Supplemental Information Down-/Up-Conversion Emission Enhancement by Li Addition: Improved Crystallization or Local Structure Distortion?

Daniel Avram,^{†, ‡} Bogdan Cojocaru,[§] Ion Tiseanu,[†] Mihaela Florea^{§,I} and Carmen Tiseanu,^{*,†}

[†]National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG-36, RO 76900, Bucharest-Magurele, Romania

[‡]Faculty of Physics University of Bucharest, 405 Atomistilor Street, 077125 Magurele-Ilfov,

Romania

§Faculty of Chemistry, University of Bucharest, 4–12 Regina Elisabeta Boulevard, Bucharest, Romania

^INational Institute of Materials Physics, 405A Atomistilor Street, 077125 Magurele-Ilfov,

Romania

*Electronic mail: <u>carmen.tiseanu@inflpr.ro</u>

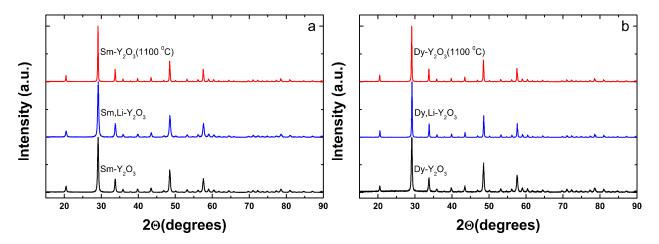


Figure S1. The effect of Li addition and calcination temperature on XRD patterns of $Sm-Y_2O_3$ and $Dy-Y_2O_3$.

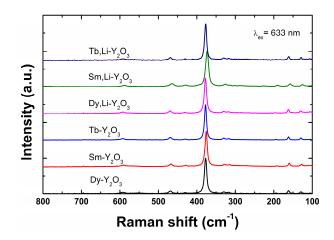
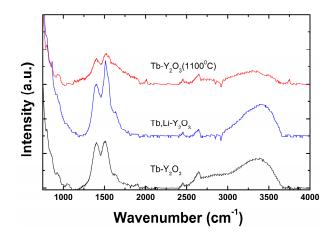
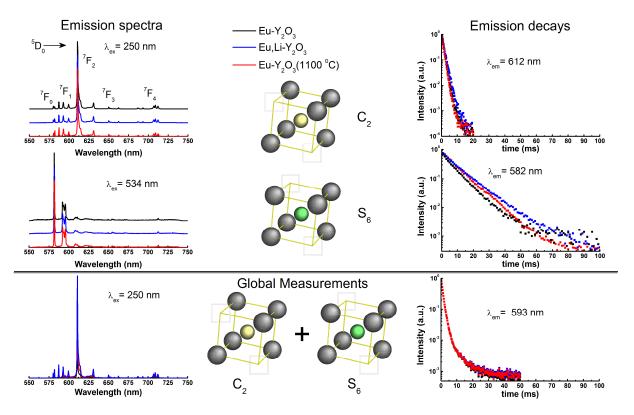
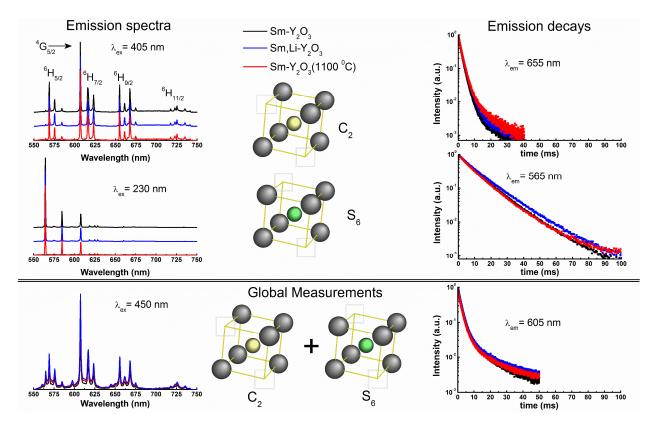
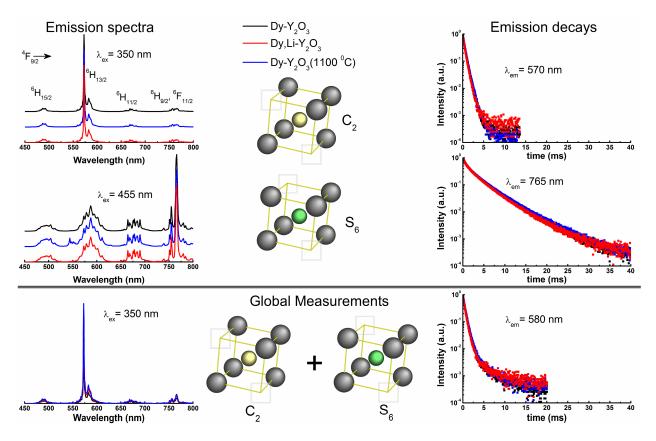


