Supporting Information for

Copper-Catalyzed Borylative Cyclization of in situ-Generated o-Allenylaryl Nitriles with Bis(pinacolato)diboron

Meijun Xiong, Xin Xie, and Yuanhong Liu* State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China

Contents:	page
General Methods	S2
Synthesis and characterization of (o-cyano)phenylpropargyl ethers 1	S2-S19
Synthesis and characterization of 1-naphthylamines 2	S19-S37
Gram scale study	S37-S38
Synthesis of cyano-allene 3a	S38
Mechanistic studies:	
1) Copper-catalyzed reaction of $\mathbf{1 a}$ with $\mathrm{B}_{2} \mathrm{pin}_{2}$ in the absence of DBU	S38-S39
2) Copper-catalyzed reaction of $\mathbf{3} \mathbf{a}$ with $\mathrm{B}_{2} \mathrm{pin} \mathrm{n}_{2}$	S39
3) Hydroborylation of allene 3a	S39-S40
4) Conversion of $\mathbf{4 a}$ to 5	S40-S41
5) Deuterium-labeling experiment	S41
Synthesis of 1-naphthylamine $\mathbf{2 a}$ using $\mathrm{KO}^{t} \mathrm{Bu}$ as the only base	S42
Synthesis of Ac-protected substrate 1-(2-cyanophenyl)-3-phenylprop-	
2-ynyl acetate (1-OAc)	S42-S43
Copper-catalyzed reaction of Ac-protected substrate (1-OAc) with	
Bis(pinacolato)diboron	S43-S44

Copper-catalyzed reaction of N -(cyanomethyl)-4-methyl- N -(3-phenyl-
prop-2-ynyl)-benzenesulfonamide (13) with bis(pinacolato)diboron
Copper-catalyzed hydroborylation of N -(cyanomethyl)-4-methyl-
N-(3-phenylprop-2-ynyl)-benzenesulfonamide (13) S45-S46
References S46
X-ray crystal structure of compounds $\mathbf{2 k}, \mathbf{2 v}$, and $\mathbf{5}$ S47-S48
NMR spectra of all compounds S49-S154

General Methods.

Unless noted, all reactions were carried out using standard Schlenk technique under an argon atmosphere or a dry box technique under a nitrogen atmosphere. Toluene was distilled from sodium and benzophenone. THF was distilled from sodium and benzophenone or purified using Innovative Technology Solvent Purifier (for the synthesis of substrates). 1,4-Dioxane was distilled from sodium. EtMgBr (3.0 M solution in $\mathrm{Et}_{2} \mathrm{O}$) was purchased from J\&K Chemical Company, CuCl and DBU were purchased from Acros Company, dppf was purchased from J\&K Chemical Company, ${ }^{t} \mathrm{BuOK}$ and bis(pinacolato)diboron were purchased from TCI Chemical Inc. 2-Cyanobenzaldehyde was purchased from Shanghai Darui Finechemical Co., Ltd. 4-Fluoro-2-formylbenzonitrile was purchased from Bide Pharmatech Ltd. Thiophene-3-carbonitrile was purchased from Energy Chemical Company. Unless noted, all commercial reagents were used without further purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature in CDCl_{3} (containing 0.03% or $1 \% \mathrm{TMS}$), $\mathrm{C}_{6} \mathrm{D}_{6}$ (containing $0.03 \% \mathrm{TMS}$) solutions or at $80{ }^{\circ} \mathrm{C}$ in DMSO- d_{6} (containing 0.03% TMS) solution on Varian or Agilent XL-400 MHz spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra was recorded with tetramethylsilane (0.00 ppm) or solvent residual peak $\left(\mathrm{CDCl}_{3}: 7.26 \mathrm{ppm} ; \mathrm{C}_{6} \mathrm{D}_{6}: 7.16 \mathrm{ppm} ; \mathrm{DMSO}-d_{6}: 2.50 \mathrm{ppm}\right)$ as internal reference; ${ }^{13} \mathrm{C}$ NMR spectra was recorded with $\mathrm{CDCl}_{3}(77.00 \mathrm{ppm}), \mathrm{C}_{6} \mathrm{D}_{6}(128.06 \mathrm{ppm})$ or DMSO- $d_{6}(39.52 \mathrm{ppm})$ as internal reference. High-resolution mass spectra were obtained by using Waters Micromass GCT, Agilent Technologies 6224 TOF LC/MS. Elemental analyses were performed on an Italian Carlo-Erba 1106 analyzer. IR spectra were obtained by using a Nicolet iS10 spectrometer. Single crystal X-ray diffraction data was collected on a Bruker SMART diffractometer at 293(2) K (for 2t'and 5) or Bruker APEX-II CCD diffractometer at 130 K (for $\mathbf{2 k}$).

2-(1-((tert-butyldimethylsilyl)oxy)-3-(naphthalen-1-yl)prop-2-yn-1-yl)benzonitrile (1k). ${ }^{1}$

To a solution of 1-ethynylnaphthalene ($989 \mathrm{mg}, 6.5 \mathrm{mmol}$) in THF (20 mL) was added dropwise $\mathrm{EtMgBr}\left(2.0 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ at room temperature under argon. Then the solution was warmed up to $40^{\circ} \mathrm{C}$ and stirred for 1 h . After cooling to room temperature, 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added and the reaction mixture was stirred until the reaction was complete as monitored by TLC (1 h). The resulting reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure to afford the alcohol $\mathbf{s - 1}$ as a light yellow oil, which was used directly without further purification for the next step.

To a solution of the above crude alcohol $\mathbf{s} \mathbf{- 1}$ in DCM $(15 \mathrm{~mL})$ were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\operatorname{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$ under air. The reaction mixture was then stirred at room temperature for 3 h . Then the resulting mixture was quenched with saturated ammonium chloride solution and extracted with dichloromethane, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=40 / 1$) to afford $\mathbf{1 k}$ in 65% overall yield $(1.283 \mathrm{~g})$ as a yellow sticky oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.26$ (s, $3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 6.13(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.57(\mathrm{~m}, 2 \mathrm{H})$, 7.64-7.70 (m, 3H), 7.80-7.83 (m, 2H), $7.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$.

[^0]$117.28,119.95,125.09,126.05,126.41,126.85,127.23,128.20,128.27,129.05,130.65$, 132.99, 133.04, 133.18, 133.21, 145.48. IR (neat): 3056, 2956, 2928, 2856, 2226, 1471, 1394, 1253, 1109, 1069, $839 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 415.2200 , found 415.2202 .

1a
2-(1-(tert-Butyldimethylsilyloxy)-3-phenylprop-2-ynyl)benzonitrile (1a). First step: ethynylbenzene ($4.3 \mathrm{~mL}, 39.0 \mathrm{mmol}$) and $\mathrm{EtMgBr}\left(12 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 36.0$ mmol) in THF (70 mL) was stirred at $40^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde (3.93 g , 30.0 mmol) was added, the reaction mixture was stirred at room temperature for 1.5 h . Second step: To a solution of the above crude alcohol in DCM (60 mL) were added imidazole ($4.08 \mathrm{~g}, 60.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(6.78 \mathrm{~g}, 45 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=$ $60 / 1$) afforded the desired product in 68% overall yield $(7.14 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.35(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 9 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 7.31-7.33$ (m, 3H), 7.37-7.41 (m, 1H), 7.48-7.50 (m, 2H), 7.62-7.67 (m, 2H), 7.92 (d, J=8.0 Hz, 1H). ${ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.09,-4.54,18.06,25.60,63.34,86.62,88.04,110.35$, 116.97, 122.17, 127.03, 128.09, 128.10, 128.44, 131.38, 132.76, 132.86, 145.04. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 365.2044$, found 365.2044. The spectroscopic data is in agreement with that previously reported. ${ }^{1}$

1b
2-(1-((tert-Butyldimethylsilyl)oxy)-3-(p-tolyl)prop-2-yn-1-yl)benzonitrile (1b). First step: 1-ethynyl-4-methylbenzene ($755 \mathrm{mg}, 6.5 \mathrm{mmol}$) and $\mathrm{EtMgBr}(2 \mathrm{~mL}, 3.0 \mathrm{M}$ solution
in $\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}$) in THF (20 mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(10 \mathrm{~mL})$ were added imidazole $(681 \mathrm{mg}, 10.0 \mathrm{mmol})$ and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=70 / 1$ to $50 / 1)$ afforded the desired product in 89% overall yield $(1.61 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.32(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H})$, $2.35(\mathrm{~s}, 3 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 2 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.00,-4.44,18.19,21.38,25.71$, $63.44,86.88,87.44,110.42,117.15,119.19,127.17,128.11,128.94,131.42,132.86$ 132.97, 138.65, 145.33. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 379.2200$, found 379.2201. The spectroscopic data is in agreement with that previously reported. ${ }^{2}$

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(4-methoxyphenyl)prop-2-yn-1-yl)benzonitrile
(1c). First step: 1-ethynyl-4-methoxybenzene ($1.72 \mathrm{~g}, 13.0 \mathrm{mmol}$) and $\mathrm{EtMgBr}(4 \mathrm{~mL}, 3.0$ M solution in $\mathrm{Et}_{2} \mathrm{O}, 12.0 \mathrm{mmol}$) in THF (25 mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($1.31 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(20 \mathrm{~mL})$ were added imidazole ($1.36 \mathrm{~g}, 20.0 \mathrm{mmol})$ and $\operatorname{TBSCl}(2.26 \mathrm{~g}, 15.0 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=50 / 1)$ afforded the desired product in 54% overall yield $(2.04 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 2 \mathrm{H})$, $7.87(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.19,-4.63,17.96,25.51,54.80$, $63.33,86.56,86.63,110.24,113.65,114.01,116.91,126.93,127.95,132.64,132.74$, 145.07, 159.59. One carbon is overlapped with other signals. HRMS (ESI) calcd for

$$
\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 395.2149 \text {, found } 395.2151 .
$$

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(4-chlorophenyl)prop-2-yn-1-yl)benzonitrile (1d). First step: 1-chloro-4-ethynylbenzene ($888 \mathrm{mg}, 6.5 \mathrm{mmol}$) and $\mathrm{EtMgBr}(2 \mathrm{~mL}, 3.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}$) in THF (20 mL) was stirred at $40^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(10 \mathrm{~mL})$ were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=70 / 1$ to $50 / 1$) afforded the desired product in 84% overall yield $(1.61 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H})$, $5.97(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.02,-4.50,18.19,25.68,63.33,85.45,89.13,110.34$, 117.07, 120.73, 127.06, 128.24, 128.55, 132.77, 132.94, 133.05, 134.60, 145.04. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 399.1654$, found 399.1655. The spectroscopic data is in agreement with that previously reported. ${ }^{3}$

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(4-fluorophenyl)prop-2-yn-1-yl)benzonitrile (1e). First step: 1-ethynyl-4-fluorobenzene ($1.56 \mathrm{~g}, 13.0 \mathrm{mmol}$) and $\mathrm{EtMgBr}(4 \mathrm{~mL}, 3.0 \mathrm{M}$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 12.0 \mathrm{mmol}\right)$ in THF (25 mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($1.31 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM
$(20 \mathrm{~mL})$ were added imidazole ($1.36 \mathrm{~g}, 20.0 \mathrm{mmol})$ and $\operatorname{TBSCl}(2.26 \mathrm{~g}, 15.0 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=80 / 1)$ afforded the desired product in 44% overall yield $(1.61 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H})$, $5.99(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.12,-4.59,18.09,25.59,63.29,85.49,87.81$ (d, $J=1.5 \mathrm{~Hz}), 110.32,115.42(\mathrm{~d}, J=20.0 \mathrm{~Hz}), 116.99,118.25(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 126.97$, 128.14, 132.83, 132.93, 133.39 (d, $J=8.3 \mathrm{~Hz}$), 145.03, 162.48 ($\mathrm{d}, J=248.6 \mathrm{~Hz}$). HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 383.1949$, found 383.195.

