(5)
C(2')-C(3')-H(3'1)	108.7
C(4')-C(3')-H(3'1)	108.7
C(2')-C(3')-H(3'2)	108.7
C(4')-C(3')-H(3'2)	108.7
H(3'1)-C(3')-H(3'2)	107.6
C(13')-C(12')-C(11')	99.7(5)
C(13')-C(12')-H(12C)	111.8
C(11')-C(12')-H(12C)	111.8
C(13')-C(12')-H(12D)	111.8
C(11')-C(12')-H(12D)	111.8
H(12C)-C(12')-H(12D)	109.6
C(12')-C(13')-C(14')	108.7(5)
C(12')-C(13')-C(16')	102.4(6)
C(14')-C(13')-C(16')	104.1(5)
C(12')-C(13')-H(13')	113.6
C(14')-C(13')-H(13')	113.6
C(16')-C(13')-H(13')	113.6
C(13')-C(14')-C(8')	101.8(5)
C(13')-C(14')-H(14C)	111.4
C(8')-C(14')-H(14C)	111.4
C(13')-C(14')-H(14D)	111.4
C(8')-C(14')-H(14D)	111.4
H(14C)-C(14')-H(14D)	109.3
C(4')-C(19')-H(19D)	109.5
C(4')-C(19')-H(19E)	109.5
H(19D)-C(19')-H(19E)	109.5
C(4')-C(19')-H(19F)	109.5
H(19D)-C(19')-H(19F)	109.5
H(19E)-C(19')-H(19F)	109.5

Symmetry transformations used to generate equivalent atoms.

	X	у	Z	U(eq)
O(1)	1371(2)	5224(1)	9992(1)	14(1)
O(2)	-388(2)	1164(1)	8157(1)	20(1)
O(3)	5921(2)	6958(1)	9481(1)	15(1)
O(4)	-906(2)	6141(1)	9688(1)	19(1)
O(5)	3709(2)	3549(1)	10483(1)	17(1)
C(1)	-541(3)	5594(2)	10811(1)	21(1)
C(2)	-88(2)	5704(2)	10108(1)	15(1)
C(3)	2014(2)	5318(2)	9323(1)	12(1)
C(4)	2666(2)	4127(1)	9145(1)	12(1)
C(5)	2131(2)	3768(2)	8437(1)	12(1)
C(6)	248(2)	3686(2)	8426(1)	15(1)
C(7)	-416(2)	3131(2)	7805(1)	17(1)
C(8)	279(3)	1951(2)	7699(1)	17(1)
C(9)	4962(2)	5961(1)	9508(1)	14(1)
C(10)	3236(2)	6297(2)	9308(1)	14(1)
C(11)	2678(2)	4642(2)	7921(1)	15(1)
C(12)	2817(2)	2550(2)	8317(1)	13(1)
C(13)	4673(2)	2537(2)	8396(1)	16(1)
C(14)	5136(2)	2834(1)	9095(1)	15(1)
C(15)	4508(2)	3990(2)	9313(1)	13(1)
C(16)	4811(2)	4135(2)	10063(1)	14(1)
C(17)	4919(2)	5405(2)	10177(1)	14(1)
C(18)	4943(2)	5932(2)	10744(1)	19(1)
C(19)	5529(2)	4993(1)	9065(1)	13(1)
C(20)	2164(2)	1932(2)	7697(1)	15(1)
C(21)	2787(3)	2422(2)	7049(1)	20(1)
C(22)	2713(3)	685(2)	7714(1)	20(1)

Table 9: Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for scopariusol D (5). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

 Table 10: Bond lengths [Å] and angles [°] for scopariusol D (5).