Figure S2. The effect of Li addition and calcination temperature on Raman spectra of Tb- Y_2O_3 , Sm - Y_2O_3 and Dy - Y_2O_3 .


Figure S3. The effect of Li addition and calcination temperature on FTIR spectra of Tb-Y₂O₃.

The wide band around 3360 cm⁻¹ are due to OH stretching in the physiosorbed water molecules that are roughly similar for Tb- Y_2O_3 and Tb, Li- Y_2O_3 . The bands at 1350 and 1510 cm⁻¹ could correspond to NO_3^{-1} and CO_3^{2-} (hydroxycarbonate like) species absorbed from the preparation procedure. The annealing at 1100°C suppressed significantly the presence of physiosorbed water molecules as well as the NO_3^{-1} and CO_3^{2-} species. The effect of Li addition on the intensity of OH band remained inconclusive.


Figure S4. Effects of Li addition and increase of the calcination temperature from 800 to 1100 °C on the emission spectra and decays of C_2 and S_6 Eu centers as well as the global measurements. All the emission spectra were normalized to maximum peak intensity. The excitation and emission wavelengths ensured the best spectral separation of the distinct Eu centers. The schematic representations of C_2 and S_6 sites in cubic Y_2O_3 is also illustrated.

The characteristic emissions of C₂ and S₆ Eu centers were obtained by excitation into Eu³⁺ - O²⁻ charge transfer band and f-f absorption of Eu around 534 nm (corresponding to ${}^{7}F_{0}$ - ${}^{5}D_{1}$ transition), respectively. The C₂ type emission of Eu-Y₂O₃ is dominated by ED (electric dipole) ${}^{5}D_{0}$ - ${}^{7}F_{2}$ transition around 612 nm.^{1,2} Conversely, the S₆ type emission of Eu-Y₂O₃, is dominated by the MD (magnetic dipole) ${}^{5}D_{0}$ - ${}^{7}F_{1}$ transition peaked around 585 nm.¹ The average emission lifetime of S₆ Eu is estimated to be around ~7 ms, which is five times greater than the value of C₂ Eu (~1.4 ms). Slightly different decays measured for S₆ Eu in the three samples are likely related to incomplete spectral separation of S₆ and C₂ centeres.

Figure S5. Effects of Li addition and increase of the calcination temperature from 800 to 1100 °C on the emission spectra and decays of C_2 and S_6 Sm centers as well as the global measurements. All the emission spectra were normalized to maximum peak intensity. The excitation and emission wavelengths ensured the best spectral separation of the distinct Sm centers. The schematic representations of C_2 and S_6 sites in cubic Y_2O_3 is also illustrated.

The characteristic emissions of C₂ and S₆ Sm centers were obtained by excitation into Sm³⁺ - O²⁻ charge transfer band and f-f absorption of Sm at 230 and 405 nm, respectively.³ The C₂ type emission of Sm-Y₂O₃ is dominated by mixed MD (magnetic dipole) + ED (electric dipole) ${}^{4}G_{5/2}$ - ${}^{6}H_{7/2}$ (~608 nm) followed by the MD ${}^{4}G_{5/2}$ - ${}^{6}H_{5/2}$ (~669 nm) and ED ${}^{4}G_{5/2}$ - ${}^{6}H_{5/2}$ (~608 nm) followed by the MD ${}^{4}G_{5/2}$ - ${}^{6}H_{5/2}$ (~608 nm) followed by mixed MD + ED ${}^{4}G_{5/2}$ - ${}^{6}H_{7/2}$ (~608 nm) transition.^{3,4} The average emission lifetime of S₆ Sm is estimated to be around ~10 ms, which is roughly 6 times greater than the value of C₂ Sm (~1.8 ms).