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)benzo nitrile (1f). First step: 1-ethynyl-4-(trifluoromethyl)benzene ($1.11 \mathrm{~g}, 6.5 \mathrm{mmol}$) and $\operatorname{EtMgBr}\left(2 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ in THF (20 mL) was stirred at $50^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(10 \mathrm{~mL})$ were added imidazole $(681 \mathrm{mg}, 10.0 \mathrm{mmol})$ and $\mathrm{TBSCl}(1.13 \mathrm{~g}$, 7.5 mmol), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=50 / 1$) afforded the desired product in 78% overall yield $(1.63 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.99$ (s, 9H), $6.04(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 4 \mathrm{H}), 7.63-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.89(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.11,-4.62,18.13,25.59,63.33,85.08$, $90.62,110.40,116.99,123.73(\mathrm{q}, J=271 \mathrm{~Hz}), 125.1(\mathrm{q}, J=3.4 \mathrm{~Hz}), 126.06(\mathrm{q}, J=1.1 \mathrm{~Hz})$, 127.04, 128.32, $130.22(\mathrm{q}, J=32.7 \mathrm{~Hz}), 131.79,132.95,133.04,144.78$. The spectroscopic data is in agreement with that previously reported. ${ }^{3}$

Ethyl 4-(3-(tert-butyldimethylsilyloxy)-3-(2-cyanophenyl)prop-1-ynyl)benzoate (1g). First step: To a solution of ethyl 4-ethynylbenzoate ($1.13 \mathrm{~g}, 6.5 \mathrm{mmol}$) in THF (15 mL) was added dropwise $\mathrm{EtMgBr}\left(2 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ at $-78{ }^{\circ} \mathrm{C}$, and the reaction mixture was warmed up to room temperature. After stirring at room temperature for $1 \mathrm{~h}, 2$-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added at $-78{ }^{\circ} \mathrm{C}$ and stirred at the same temperature for 0.5 h , then the reaction mixture was warmed up to room temperature and stirred for 0.5 h . Second step: To a solution of the above crude alcohol in DCM (20 mL) were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=30 / 1)$ afforded the desired product in 41% overall yield $(0.86 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 1.39(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 4.37(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.98,-4.47,14.26,18.25,25.72,61.14,63.37,85.82,90.01$, $110.39,117.11,126.82,127.15,128.35,129.37,130.21,131.49,133.01,133.16,144.98$, 165.94. IR (film): $3359,2926,2854,2224,1717,1602,1469,1271,1105,1072,841 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 437.2255$, found 437.2258.

2-(1-(tert-Butyldimethylsilyloxy)-3-o-tolylprop-2-ynyl)benzonitrile (1h). First step: 1-ethynyl-2-methylbenzene ($755 \mathrm{mg}, 6.5 \mathrm{mmol}$) and $\operatorname{EtMgBr}(2 \mathrm{~mL}, 3.0 \mathrm{M}$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ in THF (20 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at
room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(20 \mathrm{~mL})$ were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=60 / 1)$ afforded the desired product in 72% overall yield $(1.30 \mathrm{~g})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 2.30(\mathrm{~s}$, $3 \mathrm{H}), 5.93(\mathrm{~s}, 1 \mathrm{H}), 6.99-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.56(\mathrm{~m}$, $2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.01,-4.46,18.19,20.60$, $25.69,63.47,85.59,92.06,110.29,117.13,122.04,125.41,127.06,128.13,128.53,129.35$, 131.94, 132.85, 133.02, 140.31, 145.54. IR (neat): 2954, 2929, 2854, 2226, 1471, 1252, $1069,835 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 379.22$, found 379.2202.

2-(1-(tert-Butyldimethylsilyloxy)-3-(2-fluorophenyl)prop-2-ynyl)benzonitrile (1i). First step: 1-ethynyl-2-fluorobenzene ($781 \mathrm{mg}, 6.5 \mathrm{mmol}$) and $\mathrm{EtMgBr}(2 \mathrm{~mL}, 3.0 \mathrm{M}$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ in THF (20 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(20 \mathrm{~mL})$ were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=80 / 1$) to afford the desired product in 83% overall yield $(1.52 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$, $6.01(\mathrm{~s}, 1 \mathrm{H}), 7.02-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 2 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.02,-4.51,18.22,25.70,63.47$, $80.29,93.20(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 110.55,110.88(\mathrm{~d}, J=15.6 \mathrm{~Hz}), 115.51(\mathrm{~d}, J=20.8 \mathrm{~Hz})$, 117.13, $123.85(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 127.38,128.31,130.34(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 132.94,133.09$, 133.50, 144.92, 162.80 (d, $J=250.6 \mathrm{~Hz}$). IR (neat): 2956, 2929, 2856, 2224, 1492, 1449, 1252, 1069, 834, $754 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{FNNaOSi}[\mathrm{M}+\mathrm{Na}]^{+}: 388.1503$,
found 388.1503 .

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(2-(trifluoromethyl)phenyl)prop-2-yn-1-yl)benzo nitrile (1j). First step: 1-ethynyl-2-(trifluoromethyl)benzene ($1.11 \mathrm{~g}, 6.5 \mathrm{mmol}$) and $E t M g B r\left(2 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ in THF (20 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(20 \mathrm{~mL})$ were added imidazole $(681 \mathrm{mg}, 10.0 \mathrm{mmol})$ and $\mathrm{TBSCl}(1.13 \mathrm{~g}$, 7.5 mmol), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=80 / 1$) afforded the desired product in 75% overall yield $(1.56 \mathrm{~g})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}$, $9 \mathrm{H}), 6.02(\mathrm{~s}, 1 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.58-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.89(\mathrm{~d}, \mathrm{~J}=$ 8.0 Hz, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.17,-4.74,18.16,25.60,63.39,82.41,93.64$, $110.38,117.09,120.44(\mathrm{q}, J=1.6 \mathrm{~Hz}), 123.28(\mathrm{q}, J=271.8 \mathrm{~Hz}), 125.70(\mathrm{q}, J=5.3 \mathrm{~Hz})$, 127.39, 128.35, 128.37, 131.35, 131.48 (q, $J=30.4 \mathrm{~Hz}$), 132.82, 133.10, 134.10, 144.73. IR (neat): 2931, 2854, 2221, 1657, 1449, 1317, 1134, 1060, $837 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NNaOSi}[\mathrm{M}+\mathrm{Na}]^{+}$: 438.1471, found 438.1470.

2-(1-(tert-Butyldimethylsilyloxy)-3-(thiophen-2-yl)prop-2-ynyl)benzonitrile (11). First step: 2-ethynylthiophene ($0.65 \mathrm{~mL}, 6.5 \mathrm{mmol}, \mathrm{d}=1.08 \mathrm{~g} / \mathrm{mL}$) and $\mathrm{EtMgBr}(2 \mathrm{~mL}, 3.0 \mathrm{M}$ solution in $\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}$) in THF (15 mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM
$(15 \mathrm{~mL})$ were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=80 / 1$ to $60 / 1)$ afforded the desired product in 52% overall yield $(0.92 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H})$, $5.99(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=5.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{dd}, J=3.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dd}, J=5.2$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.00,-4.49,18.20,25.70,63.51,80.15,91.84,110.39,117.06$, 122.07, 126.90, 127.27, 127.50, 128.28, 132.38, 132.88, 133.08, 144.88. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OSSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 371.1608$, found 371.1609 . The spectroscopic data is in agreement with that previously reported. ${ }^{3}$

2-(1-(tert-Butyldimethylsilyloxy)-3-phenylprop-2-ynyl)-4-fluorobenzonitrile (1m). First step: ethynylbenzene ($429 \mu \mathrm{~L}, 3.9 \mathrm{mmol}$) and $\mathrm{EtMgBr}\left(1.2 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 3.6$ mmol) in THF (10 mL) was stirred at $50^{\circ} \mathrm{C}$ for 1 h , and after 4-fluoro-2-formylbenzonitrile $(447.4 \mathrm{mg}, 3.0 \mathrm{mmol})$ was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (15 mL) were added imidazole ($408.5 \mathrm{mg}, 6.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(678.2 \mathrm{mg}, 4.5 \mathrm{mmol}$), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=$ $50 / 1$) afforded the desired product in 75% overall yield (822 mg) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.25(\mathrm{~s}, 3 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.13$ (m, 1H), 7.29-7.33 (m, 3H), 7.44-7.46 (m, 2H), $7.60(\mathrm{dd}, J=9.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68$ (dd, $J=$ $8.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.02,-4.43,18.22,25.70,62.96(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}), 86.97,87.41,106.32,114.83(\mathrm{~d}, ~ J=24.3 \mathrm{~Hz}), 115.79(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 116.44$, $122.01,128.27,128.73,131.59,135.28(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 149.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 165.24(\mathrm{~d}, J$ $=255.8 \mathrm{~Hz}$). IR (neat): 2954, 2929, 2856, 2226, 1608, 1490, 1254, 1109, 1067, 837, 780, 756, $689 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{FN}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 383.1949, found
383.1943.

2-(1-(tert-Butyldimethylsilyloxy)-3-phenylprop-2-ynyl)thiophene-3-carbonitrile (1n).
First step: ethynylbenzene ($357 \mu \mathrm{~L}, 3.25 \mathrm{mmol}$) and $\mathrm{EtMgBr}(1.0 \mathrm{~mL}, 3.0 \mathrm{M}$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 3.0 \mathrm{mmol}\right)$ in THF (15 mL) was stirred at $40{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-formylthiophene-3-carbonitrile ${ }^{4}$ ($342.9 \mathrm{mg}, 2.5 \mathrm{mmol}$, for the synthesis of this compound, see belowing) was added at $0{ }^{\circ} \mathrm{C}$, the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h . Second step: To a solution of the above crude alcohol in DCM (15 mL) were added imidazole ($340.4 \mathrm{mg}, 5.0 \mathrm{mmol}$) and $\operatorname{TBSCl}(565.2 \mathrm{mg}, 3.75 \mathrm{mmol}$), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=30 / 1$) afforded the desired product in 84% overall yield $(741 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.24(\mathrm{~s}, 3 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 6.09(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.48(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.07,-4.48$, 18.19, 25.62, 60.57, 86.72, 86.91, 106.54, 114.16, 121.86, 125.48, 128.26, 128.79, 128.98, 131.61, 157.34. IR (neat): 2956, 2929, 2854, 2230, 1491, 1469, 1253, 1070, 836, 780, 755, 689, $675 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OSSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 371.1608$, found 371.1602.