O(1)-C(2)	1.344(2)
O(1)-C(3)	1.473(2)

O(2)-C(8)	1.429(2)
O(2)-H(2)	0.85(3)
O(3)-C(9)	1.417(2)
O(3)-H(3)	0.79(3)
O(4)-C(2)	1.207(2)
O(5)-C(16)	1.427(2)
O(5)-H(9)	0.86(3)
C(1)-C(2)	1.494(3)
C(1)-H(1)	0.9800
C(1)-H(5)	0.9800
C(1)-H(4)	0.9800
C(3)-C(10)	1.530(3)
C(3)-C(4)	1.548(2)
C(3)-H(32)	1.0000
C(4)-C(15)	1.556(2)
C(4)-C(5)	1.575(2)
C(4)-H(31)	1.0000
C(5)-C(6)	1.545(3)
C(5)-C(11)	1.546(2)
C(5)-C(12)	1.564(2)
C(6)-C(7)	1.532(3)
C(6)-H(20)	0.9900
C(6)-H(19)	0.9900
C(7)-C(8)	1.521(3)
C(7)-H(21)	0.9900
C(7)-H(22)	0.9900
C(8)-C(20)	1.544(3)
C(8)-H(23)	1.0000
C(9)-C(17)	1.521(2)
C(9)-C(10)	1.524(3)
C(9)-C(19)	1.533(2)
C(10)-H(34)	0.9900
C(10)-H(33)	0.9900
C(11)-H(7)	0.9800
C(11)-H(8)	0.9800
C(11)-H(6)	0.9800
C(12)-C(13)	1.529(3)
C(12)-C(20)	1.560(2)

C(12)-H(30)	1.0000
C(13)-C(14)	1.525(3)
С(13)-Н(17)	0.9900
C(13)-H(18)	0.9900
C(14)-C(15)	1.526(2)
C(14)-H(16)	0.9900
C(14)-H(15)	0.9900
C(15)-C(19)	1.536(2)
C(15)-C(16)	1.567(2)
C(16)-C(17)	1.521(2)
С(16)-Н(12)	1.0000
C(17)-C(18)	1.320(3)
C(18)-H(11)	0.9500
C(18)-H(10)	0.9500
C(19)-H(13)	0.9900
C(19)-H(14)	0.9900
C(20)-C(21)	1.538(3)
C(20)-C(22)	1.540(3)
C(21)-H(24)	0.9800
C(21)-H(26)	0.9800
C(21)-H(25)	0.9800
C(22)-H(29)	0.9800
C(22)-H(27)	0.9800
C(22)-H(28)	0.9800
C(2)-O(1)-C(3)	116.88(14)
C(8)-O(2)-H(2)	111.6(18)
C(9)-O(3)-H(3)	106.7(19)
C(16)-O(5)-H(9)	105.5(17)
C(2)-C(1)-H(1)	109.5
C(2)-C(1)-H(5)	109.5
H(1)-C(1)-H(5)	109.5
C(2)-C(1)-H(4)	109.5
H(1)-C(1)-H(4)	109.5
H(5)-C(1)-H(4)	109.5
O(4)-C(2)-O(1)	123.19(17)
O(4)-C(2)-C(1)	125.98(18)
O(1)-C(2)-C(1)	110.82(16)
O(1)-C(3)-C(10)	108.02(14)

O(1)-C(3)-C(4)	105.96(13)
C(10)-C(3)-C(4)	117.17(15)
O(1)-C(3)-H(32)	108.5
С(10)-С(3)-Н(32)	108.5
C(4)-C(3)-H(32)	108.5
C(3)-C(4)-C(15)	112.09(15)
C(3)-C(4)-C(5)	111.47(14)
C(15)-C(4)-C(5)	116.49(15)
C(3)-C(4)-H(31)	105.2
C(15)-C(4)-H(31)	105.2
C(5)-C(4)-H(31)	105.2
C(6)-C(5)-C(11)	108.68(15)
C(6)-C(5)-C(12)	107.39(15)
C(11)-C(5)-C(12)	113.70(15)
C(6)-C(5)-C(4)	108.01(15)
C(11)-C(5)-C(4)	111.77(14)
C(12)-C(5)-C(4)	107.06(14)
C(7)-C(6)-C(5)	113.23(16)
C(7)-C(6)-H(20)	108.9
C(5)-C(6)-H(20)	108.9
C(7)-C(6)-H(19)	108.9
C(5)-C(6)-H(19)	108.9
H(20)-C(6)-H(19)	107.7
C(8)-C(7)-C(6)	112.24(15)
C(8)-C(7)-H(21)	109.2
C(6)-C(7)-H(21)	109.2
C(8)-C(7)-H(22)	109.2
C(6)-C(7)-H(22)	109.2
H(21)-C(7)-H(22)	107.9
O(2)-C(8)-C(7)	111.00(16)
O(2)-C(8)-C(20)	111.94(16)
C(7)-C(8)-C(20)	112.86(15)
O(2)-C(8)-H(23)	106.9
C(7)-C(8)-H(23)	106.9
C(20)-C(8)-H(23)	106.9
O(3)-C(9)-C(17)	114.09(15)
O(3)-C(9)-C(10)	106.66(14)
C(17)-C(9)-C(10)	109.53(15)