Figure S6. Effects of Li addition and increase of the calcination temperature from 800 to 1100 °C on the emission spectra and decays of C_2 and S_6 Sm centers as well as the global measurements. All the emission spectra were normalized to maximum peak intensity. The excitation and emission wavelengths ensured the best spectral separation of the distinct Sm centers. The schematic representations of C_2 and S_6 sites in cubic Y_2O_3 is also illustrated.

The characteristic emissions of C₂ and S₆ Dy centers were obtained by excitation into f-f absorptions of Dy at 350 and 455 nm, respectively.⁵ The emission of C₂ Dy is dominated by the ${}^{4}F_{9/2} - {}^{6}H_{13/2}$ yellow transition at 570 nm. The fingerprint emission of S₆ Dy is striking different to that of C₂ Dy with a relatively intense NIR emission corresponding to the MD ${}^{4}F_{9/2} - {}^{6}H_{9/2}/{}^{6}F_{11/2}$ transitions around 765 nm.⁴ The average emission lifetime of S₆ Dy is estimated to be around 4.8 ms, which is one order of magnitude greater than the value of C₂ Dy (0.43 ms).

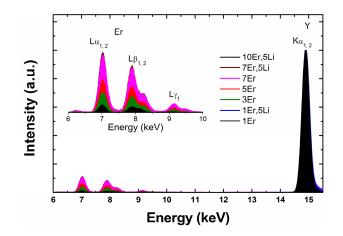
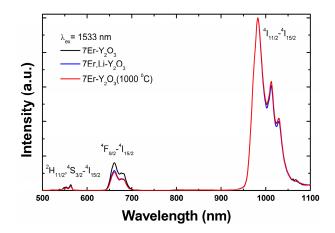
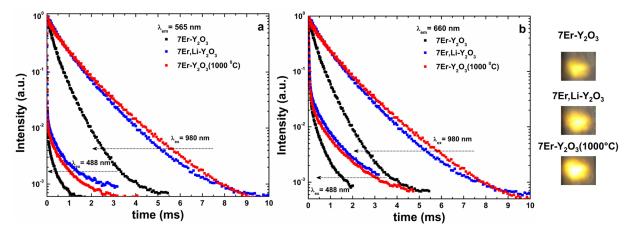




Figure S7. Elemental analysis of Er- Y_2O_3 by use of X-ray induced fluorescence. The energy of Er and Y X-ray emission lines were attributed from <u>http://xdb.lbl.gov/Section1/Table_1-2.pdf</u>⁵.

Figure S8. Effect of Li addition and extended calcination temperature on the UPC emission shapes of 7Er-Y₂O₃ under 1533 nm excitation. All spectra were normalized to 980 nm based peak.

Figure S9. Effect of Li addition and extended calcination temperature on the UPC emission decays of 7Er-Y₂O₃ under excitation at 980 nm. The digital images of the nanopowders were obtained in the *ambient room light conditions* by use of Canon EOS 60D under exposure time of 1s with 400 ISO.

References:

- Buijs, M.; Meyerink, A.; Blasse, G.; Energy transfer between Eu³⁺ ions in a lattice with two different crystallographic sites: Y₂O₃: Eu³⁺, Gd₂O₃: Eu³⁺ and Eu₂O₃. *Journal of luminescence*, 2013, 37(1), 9-20.
- 2. Tanner, P.A.; Wong, K.L., Synthesis and spectroscopy of lanthanide ion-doped Y₂O₃. *The Journal of Physical Chemistry B*, **2004**, *108*(1), 136-142.
- 3. Lupei, A.; Tiseanu, C.; Gheorghe, C.; Voicu, F.; Optical spectroscopy of Sm³⁺ in C₂ and C_{3i} sites of Y₂O₃ ceramics. *Applied Physics B*, **2012**, *108*(4), 909-918.
- 4. Avram, D.; Cojocaru, B.; Florea, M.; Tiseanu, C.; Advances in luminescence of lanthanide doped Y₂O₃: case of S₆ sites. *Optical Materials Express*, **2016**, *6*(5), 1635-1643.
- 5. Thompson, A.; Attwood, D.T.; Gullikson, E.; Howells, M.; Kortright, J.; Robinson, A.; X-ray data booklet (2009). URL http://xdb. lbl. gov.