Synthesis of 2-formylthiophene-3-carbonitrile.

This compound was synthesized according to the modified procedure of the published method. ${ }^{4}$ Under an argon atmosphere, to a solution of diisoproylamine ($1.55 \mathrm{~mL}, 11.0$ mmol) in dry THF (20 mL) was added n-BuLi ($4 \mathrm{~mL}, 10.0 \mathrm{mmol}, 2.5 \mathrm{M}$ in hexane)
dropwise at $-78{ }^{\circ} \mathrm{C}$. After stirring for 30 min at the same temperature, the thus formed lithium diisopropylamine was added to a solution of thiophene-3-carbonitrile ($1.2 \mathrm{~g}, 11$ mmol) in anhydrous THF (5 mL) at $-78{ }^{\circ} \mathrm{C}$, and stired for 30 min before dimethylformamide ($1.16 \mathrm{~mL}, 15 \mathrm{mmol}$) was added. Then the reaction mixture was warmed up to room temperature and stirred overnight. After the reaction was complete, the organic layer was poured into an aqueous solution of $\mathrm{HCl}(100 \mathrm{~mL}, 2 \mathrm{M})$, and stirred for 1 h. Then the organic layer was extracted with ethyl acetate, washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=20 / 1$ to $15 / 1$) to afford the title product in 38% yield $(525 \mathrm{mg})$ as a white solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}$, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=5.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 10.16(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 112.69,116.25,130.86,134.90,149.01,180.37$. The spectroscopic data is in agreement with that previously reported. ${ }^{4}$

2-(1-(tert-Butyldimethylsilyloxy)hept-2-ynyl)benzonitrile (10). First step: hex-1-yne (1.5 $\mathrm{mL}, 13.0 \mathrm{mmol}, \mathrm{d}=0.715)$ and $\mathrm{EtMgBr}\left(4 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 12.0 \mathrm{mmol}\right)$ in THF (30 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($1.31 \mathrm{~g}, 10.0$ mmol) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (30 mL) were added imidazole $(1.36 \mathrm{~g}, 20.0 \mathrm{mmol})$ and $\mathrm{TBSCl}(2.26 \mathrm{~g}, 15.0 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=60 / 1$) afforded the desired product in 75% overall yield $(2.45 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, $1.34-1.52(\mathrm{~m}, 4 \mathrm{H}), 2.20(\mathrm{td}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.75(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.78-7.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.09$, $-4.56,13.43,18.14,18.36,21.81,25.67,30.31,63.06,79.32,87.67,110.25,117.12,126.94$,
127.86, 132.71, 132.86, 146.02. IR (neat): 2954, 2929, 2856, 2221, 1471, 1252, 1062, 836, $777 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 345.2357$, found 345.2359.

2-(1-(tert-Butyldimethylsilyloxy)-4-phenylbut-2-ynyl)benzonitrile (1p). First step: prop-2-ynylbenzene ($755 \mathrm{mg}, 6.5 \mathrm{mmol}$) and $\mathrm{EtMgBr}\left(2 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 6.0$ mmol) in THF (15 mL) was stirred at $50^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde (656 $\mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (20 mL) were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=$ $50 / 1$) afforded the desired product in 72% overall yield (1.30 g) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 5.82(\mathrm{~s}$, $1 \mathrm{H}), 7.21-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.58-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.05,-4.54,18.20,25.09,25.70,63.12,81.65,84.91,110.26,117.19,126.57$, 127.08, 127.87, 128.05, 128.42, 132.82 133.01, 136.07, 145.82. IR (neat): 2954, 2929, 2854, 2224, 1599, 1449, 1252, 1062, 837, $761 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OSi}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 379.2200$, found 379.2201.

19
2-(1-(tert-Butyldimethylsilyloxy)-3-cyclopropylprop-2-ynyl)benzonitrile (1q). First step: ethynylcyclopropane $(859.3 \mathrm{mg}, 13.0 \mathrm{mmol})$ and $\mathrm{EtMgBr}\left(4 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}$, $12.0 \mathrm{mmol})$ in THF (20 mL) was stirred at $50^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde $(1.31 \mathrm{~g}, 10.0 \mathrm{mmol})$ was added, the reaction mixture was stirred at room temperature for 1 h. Second step: To a solution of the above crude alcohol in DCM (20 mL) were added
imidazole ($1.36 \mathrm{~g}, 20.0 \mathrm{mmol}$) and $\operatorname{TBSCl}(2.26 \mathrm{~g}, 15.0 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=$ $100 / 1$ to $80 / 1$) afforded the desired product in 65% overall yield (2.03 g) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.20(\mathrm{~s}, 3 \mathrm{H}), 0.66-0.77(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, $1.20-1.27(\mathrm{~m}, 1 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.10,-4.53,-0.56,7.97,7.98,18.10,25.65,63.03$, $74.39,90.60,110.20,117.10,126.93,127.87,132.73,132.85,145.81$. The spectroscopic data is in agreement with that previously reported. ${ }^{3}$

2-(1-(tert-Butyldimethylsilyloxy)-5-phenylpent-2-ynyl)benzonitrile (1r). First step: but-3-ynylbenzene ($846 \mathrm{mg}, 6.5 \mathrm{mmol}$) and $\mathrm{EtMgBr}\left(2 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\mathrm{Et}_{2} \mathrm{O}, 6.0$ mmol) in THF (20 mL) was stirred at $50^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde (656 $\mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM (20 mL) were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=$ $50 / 1$) afforded the desired product in 84% overall yield (1.58 g) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 2.51(\mathrm{td}, J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $2.81(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 7.16-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.38(\mathrm{~m}$, $1 \mathrm{H}), 7.56-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-5.08$, $-4.55,18.19,20.89,25.72,34.60,63.03,80.15,86.80,110.24,117.19,126.18,127.05$, $127.94,128.30,128.39,132.74,132.94,140.38,145.91$. IR (neat): 2951, 2829, 2856, 2224, 1469, 1252, 1059, 836, $759 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 393.2357, found 393.2356.

2-(5-(Benzyloxy)-1-(tert-butyldimethylsilyloxy)pent-2-ynyl)benzonitrile (1s). First step: ((but-3-ynyloxy)methyl)benzene ($1.04 \mathrm{~g}, 6.5 \mathrm{mmol}$) and $\mathrm{EtMgBr}(2 \mathrm{~mL}, 3.0 \mathrm{M}$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ in THF (20 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(10 \mathrm{~mL})$ were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=50 / 1)$ afforded the desired product in 78% overall yield $(1.59 \mathrm{~g})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.17(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 2.53$ (td, $J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 5.75(\mathrm{~s}, 1 \mathrm{H}), 7.22-7.35(\mathrm{~m}, 6 \mathrm{H})$, 7.54-7.60 (m, 2H), $7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.11,-4.57$, 18.09, 20.12, 25.64, 62.98, 68.04, 72.81, 80.31, 84.27, 110.21, 117.08, 127.02, 127.50, $127.94,128.23,132.70,132.87,137.89,145.60$. One carbon overlapped with other signals. IR (neat): 2954, 2931, 2859, 2224, 1469, 1249, 1101, 1061, 836, $778 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 423.2462$, found 423.2465 .

2-(1-(tert-Butyldimethylsilyloxy)-4-(methyl(phenyl)amino)but-2-ynyl)benzonitrile (1t). First step: N-methyl- N-(prop-2-ynyl)benzenamine ($944 \mathrm{mg}, 6.5 \mathrm{mmol}$) and EtMgBr (2 mL , 3.0 M solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ in THF (20 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(20 \mathrm{~mL})$ were added imidazole ($681 \mathrm{mg}, 10.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and
stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=50 / 1)$ afforded the desired product in 57% overall yield $(1.11 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 2.92$ $(\mathrm{s}, 3 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 5.71(\mathrm{~s}, 1 \mathrm{H}), 6.76-6.82(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 1 \mathrm{H})$, 7.49-7.53 (m, 1H), $7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.21,-4.71,18.05,25.57,38.58,42.71,62.83,82.68,83.03,110.24,114.34$, $117.02,118.12,127.02,128.01,128.88,132.72,132.85,145.17,148.95$. One carbon overlapped with other signals. IR (neat): 2956, 2926, 2856, 2221, 1600, 1505, 1251, 1119, 1060, 836, $753 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 391.2200$, found 391.2201.

2-(1-(tert-Butyldimethylsilyloxy)-6-chlorohex-2-ynyl)benzonitrile (1u). First step: 5-chloropent-1-yne ($0.68 \mathrm{~mL}, 6.5 \mathrm{mmol}, \mathrm{d}=0.978 \mathrm{~g} / \mathrm{mL}$) and $\mathrm{EtMgBr}(2 \mathrm{~mL}, 3.0 \mathrm{M}$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ in THF (20 mL) was stirred at $50{ }^{\circ} \mathrm{C}$ for 1 h , and after 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 1 h . Second step: To a solution of the above crude alcohol in DCM $(10 \mathrm{~mL})$ were added imidazole $(681 \mathrm{mg}, 10.0 \mathrm{mmol})$ and $\mathrm{TBSCl}(1.13 \mathrm{~g}, 7.5 \mathrm{mmol})$, and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=60 / 1)$ afforded the desired product in 86% overall yield $(1.49 \mathrm{~g})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 9 \mathrm{H})$, $1.83-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{td}, J=6.8,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.65(\mathrm{t}, J=2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.26-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl} 3) \delta-5.16,-4.65,16.05,18.07,25.59,30.90,43.39,62.90,80.37,85.38,110.08$, 117.00, 126.74, 127.94, 132.75, 132.89, 145.66. IR (neat): 2956, 2926, 2856, 2226, 1710, 1469, 1252, 1217, 1062, 835, 778, $759 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{ClN}_{2} \mathrm{OSi}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 365.1810$, found 365.1810.

2-(1-((tert-Butyldimethylsilyl)oxy)-3-(cyclohex-1-en-1-yl)prop-2-yn-1-yl)benzonitrile
(1v). First step: 1-ethynylcyclohex-1-ene ($1.53 \mathrm{~mL}, 13.0 \mathrm{mmol}, \mathrm{d}=0.903$) and $\operatorname{EtMgBr}(4$ $\mathrm{mL}, 3.0 \mathrm{M}$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 12.0 \mathrm{mmol}\right)$ in THF (30 mL) was stirred at $50^{\circ} \mathrm{C}$ for 2 h , and after 2-cyanobenzaldehyde ($1.31 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added, the reaction mixture was stirred at room temperature for 2 h . Second step: To a solution of the above crude alcohol in DCM (20 mL) were added imidazole ($1.36 \mathrm{~g}, 20.0 \mathrm{mmol}$) and $\mathrm{TBSCl}(2.26 \mathrm{~g}, 15.0$ mmol), and stirred at room temperature. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=150 / 1$ to $120 / 1$) afforded the desired product in 63% overall yield (2.2 g) as a yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.92$ (s, 9 H), 1.51-1.63 (m, 4H), 2.02-2.11 (m, 4H), $5.86(\mathrm{~s}, 1 \mathrm{H}), ~ 6.08-6.10(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{td}, J$ $=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.79(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-5.07,-4.47,18.11,21.27,22.02,25.43,25.65,28.65,63.34,85.37,88.54,110.32$, $117.08,119.88,127.05,127.94,132.76,132.86,135.37,145.58$. The spectroscopic data is in agreement with that previously reported. ${ }^{3}$

Synthesis of 2-(1-((tert-butyldimethylsilyl)oxy)prop-2-yn-1-yl)benzonitrile (1w).