O(3)-C(9)-C(19)	115.36(15)
C(17)-C(9)-C(19)	102.66(14)
C(10)-C(9)-C(19)	108.37(15)
C(9)-C(10)-C(3)	113.86(15)
C(9)-C(10)-H(34)	108.8
C(3)-C(10)-H(34)	108.8
С(9)-С(10)-Н(33)	108.8
С(3)-С(10)-Н(33)	108.8
H(34)-C(10)-H(33)	107.7
C(5)-C(11)-H(7)	109.5
C(5)-C(11)-H(8)	109.5
H(7)-C(11)-H(8)	109.5
C(5)-C(11)-H(6)	109.5
H(7)-C(11)-H(6)	109.5
H(8)-C(11)-H(6)	109.5
C(13)-C(12)-C(20)	114.98(16)
C(13)-C(12)-C(5)	110.50(15)
C(20)-C(12)-C(5)	115.88(15)
С(13)-С(12)-Н(30)	104.7
C(20)-C(12)-H(30)	104.7
C(5)-C(12)-H(30)	104.7
C(14)-C(13)-C(12)	110.13(15)
С(14)-С(13)-Н(17)	109.6
С(12)-С(13)-Н(17)	109.6
С(14)-С(13)-Н(18)	109.6
C(12)-C(13)-H(18)	109.6
H(17)-C(13)-H(18)	108.1
C(13)-C(14)-C(15)	113.44(14)
C(13)-C(14)-H(16)	108.9
C(15)-C(14)-H(16)	108.9
C(13)-C(14)-H(15)	108.9
C(15)-C(14)-H(15)	108.9
H(16)-C(14)-H(15)	107.7
C(14)-C(15)-C(19)	114.17(15)
C(14)-C(15)-C(4)	110.77(15)
C(19)-C(15)-C(4)	112.01(14)
C(14)-C(15)-C(16)	109.38(14)
C(19)-C(15)-C(16)	98.88(14)

C(4)-C(15)-C(16)	111.06(15)
O(5)-C(16)-C(17)	114.98(15)
O(5)-C(16)-C(15)	116.11(15)
C(17)-C(16)-C(15)	105.55(14)
O(5)-C(16)-H(12)	106.5
С(17)-С(16)-Н(12)	106.5
C(15)-C(16)-H(12)	106.5
C(18)-C(17)-C(16)	127.00(17)
C(18)-C(17)-C(9)	126.22(16)
C(16)-C(17)-C(9)	106.77(14)
C(17)-C(18)-H(11)	120.0
C(17)-C(18)-H(10)	120.0
H(11)-C(18)-H(10)	120.0
C(9)-C(19)-C(15)	102.35(14)
С(9)-С(19)-Н(13)	111.3
С(15)-С(19)-Н(13)	111.3
C(9)-C(19)-H(14)	111.3
C(15)-C(19)-H(14)	111.3
H(13)-C(19)-H(14)	109.2
C(21)-C(20)-C(22)	106.36(15)
C(21)-C(20)-C(8)	109.15(16)
C(22)-C(20)-C(8)	107.84(16)
C(21)-C(20)-C(12)	114.45(15)
C(22)-C(20)-C(12)	109.28(15)
C(8)-C(20)-C(12)	109.53(15)
C(20)-C(21)-H(24)	109.5
C(20)-C(21)-H(26)	109.5
H(24)-C(21)-H(26)	109.5
C(20)-C(21)-H(25)	109.5
H(24)-C(21)-H(25)	109.5
H(26)-C(21)-H(25)	109.5
C(20)-C(22)-H(29)	109.5
C(20)-C(22)-H(27)	109.5
H(29)-C(22)-H(27)	109.5
C(20)-C(22)-H(28)	109.5
H(29)-C(22)-H(28)	109.5
H(27)-C(22)-H(28)	109.5

Symmetry transformations used to generate equivalent atoms.