To a solution of ethynylmagnesium bromide ($48.0 \mathrm{~mL}, 0.5 \mathrm{M}$ solution in THF, 24.0 $\mathrm{mmol})$ in THF (20.0 mL) was added 2-cyanobenzaldehyde ($2.62 \mathrm{~g}, 20.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ under argon and the mixture was stirred at the same temperature for 1 h . Then the reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ethyl acetate. The combined organic extracts were washed with brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under the reduced pressure to afford the alcohol as an orange oil,
which was used directly without further purification for the next step.
To a solution of the above alcohol in DCM (50 mL) were added imidazole (2.72 g , $40.0 \mathrm{mmol})$ and $\mathrm{TBSCl}(4.52 \mathrm{~g}, 30.0 \mathrm{mmol})$ under air. The reaction mixture was then stirred at room temperature for 3 h before adding a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution. The reaction mixture was extracted with dichloromethane, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=50 / 1$) to afford the product $\mathbf{1 w}$ in 80% overall yield $(4.35 \mathrm{~g})$ as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.22$ (s, 3H), 0.92 (s, 9H), 2.61 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.75 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.41$ (m, 1H), 7.60-7.64 (m, 2H), $7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-5.17,-4.70$, 18.10, 25.59, 62.62, 74.85, 82.67, 110.23, 116.93, 127.05, 128.32, 132.77, 133.08, 144.74. The spectroscopic data is in agreement with that previously reported. ${ }^{1}$

Synthesis of 1-naphthylamines 2a-2n.

Typical procedure	for	the	synthesis	of
4-(tert-butyldimethylsilyloxy)-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl				

In a nitrogen-filled glove box, to a screw-cap vial (4 mL) equipped with a magnetic stir bar were added (o-cyano)phenylpropargyl ether 1a ($104.3 \mathrm{mg}, 0.3 \mathrm{mmol}$), toluene (1.5 $\mathrm{mL})$ and $\operatorname{DBU}(4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol})$, and stirred for 1 min . Then $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36$ $\mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol}), \operatorname{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015$ mmol) were added successively. The vial was tightly capped, taken outside the glove box, and stirred at room temperature for 28 h . The reaction mixture was filtered through a pad of silica gel. Then the solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate
$=20 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) to give $\mathbf{2 a}$ in 93% yield (132.0 mg) as a brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.17(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 12 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 3.57(\mathrm{bs}, 2 \mathrm{H})$, 7.36-7.47 (m, 7H), $7.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-3.17,18.55,25.13,26.20,83.29,120.93,124.04,124.22,125.59,125.68,125.99$, $127.19,127.48,128.36,130.77,132.72,139.94,146.80$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3453, 3364, 2928, 2857, 1615, 1367, 1251, 1139, 1078, 968, 924, $829 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{39}{ }^{10} \mathrm{BNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 475.2823$, found 475.2825 .

When the above reaction was carried out by adding the substrates sequentially (without stirring with DBU for 1 min), $\mathbf{2 a}$ was formed in 91% yield after stirring at room temperature for 28 h .

When the above reaction was performed at $50^{\circ} \mathrm{C}, 87 \%$ of $\mathbf{2 a}$ was isolated after 4 h .

2b
4-(tert-Butyldimethylsilyloxy)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-p-tolyl naphthalen-1-amine (2b). (o-Cyano)phenylpropargyl ether 1b ($108.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), toluene (1.5 mL), $\mathrm{DBU}(4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}$, $0.015 \mathrm{mmol})$, $\mathrm{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=25 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) afforded the title product in 97% yield $(142.6 \mathrm{mg})$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.13(\mathrm{~s}, 6 \mathrm{H}), 1.02(\mathrm{~s}, 12 \mathrm{H})$, $1.13(\mathrm{~s}, 9 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{bs}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.38-7.42 (m, 2H), 7.74-7.77 (m, 1H), $8.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-3.18,18.55,21.12,25.11,26.21,83.29,120.94,123.93,124.19,125.58,126.00$, $127.42,128.96,130.60,132.84,136.73,136.85,146.68$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3449, 3364, 2928, 2857, 1614, 1513, 1391, 1367, 1250, 1139, 1078, 918, $888 \mathrm{~cm}^{-1}$. HRMS (ESI) S20
calcd for $\mathrm{C}_{29} \mathrm{H}_{41}{ }^{10} \mathrm{BNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 489.2980$, found 489.2982.

4-(tert-Butyldimethylsilyloxy)-2-(4-methoxyphenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxa borolan-2-yl)naphthalen-1-amine (2c). (o-Cyano)phenylpropargyl ether $\mathbf{1 c}$ (113.3 mg , 0.3 mmol), toluene (1.5 mL), DBU ($4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol})$, $\mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol}), \operatorname{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=20 / 1$ to $10 / 1$, containing $1 \% \mathrm{v}^{2} \mathrm{v}_{\mathrm{t}} \mathrm{N}$) afforded the title product in 85% yield $(128.3 \mathrm{mg})$ as a light yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.13(\mathrm{~s}, 6 \mathrm{H}), 1.04(\mathrm{~s}, 12 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}), 3.59(\mathrm{bs}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.19,18.55,25.16,26.20,55.29,83.28,113.77$, 120.94, 123.95, 124.17, 125.52, 125.58, 127.42, 131.85, 132.16, 133.19, 146.59, 158.92. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. One carbon overlapped with other signals. IR (film): 3428, 3351, 2927, 2856, 1732, 1622, 1512, 1459, 1363, 1244, 1075, 1027, 916, 835, $806 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{41}{ }^{10} \mathrm{BNO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 505.2929$, found 505.2928.

2d
4-(tert-Butyldimethylsilyloxy)-2-(4-chlorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxabo rolan-2-yl)naphthalen-1-amine (2d). (o-Cyano)phenylpropargyl ether 1d (114.6 $\mathrm{mg}, 0.3$ mmol), toluene (1.5 mL), $\operatorname{DBU}(4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}$ $(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\operatorname{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were
stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=25 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) afforded the title product in 96% yield (146.9 mg) as a brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.15(\mathrm{~s}, 6 \mathrm{H}), 1.07(\mathrm{~s}$, 12 H), 1.16 ($\mathrm{s}, 9 \mathrm{H}$), 3.55 (bs, 2H), 7.33 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.40-7.45$ (m, 4H), 7.76 (d, $J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.21,18.52,25.10$, 26.17, 83.36, 120.90, 124.26, 124.28, 124.36, 125.52, 125.87, 127.62, 128.44, 132.27, $132.84,133.15,138.50,147.07$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3441, 3381, 2927, 2858, 1161, 1490, 1390, 1369, 1324, 1308, 1258, 1139, 1080, 918, 888, $839 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{38}{ }^{10} \mathrm{BClNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 509.2433$, found 509.2434 .

4-(tert-Butyldimethylsilyloxy)-2-(4-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxabo rolan-2-yl)naphthalen-1-amine (2e). (o-Cyano)phenylpropargyl ether $\mathbf{1 e}$ ($109.7 \mathrm{mg}, 0.3$ mmol), toluene (1.5 mL), DBU ($4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \operatorname{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}$ $(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, dppf ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=20 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) afforded the title product in 90% yield (133.1 mg) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.15(\mathrm{~s}, 6 \mathrm{H})$, 1.06 (s, 12H), 1.15 (s, 9H), 3.62 (bs, 2H), 7.11-7.15 (m, 2H), 7.34-7.46 (m, 4H), 7.77 (d, J $=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.18,18.57,25.14$, 26.20, 83.37, 115.20 (d, $J=20.9 \mathrm{~Hz}$), 120.91, 124.24, 124.30, 124.66, 125.55, 125.84, 127.62, 132.52 (d, $J=7.9 \mathrm{~Hz}$), 133.06, $135.89(\mathrm{~d}, J=3.0 \mathrm{~Hz}), 146.97,162.26(\mathrm{~d}, J=244.4$ $\mathrm{Hz})$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3414, 3342, 2930, 2858, 1618, 1507, 1380, 1367, 1154, 1082, 941, 842, $811 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{38}{ }^{10} \mathrm{BFNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 493.2729$, found 493.2728.

2f
4-(tert-Butyldimethylsilyloxy)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(4-(tri fluoromethyl)phenyl)naphthalen-1-amine (2f). (o-Cyano)phenylpropargyl ether 1f $(124.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene $(1.5 \mathrm{~mL}), \mathrm{DBU}(4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}), \mathrm{B}_{2} \operatorname{pin}_{2}(91.4 \mathrm{mg}, 0.36$ $\mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol}), \operatorname{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015$ mmol) were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=20 / 1$, containing $1 \% \mathrm{v} / \mathrm{v}_{\mathrm{Et}}^{3} \mathrm{~N}$) afforded the title product in 98% yield $(159.1 \mathrm{mg})$ as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.15(\mathrm{~s}, 6 \mathrm{H}), 1.03(\mathrm{~s}, 12 \mathrm{H}), 1.16(\mathrm{~s}, 9 \mathrm{H}), 3.66(\mathrm{bs}, 2 \mathrm{H}), 7.45-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.70(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.76-7.79(\mathrm{~m}, 1 \mathrm{H}), 8.14-8.17(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.22$, 18.54, 25.03, 26.16, 83.38, 120.91, 124.25 (q, $J=271.0 \mathrm{~Hz}$), 124.28, 124.41, 124.51, $125.24(\mathrm{q}, J=3.8 \mathrm{~Hz}), 125.61,126.08,127.81,129.48(\mathrm{q}, J=33.7 \mathrm{~Hz}), 131.31,132.70$, $144.22,147.47$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3448, 3373, 2928, 1614, 1392, 1369, 1323, 1261, 1155, 1117, 1070, 888, $843 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{38}{ }^{10} \mathrm{BF}_{3} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 543.2697, found 543.2698.

Ethyl-4-(1-amino-4-(tert-butyldimethylsilyloxy)-3-(4,4,5,5-tetramethyl-1,3,2-dioxabor olan-2-yl)naphthalen-2-yl)benzoate (2g). (o-Cyano)phenylpropargyl ether $\mathbf{1 g}(125.9 \mathrm{mg}$, $0.3 \mathrm{mmol})$, toluene $(1.5 \mathrm{~mL}), \mathrm{DBU}(4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol})$, $\mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, dppf $(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent:
petroleum ether/ethyl acetate $=15 / 1$, containing $1 \% \mathrm{v} / \mathrm{v}_{3} \mathrm{~N}$) afforded the title product in 96% yield (158 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.13(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}$, 12 H), 1.13 (s, 9H), 1.41 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$), 3.65 (bs, 2H), $4.40(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 7.39-7.48 (m, 4H), 7.74-7.77 (m, 1H), $8.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-3.25,14.21,18.48,25.05,26.13,60.83,83.30,120.89,124.24,124.32,124.64$, $125.54,125.89,127.65,129.15,129.51,130.87,132.60,145.16,147.22,166.43$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3442, 3367, 2956, 2930, 2893, 2854, 1706, 1618, 1461, 1395, 1367, 1271, 1140, 1110, 968, 918, $828 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{43}{ }^{10} \mathrm{BNO}_{5} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 547.3034, found 547.3033.

4-(tert-Butyldimethylsilyloxy)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-o-tolyl naphthalen-1-amine (2h). (o-Cyano)phenylpropargyl ether $\mathbf{1 h}$ ($108.5 \mathrm{mg}, 0.3 \mathrm{mmol}$), toluene (1.5 mL), $\mathrm{DBU}(4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}$, $0.015 \mathrm{mmol})$, $\mathrm{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=15 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) afforded the title product in 98% yield $(143.9 \mathrm{mg})$ as a brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.97$ ($\mathrm{s}, 6 \mathrm{H}$), 0.98 ($\mathrm{s}, 6 \mathrm{H}$), 1.13 ($\mathrm{s}, 9 \mathrm{H}), 2.11$ ($\mathrm{s}, 3 \mathrm{H}), 3.56(\mathrm{bs}, 2 \mathrm{H}), 7.23-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.44$ $(\mathrm{m}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-3.33,-3.16,18.54,19.75,24.95,25.13,26.22,77.20,83.16,120.88,123.95,124.25$, 125.15, 125.50, 125.79, 127.46, 127.61, 129.79, 131.14, 132.48, 138.34, 138.86, 146.73. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. One carbon is overlapped with other signals. IR (film): 3403, 3309, 3228, 3070, 2928, 2856, 1623, 1445, 1367, 1323, 1252, 1139, 1111, 1078, 968, 919, 854, 781 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{41}{ }^{10} \mathrm{BNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 489.298$, found 489.2976.

$2 i$
4-(tert-Butyldimethylsilyloxy)-2-(2-fluorophenyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxabo rolan-2-yl)naphthalen-1-amine (2i). (o-Cyano)phenylpropargyl ether $\mathbf{1 i}$ ($109.7 \mathrm{mg}, 0.3$ mmol), toluene (1.5 mL), $\mathrm{DBU}(4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}$ $(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, dppf ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1$, containing $1 \% \mathrm{v} / \mathrm{v}_{3}{ }_{3} \mathrm{~N}$) afforded the title product in 98% yield (144.9 mg) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.12(\mathrm{~s}, 3 \mathrm{H})$, 0.14 (s, 3H), 1.01 (s, 6H), 1.05 (s, 6H), 1.13 (s, 9H), 3.66 (bs, 2H), 7.12-7.24 (m, 2H), 7.30-7.47 (m, 4H), 7.78 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-3.34,-3.25,18.52,25.07,25.12,26.19,83.17,115.65(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 119.28$, 120.97, 124.02 (d, $J=3.7 \mathrm{~Hz}$), 124.42, 125.76, 125.89, $127.38(\mathrm{~d}, J=17.9 \mathrm{~Hz}), 127.97$, 129.37 (d, $J=7.4 \mathrm{~Hz}$), 133.12, 133.14, 133.55, 147.63, $160.74(\mathrm{~d}, J=246.7 \mathrm{~Hz})$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3412, 3320, 3228, 2929, 2856, 1618, 1490, 1443, 1370, 1323, 1252, 1139, 1082, 969, 889, $835 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{38}{ }^{10} \mathrm{BFNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 493.2729, found 493.2729.

2j
4-(tert-Butyldimethylsilyloxy)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(2-(tri fluoromethyl)phenyl)naphthalen-1-amine (2j). (o-Cyano)phenylpropargyl ether $\mathbf{1 j}$ $(124.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene (1.5 mL), $\mathrm{DBU}(4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36$ $\mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol}), \operatorname{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015$
mmol) were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=8 / 1$, containing $1 \% \mathrm{v} / \mathrm{v}_{\mathrm{Et}}^{3} \mathrm{~N}$) afforded the title product in 94% yield (154 mg) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.07$ (s, 3H), 0.13 (s, 3H), $0.95(\mathrm{~s}, 6 \mathrm{H}), 1.01(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H}), 3.49(\mathrm{bs}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.79(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.71,-3.34,18.47,24.84,25.15,26.19,82.79,120.94$, 123.40, 123.99 ($q, J=273.3 \mathrm{~Hz}), 124.44,124.60,125.980(\mathrm{q}, J=4.5 \mathrm{~Hz}), 125.984,126.13$, 127.52, 128.01, $130.38(\mathrm{q}, ~ J=30.3 \mathrm{~Hz}), 131.46,132.95,133.29,138.96(\mathrm{q}, J=1.5 \mathrm{~Hz})$, 148.37. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): $3462,3378,2931,2858,1617,1473,1368,1313,1253$, 1164, 1078, 1034, 918, $856 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{38}{ }^{10} \mathrm{BF}_{3} \mathrm{NO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 543.2697, found 543.2695.

5'-(tert-butyldimethylsilyloxy)-6'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1,7'-bi naphthyl-8'-amine (2k). (o-Cyano)phenylpropargyl ether 1k ($119.3 \mathrm{mg}, 0.3 \mathrm{mmol}$), toluene (1.5 mL), DBU ($4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}$, $0.015 \mathrm{mmol})$, dppf ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=20 / 1$, containing $1 \% \mathrm{v} / \mathrm{v}_{3} \mathrm{~N}$) afforded the title product in 87% yield $(137.4 \mathrm{mg})$ as a light yellow solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.13(\mathrm{~s}, 3 \mathrm{H}), 0.25(\mathrm{~s}, 3 \mathrm{H})$, $0.70(\mathrm{~s}, 6 \mathrm{H}), 0.77(\mathrm{~s}, 6 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 3.59(\mathrm{bs}, 2 \mathrm{H}), 7.31-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.50(\mathrm{~m}$, $3 \mathrm{H}), 7.55-7.57(\mathrm{~m}, 3 \mathrm{H}), 7.81-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.91(\mathrm{~m}, 2 \mathrm{H}), 8.21-8.24(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.26,18.52,24.82,24.90,26.19,82.91,120.97,123.57$, 124.24, 124.37, 125.51, 125.65, 125.76, 125.78, 126.02, 126.51, 127.64, 127.70, 127.81, $128.93,132.68,133.56,133.71,137.25,147.17$. The carbon directly attached to the boron
atom was not detected, likely due to quadrupolar broadening. IR (film): 3445, 3367, 2957, 2929, 2858, 1613, 1564, 1471, 1366, 1247, 1151, 1138, 1079, 918, $834 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{41}{ }^{10} \mathrm{BNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 525.2980, found 525.2978. Anal. Calcd. for $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{BNO}_{3} \mathrm{Si}: \mathrm{C}, 73.13, \mathrm{H}, 7.67$, N, 2.67; Found: C, 72.97, H, 7.65, N, 2.58. The structure of $\mathbf{2 k}$ was determined by X-ray crystal analysis.

4-(tert-Butyldimethylsilyloxy)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-(thiop hen-2-yl)naphthalen-1-amine (21). (o-Cyano)phenylpropargyl ether $\mathbf{1 1}$ ($106.1 \mathrm{mg}, 0.3$ mmol), toluene (1.5 mL), DBU ($4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \operatorname{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}$ $(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, dppf ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=30 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) afforded the title product in 82% yield (117.9 mg) as a brown solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.16(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}$, $12 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 3.93(\mathrm{bs}, 2 \mathrm{H}), 7.06-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.47(\mathrm{~m}, 3 \mathrm{H})$, 7.77-7.79 (m, 1H), 8.11-8.13 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-3.18, 18.56, 25.24, $26.21,83.41,116.82,121.09,124.22,124.64,125.26,125.78,126.15,127.04,128.20$, 128.72, 135.44, 140.47, 146.52. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3462, 3368, 2923, 2854, 1611, 1367, 1306, 1255, 1137, 1078, 904, 886, $835 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{37}{ }^{10} \mathrm{BNO}_{3} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}: 481.2387$, found 481.2388 .

4-(tert-Butyldimethylsilyloxy)-6-fluoro-2-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxabor S27
olan-2-yl)naphthalen-1-amine (2m). (o-Cyano)arylpropargyl ether 1m (109.7 mg, 0.3 mmol), toluene (1.5 mL), DBU ($4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}$ $(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, dppf ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 6 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=6 / 1$, containing $1 \% \mathrm{v} / \mathrm{v}_{\mathrm{t}} \mathrm{N}$) afforded the title product in 99% yield (147.1 mg) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.16(\mathrm{~s}, 6 \mathrm{H})$, 1.02 (s, 12H), 1.14 (s, 9H), 3.58 (bs, 2H), 7.18-7.23 (m, 1H), 7.34-7.44 (m, 5H), 7.71 (dd, J $=11.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{dd}, J=8.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-3.12$, 18.65, 25.21, 26.25, 83.55, $107.94(\mathrm{~d}, ~ J=22.0 \mathrm{~Hz}), 115.61(\mathrm{~d}, J=25.3 \mathrm{~Hz}), 122.76$, 123.71 ($\mathrm{d}, J=9.3 \mathrm{~Hz}$), 125.59, 127.45, 128.54, 128.71 (d, $J=8.0 \mathrm{~Hz}$), 130.91, 133.12, 139.67, $146.21(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 160.06(\mathrm{~d}, J=242.4 \mathrm{~Hz})$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3409, 2954, 2929, 2854, 1710, 1621, 1574, 1394, 1356, 1251, 1178, 1139, 1063, 905, 835, 813, 783, $699 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{38}{ }^{10} \mathrm{BFNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 493.2729, found 493.2724.

7-((tert-Butyldimethylsilyl)oxy)-5-phenyl-6-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzo[b]thiophen-4-amine (2n). (o-Cyano)thienylpropargyl ether 1n ($106.1 \mathrm{mg}, 0.3$ mmol), toluene (1.5 mL), DBU ($4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}$ $(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 6 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=12 / 1$, containing $1 \% \mathrm{v} / \mathrm{v}_{3} \mathrm{~N}$) afforded the title product in 90% yield (130.4 mg) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 0.42(\mathrm{~s}, 6 \mathrm{H})$, 0.98 (s, 12H), 1.24 (s, 9H), 3.24 (bs, 2H), 6.83 (d, $J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.18-7.20 (m, 1H), 7.23-7.27 (m, 2H), 7.46-7.48 (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ $-2.43,19.02,25.36,26.58,83.33,120.85,125.03,127.13,127.28,128.51,131.58,131.73$,
$132.89,134.06,140.62,145.52$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3453, 3370, 2976, 2926, 2854, 1607, 1403, 1355, 1312, 1142, 966, 909, 841, 824, 783, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{37}{ }^{10} \mathrm{BNO}_{3} \mathrm{SSi}[\mathrm{M}+\mathrm{H}]^{+}: 481.2387$, found 481.2380.

Synthesis of 1-naphthylamines 20-2t.

Typical procedure for the synthesis of 1-naphthylamine 20 (Condition A).

The reaction was carried out in an oven-dried screw-cap vial (4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, to a screw-cap vial were added (o-cyano)phenylpropargyl ether $\mathbf{1 0}(98.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene (1.5 mL) and $\mathrm{KO}^{t} \mathrm{Bu}(5.0$ $\mathrm{mg}, 0.045 \mathrm{mmol})$, and stirred for 2 min . Then $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}$, $0.015 \mathrm{mmol})$ and $\mathrm{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added successively. The vial was tightly capped, taken outside the glove box, and stirred at room temperature for 40 h . The mixture was diluted with ethyl acetate, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=20 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) to afford $\mathbf{2 o}$ in 70% yield $(95.6 \mathrm{mg})$ as a reddish brown solid.

2-Butyl-4-((tert-butyldimethylsilyl)oxy)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl
)naphthalen-1-amine (20). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.11(\mathrm{~s}, 6 \mathrm{H}), 0.99(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.15(\mathrm{~s}, 9 \mathrm{H}), 1.43-1.51(\mathrm{~m}, 14 \mathrm{H}), 1.59-1.63(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.85(\mathrm{bs}$, $2 \mathrm{H}), 7.34$ (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.42 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.76$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.16,14.11,18.62,23.26,25.56,26.29,31.48$, $32.11,83.55,120.25,123.21,124.29,124.84,125.54,126.05,126.70,132.63,147.96$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3417, 3356, 2959, 2932, 2860, 1626, 1583, 1473, 1392, 1379, 1365, 1304, 1257, 1138, 1072, 977, 857, $840 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{43}{ }^{10} \mathrm{BNO}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}: 455.3136$, found 455.3134 .

Typical procedure for the synthesis of 1-naphthylamine 2p (Condition B).

The reaction was carried out in an oven-dried screw-cap vial (4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, to a screw-cap vial were added (o-cyano)phenylpropargyl ether $\mathbf{1 p}(108.5 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene $(1.5 \mathrm{~mL})$, DBU (89.6 $\mu \mathrm{L}, 0.6 \mathrm{mmol})$, and stirred for 30 min . Then $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}$, $0.015 \mathrm{mmol})$, dppf ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added successively. The vial was tightly capped, taken outside the glove box, and stirred at room temperature for 40 h . The mixture was diluted with ethyl acetate, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=20 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) to give $\mathbf{2 p}$ in 57% yield (83 mg) as a reddish brown solid.

2p

2-Benzyl-4-((tert-butyldimethylsilyl)oxy)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

 yl)naphthalen-1-amine (2p). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.21(\mathrm{~s}, 6 \mathrm{H}), 1.09(\mathrm{~s}, 12 \mathrm{H})$, 1.22 (s, 9H), 3.37 (bs, 2H), 4.42 (s, 2H), 7.00-7.03 (m, 1H), 7.09-7.13 (m, 2H), 7.21-7.25 (m, 3H), 7.29-7.33 (m, 1H), 7.43 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-2.88,18.94,25.48,26.63,37.20,83.49,121.17,122.21,124.12$, 124.67, $125.85,126.19,126.64,127.93,128.74,128.84,135.36,140.89,148.66$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): $3459,3373,3067,2927,2856,1621,1496,1368,1301,1251,1138$, 1078, 982, $860 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{41}{ }^{10} \mathrm{BNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 489.2980$, found 489.2975.

4-((tert-Butyldimethylsilyl)oxy)-2-cyclopropyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborol an-2-yl)naphthalen-1-amine (2q). Condition A was used. (o-Cyano)phenylpropargyl ether $\mathbf{1 q}(93.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene (1.5 mL), $\mathrm{KO}^{t} \mathrm{Bu}(5.0 \mathrm{mg}, 0.045 \mathrm{mmol}), \mathrm{B}_{2} \mathrm{pin}_{2}$ ($91.4 \mathrm{mg}, 0.36 \mathrm{mmol}$), $\mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=15 / 1$ to $10 / 1$, containing $1 \% \mathrm{v} /{\mathrm{v} \mathrm{Et}_{3} \mathrm{~N} \text {) afforded the title }}^{\text {a }}$ product in 74% yield (97.2 mg) as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.09$ $(\mathrm{s}, 6 \mathrm{H}), 0.66-0.68(\mathrm{~m}, 2 \mathrm{H}), 0.98-1.00(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 12 \mathrm{H}), 1.97-2.03(\mathrm{~m}$, $1 \mathrm{H}), 4.26$ (bs, 2H), $7.24-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-2.96,8.23,12.71,18.65,25.78,26.33,83.41,120.34$, $123.63,123.70,124.33,125.54,125.68,127.09,135.74,147.47$. The carbon directly
attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3437, 3351, 2956, 2930, 2858, 1619, 1443, 1399, 1308, 1248, 1140, 1078, 976, 840, $808 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{25} \mathrm{H}_{39}{ }^{10} \mathrm{BNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 439.2823$, found 439.2821.

4-((tert-Butyldimethylsilyl)oxy)-2-phenethyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan
-2-yl)naphthalen-1-amine (2r). Condition B was used. (o-Cyano)phenylpropargyl ether $\mathbf{1 r}(112.7 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene (1.5 mL), DBU ($89.6 \mu \mathrm{~L}, 0.6 \mathrm{mmol}$), $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}$, $0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, dppf ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}$, 0.015 mmol) were stirred at room temperature for 36 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=25 / 1$ to $15 / 1$, containing $1 \% \mathrm{v} / \mathrm{v}_{3} \mathrm{~N}$) afforded the title product in 73% yield $(110 \mathrm{mg})$ as a reddish brown solid. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta 0.19(\mathrm{~s}, 6 \mathrm{H}), 1.211(\mathrm{~s}, 12 \mathrm{H}), 1.214(\mathrm{~s}, 9 \mathrm{H}), 3.06-3.30(\mathrm{~m}, 6 \mathrm{H}), 7.09-7.13(\mathrm{~m}, 1 \mathrm{H})$, 7.18-7.22 (m, 2H), 7.26-7.32 (m, 4H), 7.54-7.56 (m, 1H), 8.33-8.35 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-2.76,18.99,25.62,26.68,33.67,36.27,83.50,121.21,123.86,124.33$, $124.69,125.94,126.22,126.82,127.67,128.70,128.72,134.16,142.97,149.08$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3345, 2930, 2857, 1625, 1582, 1472, 1392, 1306, 1254, 1138, 1078, 970, $839 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{43}{ }^{10} \mathrm{BNO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 503.3136$, found 503.3132.

2s
2-(2-(Benzyloxy)ethyl)-4-((tert-butyldimethylsilyl)oxy)-3-(4,4,5,5-tetramethyl-1,3,2-dio xaborolan-2-yl)naphthalen-1-amine (2s). Condition A was used.
(o-Cyano)phenylpropargyl ether 1s ($121.7 \mathrm{mg}, 0.3 \mathrm{mmol}$), toluene $(1.5 \mathrm{~mL}), \mathrm{KO}^{t} \mathrm{Bu}(5.0$ $\mathrm{mg}, 0.045 \mathrm{mmol}), \mathrm{B}_{2} \operatorname{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$ and dppf (8.3 $\mathrm{mg}, 0.015 \mathrm{mmol}$) were stirred at room temperature for 28 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1$, containing $1 \% \mathrm{v} / \mathrm{v} \mathrm{Et}_{3} \mathrm{~N}$) afforded the title product in 79% yield $(125.9 \mathrm{mg})$ as a yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $0.08(\mathrm{~s}, 6 \mathrm{H}), 1.12(\mathrm{~s}, 9 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H}), 3.13(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.79(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.20(\mathrm{bs}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.40(\mathrm{~m}, 7 \mathrm{H}), 7.72(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-3.24,18.56,25.49,26.23,32.17,71.48,73.24,83.57$, 120.32, 121.48, 123.49, 124.26, 125.58, 125.97, 127.01, 127.43, 127.53, 128.26, 134.59, $138.32,147.88$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3453, 3364, 2959, 2929, 2856, 1621, 1368, 1252, 1140, 1079, 969, 885, $837 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{45}{ }^{10} \mathrm{BNO}_{4} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 533.3242, found 533.3240.

4-((tert-Butyldimethylsilyl)oxy)-2-((methyl(phenyl)amino)methyl)-3-(4,4,5,5-tetramet hyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-amine (2t). Condition B was used. (o-Cyano)phenylpropargyl ether $\mathbf{1 t}(117.2 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene (1.5 mL), DBU $(89.6 \mu \mathrm{~L}$, $0.6 \mathrm{mmol}), \mathrm{B}_{2} \operatorname{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, dppf ($8.3 \mathrm{mg}, 0.015$ mmol) and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were stirred at room temperature for 24 h . Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=30 / 1$, containing $1 \% \mathrm{v} / \mathrm{v} \mathrm{Et}_{3} \mathrm{~N}$) afforded the title product in 85% yield (132 mg) as a yellow sticky oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 0.21(\mathrm{~s}, 6 \mathrm{H}), 1.13(\mathrm{~s}, 12 \mathrm{H}), 1.20(\mathrm{~s}, 9 \mathrm{H}), 2.70(\mathrm{~s}$, $3 \mathrm{H}), 4.13(\mathrm{bs}, 2 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.20-7.32 (m, 4H), $7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-2.71,18.99,25.64,26.68,36.12,54.06,83.71,115.13,118.75,118.88,121.07$, $124.48,124.64,125.78,125.98,129.57,137.28,147.52,151.72$. The carbon directly
attached to the boron atom was not detected, likely due to quadrupolar broadening. One carbon is overlapped with other signals. IR (film): 3431, 3351, 2929, 2851, 1630, 1596, 1503, 1142, 1370, 1255, 1140, 1072, 928, $866 \mathrm{~cm}^{-1}$. HRMS(EI) calcd for $\mathrm{C}_{30} \mathrm{H}_{43}{ }^{10} \mathrm{BN}_{2} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}]^{+}: 517.3167$, found 517.3164.

Synthesis of 1-naphthylamines 2u'-2v'.

Condition B

The reaction was carried out in an oven-dried screw-cap vial (4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, to a screw-cap vial were added (o-cyano)phenylpropargyl ether $\mathbf{1 u}$ or $\mathbf{1 v}(0.3 \mathrm{mmol})$, toluene (1.5 mL), DBU ($89.6 \mu \mathrm{~L}, 0.6$ $\mathrm{mmol})$, and stirred for 30 min . Then $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015$ mmol), dppf ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added successively. The vial cap was then securely fitted and taken outside the glove box. The reaction mixture was stirred at room temperature until the reaction was complete as monitored by TLC (for $\mathbf{1 u}, 28 \mathrm{~h}$. for $\mathbf{1 v}, 40 \mathrm{~h}$). The resulting mixture was diluted with ethyl acetate, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure to afford the free 1-naphthylamine crude product, which was used directly without further purification for the next step.

To a solution of the above crude 1-naphthylamine in THF (5 mL) was added NaHCO_{3} ($30.2 \mathrm{mg}, 0.36 \mathrm{mmol}$) under air, then the recation mixture was cooled down to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{ClCO}_{2} \mathrm{Bn}(61.4 \mathrm{mg}, 0.36 \mathrm{mmol})$ was added. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and at room temperature for 10 h . Then the mixture was quenched with water, extracted with ethyl acetate, washed with brine solution, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel followed by recycling preparative HPLC to afford the title products.

Benzyl 4-(tert-butyldimethylsilyloxy)-2-(3-chloropropyl)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-ylcarbamate (2u'). (o-cyano)phenylpropargyl ether 1u ($104.4 \mathrm{mg}, 0.3 \mathrm{mmol}$) was used in the reaction. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $/$ dichloromethane $=15 / 1 / 1$ to $10 / 1 / 1$) followed by recycling preparative HPLC to afford the $\mathbf{2 u}$ ' in 70% overall yield (128.2 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$) $\delta 0.15$ (s, 6H), 1.11 (s, 9H), 1.40 (s , $12 \mathrm{H}), 2.03-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.92(\mathrm{~m}, 2 \mathrm{H}), 3.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H})$, 7.34-7.40 (broad, 4H), 7.45-7.54 (m, 2H), 7.82 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 8.04 (d, $J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.83(\mathrm{bs}, 1 \mathrm{H})$. One of the proton was not found. ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- $d_{6}, 80$ $\left.{ }^{\circ} \mathrm{C}\right) \delta-3.43,17.95,24.83,25.75,29.11,33.38,44.67,65.35,83.27,117.52,122.59,122.78$, 123.71, 124.96, 126.07, 126.66, 127.09, 127.28, 127.83, 132.87, 136.84, 140.08, 153.98, 155.11. IR (film): 2979, 2954, 2926, 2854, 1777, 1705, 1616, 1365, 1308, 1139, 837, 780, $696 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{33} \mathrm{H}_{49}{ }^{10} \mathrm{BClN}_{2} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 626.3223$, found 626.3223 .

Benzyl 4-(tert-butyldimethylsilyloxy)-2-cyclohex-1-en-1-yl-3-(4,4,5,5-tetramethyl-1,3,2 -dioxaborolan-2-yl)naphthalen-1-ylcarbamate (2v'). (o-cyano)phenylpropargyl ether 1v ($105.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) was used in the reaction. Column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1$, containing $1 \% \mathrm{v} / \mathrm{v}_{\mathrm{Et}}^{3} \mathrm{~N}$) followed by recycling preparative HPLC afforded the title product $\mathbf{2 v}{ }^{\prime}$ in 81% overall yield (148.8 mg) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$) $\delta 0.19(\mathrm{~s}, 6 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.34$
$(\mathrm{s}, 12 \mathrm{H}), 1.63-1.72(\mathrm{~m}, 4 \mathrm{H}), 2.075-2.084(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{bs}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 5.40(\mathrm{bs}, 1 \mathrm{H})$, 7.32-7.36 (broad, 4H), 7.45-7.48 (m, 1H), 7.51-7.53 (m, 1H), $7.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $8.46(\mathrm{bs}, 1 \mathrm{H})$. One of the proton was not found. ${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$) $\delta-3.39,17.95,21.07,21.90,24.47,24.85,25.74,28.96,65.10,82.88$, 117.92, 122.66, 122.83, 123.68, 123.74, 124.82, 126.10, 126.33, 127.07, 127.18, 127.74, $132.64,136.95,137.68,144.18,152.90,155.07$. IR (film): $3239,3070,2928,2856,1702$, 1447, 1367, 1143, 1080, 1040, 973, $839 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{36} \mathrm{H}_{52}{ }^{10} \mathrm{BN}_{2} \mathrm{O}_{5} \mathrm{Si}$ $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 630.3769$, found 630.3769 . The structure of $\mathbf{2 v}$, was determined by X-ray crystal analysis.

Synthesis of 1-naphthylamine 2w'.

Condition A

The reaction was carried out in an oven-dried screw-cap vial (4 mL) equipped with a magnetic stir bar. In a nitrogen-filled glove box, to a screw-cap vial were added (o-cyano)phenylpropargyl ether $\mathbf{1 w}(81.4 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene $(1.5 \mathrm{~mL})$ and $\mathrm{KO}^{t} \mathrm{Bu}(5.0$ $\mathrm{mg}, 0.045 \mathrm{mmol})$, and stirred for 2 min , then $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}$, $0.015 \mathrm{mmol})$ and dppf ($8.3 \mathrm{mg}, 0.015 \mathrm{mmol}$) were added successively. The vial was tightly capped, taken outside the glove box, and stirred at room temperature for 48 h . The resulting reaction mixture was diluted with ethyl acetate, washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure to afford the free 1-naphthylamine crude product, which was used directly without further purification for the next step.

To a solution of the above crude 1-naphthylamine in THF (5 mL) was added NaHCO_{3} ($30.2 \mathrm{mg}, 0.36 \mathrm{mmol}$) under air, then the recation mixture was cooled down to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{ClCO}_{2} \mathrm{Bn}(50.7 \mu \mathrm{~L}, 0.36 \mathrm{mmol})$ was added. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for 10 h . Then the mixture was quenched with water, extracted
with ethyl acetate, washed with brine solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate/dichloromethane $=10 / 1 / 1$) to afford the title product $\mathbf{2} \mathbf{w}$ ' in 45% overall yield (72.4 mg) as a light yellow solid.

Benzyl 4-(tert-butyldimethylsilyloxy)-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)

 naphthalen-1-ylcarbamate (2w'). ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$) $\delta 0.17(\mathrm{~s}, 6 \mathrm{H})$, $1.12(\mathrm{~s}, 9 \mathrm{H}), 1.35(\mathrm{~s}, 12 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 7.32-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.59$ $(\mathrm{m}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- $d_{6}, 80{ }^{\circ} \mathrm{C}$) $\delta-3.91,17.88,24.39,25.63,65.43,82.99,113.72$, 122.49, 123.38, 124.43, 126.66, 126.79, 127.22, 127.33, 127.56, 127.88, 127.97, 131.78, 136.67, 154.76, 154.82. IR (film): 3306, 2929, 2856, 1707, 1494, 1403, 1380, 1254, 1210, 1142, 1080, 880, 842, $780 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{44}{ }^{10} \mathrm{BN}_{2} \mathrm{O}_{5} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 550.3143 , found 550.3142 .
Gram scale study.

In a nitrogen-filled glove box, to a solution of (o-cyano)phenylpropargyl ether 1a $(1.738 \mathrm{~g}, 5 \mathrm{mmol})$ in toluene (25 mL) was added DBU $(74.7 \mu \mathrm{~L}, 0.5 \mathrm{mmol})$, the resulting solution was stirred at room temperature for 1 min . Then $\mathrm{B}_{2} \operatorname{pin}_{2}(1.524 \mathrm{~g}, 6.0 \mathrm{mmol}), \mathrm{CuCl}$ ($24.8 \mathrm{mg}, 0.25 \mathrm{mmol}$), dppf ($138.6 \mathrm{mg}, 0.25 \mathrm{mmol}$) and $\mathrm{KO}^{t} \mathrm{Bu}(28.0 \mathrm{mg}, 0.25 \mathrm{mmol}$) were added successively. The flask was equipped with a septum, taken outside the glove box, and stirred at room temperature for 28 h . The resulting mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with ethyl acetate, washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure and the residue
was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=20 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) to afford $\mathbf{2 a}$ in 94% yield $(2.24 \mathrm{~g})$ as a yellow solid.

Synthesis of cyano-allene 3a via KO^{t} Bu-catalyzed isomerization of 1a

The reaction was carried out in a Schlenk tube. To a stirred solution of $\mathbf{1 a}(173.8 \mathrm{mg}$, $0.5 \mathrm{mmol})$ in THF (5.0 mL) was added $\mathrm{KO}^{t} \mathrm{Bu}(11.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$, the color turned to purple immediately. After stirring at $-78{ }^{\circ} \mathrm{C}$ for 30 min , water was added and the reaction mixture was warmed up to room temperature. Then the resulting reaction mixture was extracted with diethyl ether, and the combined organic extracts were washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure at ca. $30{ }^{\circ} \mathrm{C}$ to afford the pure product 3a in 98% yield (170.3 mg) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 6.99(\mathrm{~s}$, 1 H), $7.25-7.41$ (m, 6H), 7.55 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.65 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.72$ (d, $J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.81,-4.61,18.23,25.82,108.97,109.59,118.03$, 127.31, 127.34, 127.86, 128.12, 128.23, 128.62, 132.25, 133.66, 134.35, 139.06, 198.95. The spectroscopic data is in agreement with that previously reported. ${ }^{1}$

Mechanistic studies:

1) Copper-catalyzed reaction of 1 a with $B_{2} \operatorname{pin}_{2}$ in the absence of DBU.

In a nitrogen-filled glove box, to a screw-cap vial (4 mL) equipped with a magnetic stir bar were added (o-cyano)phenylpropargyl ether 1a ($69.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), toluene (1.0 mL), $\mathrm{B}_{2} \mathrm{pin}_{2}(60.9 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{CuCl}(1.0 \mathrm{mg}, 0.01 \mathrm{mmol}), \mathrm{dppf}(5.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ and
$\mathrm{KO}^{t} \mathrm{Bu}(1.1 \mathrm{mg}, 0.01 \mathrm{mmol})$ successively. The vial was tightly capped, taken outside the glove box and stirred at room temperature for 24 h . Allene 3a and 1-naphthylamine product 2a were not observed according to TLC analysis. The reaction mixture was filtered through a pad of silica gel. Then the solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=60 / 1)$ to afford $\mathbf{1 a}$ in 82% yield $(57.1 \mathrm{mg})$ as a light yellow oil.

2) Copper-catalyzed reaction of allene $3 a$ with B_{2} pin $_{2}$.

In a nitrogen-filled glove box, to a screw-cap vial (4 mL) equipped with a magnetic stir bar were added allene-nitrile 3a ($69.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), toluene (1.0 mL), $\mathrm{B}_{2} \mathrm{pin}_{2}(60.9$ $\mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{CuCl}(1.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{dppf}(5.5 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.1$ $\mathrm{mg}, 0.01 \mathrm{mmol}$) successively. The vial was tightly capped, taken outside the glove box, and stirred at room temperature for 24 h . The resulting mixture was filtered through a pad of silica gel. Then the solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=$ $15 / 1$, containing $1 \% \mathrm{v} / \mathrm{v} \mathrm{Et}_{3} \mathrm{~N}$) to afford $\mathbf{2 a}$ in 94% yield (89.6 mg) as a brown solid.

3) Hydroborylation of allene 3a.

In a nitrogen-filled glove box, to a screw-cap vial (4 mL) equipped with a magnetic stir bar were added allene-nitrile 3a ($104.3 \mathrm{mg}, 0.3 \mathrm{mmol}$), toluene $(1.5 \mathrm{~mL}), \mathrm{B}_{2} \mathrm{pin}_{2}(91.4$ $\mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol}), \operatorname{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7$
$\mathrm{mg}, 0.015 \mathrm{mmol}$) successively. The vial was tightly capped and taken outside the glove box. $\mathrm{CH}_{3} \mathrm{OH}(19.2 \mathrm{mg}, 0.6 \mathrm{mmol})$ was then added, and the resulting mixture was stirred at room temperature for 48 h . The mixture was filtered through a pad of silica gel. Then the solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=50 / 1$) to afford the product $\mathbf{4 a}$ in 73% yield $(103.7 \mathrm{mg})$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-0.19$ $(\mathrm{s}, 3 \mathrm{H}),-0.13(\mathrm{~s}, 3 \mathrm{H}), 0.87-0.92(\mathrm{~m}, 21 \mathrm{H}), 3.72(\mathrm{ABq}, J=14.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.14(\mathrm{~m}, 1 \mathrm{H})$, 7.22-7.26 (m, 2H), 7.34-7.43 (m, 4H), 7.49-7.53 (m, 1H), $7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-4.32,-4.20,18.18,24.23,24.34,25.56,33.63,82.69,113.28$, $118.32,125.30,127.86,128.16,128.87,130.45,131.55,132.07$, 141.95, 143.94, 155.28. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 2923, 2856, 2224, 1616, 1591, 1371, 1255, 1143, 1177, 832, 780 cm^{-1}. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{42}{ }^{10} \mathrm{BN}_{2} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 492.3089$, found 492.3089.

4) Conversion of 4a to $5 .{ }^{5}$

To a solution of $\mathbf{4 a}(95.1 \mathrm{mg}, 0.2 \mathrm{mmol})$ in $\mathrm{HOAc}(3 \mathrm{~mL})$ was added $\mathrm{KHF}_{2}(46.9 \mathrm{mg}$, 0.6 mmol) under air, the reaction mixture was stirred at room temperature until the reaction was complete as monitored by TLC (6 h). Then water was added, and the resulting mixture was extracted with diethyl ether. The organic layer was added solid $\mathrm{K}_{2} \mathrm{CO}_{3}$. The aqueous layer was neutralized by adding solid $\mathrm{K}_{2} \mathrm{CO}_{3}$ and then extracted with diethyl ether. The combined organic layers were washed with water and brine, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=$ $40 / 1$) to afford the $\mathbf{5}$ in 92% yield (64.5 mg) as a colorless oil, which can be solidified upon standing in the refrigerator. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta-0.07(\mathrm{~s}, 6 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 3.64$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{t}, J=7.6 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.07-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta-4.19,18.41,25.90,32.59,111.35,115.85,118.45,126.38,127.98,128.83,128.87$, 128.88, 131.89, 133.40, 140.94, 143.68, 146.99. IR (film): 2955, 2929, 2857, 2224, 1653, 1472, 1254, 1200, 1026, 838, $781 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OSi}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$: 367.2200 , found 367.2205 . The structure of $\mathbf{5}$ was determined by X-ray crystal analysis.

5) Deuterium-labeling experiment.

In a nitrogen-filled glove box, to a screw-cap vial (4 mL) equipped with a magnetic stir bar were added allene-nitrile $\mathbf{3 a}(104.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene $(1.5 \mathrm{~mL}), \mathrm{B}_{2} \mathrm{pin}_{2}(91.4$ $\mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7$ $\mathrm{mg}, 0.015 \mathrm{mmol}$) successively. The vial was tightly capped and taken outside the glove box. $\mathrm{CD}_{3} \mathrm{OD}(21.6 \mathrm{mg}, 0.6 \mathrm{mmol}$) was then added, and the mixture was stirred at room temperature for 48 h . The reaction mixture was filtered through a pad of silica gel. Then the solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=50 / 1$ to $15 / 1$) to afford $\mathbf{4 a}-d$ in 80% yield ($114.9 \mathrm{mg}, \mathrm{D}=96 \%$) as a colorless sticky oil and 2a in 11% yield $(15.4 \mathrm{mg})$ as a brown solid.
$\mathbf{4 a - d},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-0.19(\mathrm{~s}, 3 \mathrm{H}),-0.13(\mathrm{~s}, 3 \mathrm{H}), 0.88-0.92(\mathrm{~m}, 21 \mathrm{H}), 3.67$, $3.73(\mathrm{~s}, \mathrm{~s}, 1.04 \mathrm{H}), 7.10-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.43(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.53(\mathrm{~m}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.33,-4.21,18.16,24.22$, 24.32, 25.55, 33.31 (t, $J=18.7 \mathrm{~Hz}$), 82.67, 113.26, 118.30, 125.29, 127.84, 128.15, 128.85, $130.44,131.54,132.04,141.89,143.92,155.29$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 2926, 2856, 2224, 1619, 1588, 1371, 1253, 1142, 1071, 832, $781 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{28} \mathrm{H}_{41} \mathrm{D}^{10} \mathrm{BN}_{2} \mathrm{O}_{3} \mathrm{Si}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 493.3151$, found 493.3118 .

Synthesis of 1-naphthylamine 2a using $\mathrm{KO}^{t} \mathrm{Bu}$ as the only base.

In a nitrogen-filled glove box, to a screw-cap vial (4 mL) equipped with a magnetic stir bar were added (o-cyano)phenylpropargyl ether $\mathbf{1 a}(69.5 \mathrm{mg}, 0.2 \mathrm{mmol}$), toluene (1.0 $\mathrm{mL})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, the resulting dark brown solution was stirred for 1 min at room temperature. Then $\mathrm{B}_{2} \mathrm{pin}_{2}(60.9 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{CuCl}(1.0 \mathrm{mg}, 0.01 \mathrm{mmol})$ and dppf ($5.5 \mathrm{mg}, 0.01 \mathrm{mmol}$) were added successively. The vial was tightly capped, taken outside the glove box, and stirred at room temperature for 24 h . The reaction mixture was filtered through a pad of silica gel. Then the solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=15 / 1$, containing $1 \% \mathrm{v} / \mathrm{vEt}_{3} \mathrm{~N}$) to afford $\mathbf{2 a}$ in 80% yield $(76.3 \mathrm{mg})$ as a brown solid.

Synthesis of Ac-protected substrate 1-(2-cyanophenyl)-3-phenylprop-2-ynyl acetate

 (1-OAc).

To a solution of ethynylbenzene ($663.8 \mathrm{mg}, 6.5 \mathrm{mmol}$) in THF (15 mL) was added dropwise $\mathrm{EtMgBr}\left(2.0 \mathrm{~mL}, 3.0 \mathrm{M}\right.$ solution in $\left.\mathrm{Et}_{2} \mathrm{O}, 6.0 \mathrm{mmol}\right)$ at room temperature under argon. Then the reaction mixture was warmed up to $40^{\circ} \mathrm{C}$ and stirred for 1 h . After cooling to room temperature, 2-cyanobenzaldehyde ($656 \mathrm{mg}, 5.0 \mathrm{mmol}$) was added and the
reaction mixture was stirred 1 h . The resulting reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with ethyl acetate. The combined organic extracts were washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure to afford the alcohol $\mathbf{s - 1}$ as a light yellow oil, which was used directly without further purification for the next step.

To a solution of the above crude alcohol $\mathbf{s - 1}$, DMAP ($61.1 \mathrm{mg}, 0.5 \mathrm{mmol}$) and pyridine ($1.2 \mathrm{~mL}, 15.0 \mathrm{mmol}$) in $\mathrm{DCM}(15 \mathrm{~mL})$ was added acetyl chloride $(0.7 \mathrm{~mL}, 10$ mmol) at $0{ }^{\circ} \mathrm{C}$ under air. Then ice bath was removed, and the reaction mixture was stirred at room temperature for 2 h . Then the resulting mixture was quenched with saturated ammonium chloride solution and extracted with dichloromethane, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=10 / 1$) to afford 1-OAC in 86% overall yield (1.19 g) as a yellow oil. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.17(\mathrm{~s}, 3 \mathrm{H}), 6.86(\mathrm{~s}$, $1 \mathrm{H}), 7.31-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 20.57,64.03,83.60,88.34,111.68,116.62,121.44,128.21$, $128.62,129.02,129.23,131.85,132.99,133.43,140.17,169.18$. IR (neat): 3065, 2926, 2224, 1746, 1488, 1363, 1207, 1016, 956, 755, $690 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 293.1285$, found 293.1283.

Copper-catalyzed reaction of Ac-protected substrate (1-OAc) with

Bis(pinacolato)diboron.

In a nitrogen-filled glove box, to a screw-cap vial (4 mL) equipped with a magnetic stir bar were added 1-(2-cyanophenyl)-3-phenylprop-2-yn-1-yl acetate 1-OAc (82.6 mg , $0.3 \mathrm{mmol})$, toluene $(1.5 \mathrm{~mL})$ and $\mathrm{DBU}(4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol})$, and stirred for 1 min . Then $\mathrm{B}_{2} \operatorname{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol}), \mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and
$\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added successively. The vial was tightly capped, taken outside the glove box, and the reaction mixture was stirred until the reaction was complete as monitored by TLC (8 h). The resulting reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution, extracted with ethyl acetate, washed with water and brine, and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under the reduced pressure to afford the free 1-naphthylamine crude product, which was used directly without further purification for the next step.

To a solution of the above crude 1-naphthylamine in THF $(5 \mathrm{~mL})$ was added NaHCO_{3} ($30.2 \mathrm{mg}, 0.36 \mathrm{mmol}$) under air, then the reaction mixture was cooled down to $0{ }^{\circ} \mathrm{C}$, and $\mathrm{ClCO}_{2} \mathrm{Bn}(50.7 \mu \mathrm{~L}, 0.36 \mathrm{mmol})$ was added. The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature for 10 h . Then the mixture was quenched with water, extracted with ethyl acetate, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=8 / 1$ to $6 / 1$) followed by recycling preparative HPLC to afford the product 2-OAc in 19% overall yield (31.1 mg) as a light yellow oil. ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$) $\delta 1.05(\mathrm{~s}, 12 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 4.99(\mathrm{~s}, 2 \mathrm{H}), 7.18(\mathrm{bs}, 2 \mathrm{H})$, $7.25-7.36(\mathrm{~m}, 8 \mathrm{H}), 7.59-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 8.75 (bs, 1H). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$) $\delta 20.13,24.07,65.13,83.26,121.50$, $123.46,125.76,126.30,126.65,126.96,127.01,127.23,127.33,127.83,128.12,129.11$, $132.49,136.73,139.02,140.94,148.63,154.78,168.68$. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 3298, 2979, 2923, 1766, 1709, 1360, 1328, 1221, 1200, 1143, 761, $700 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{32} \mathrm{H}_{36}{ }^{10} \mathrm{BN}_{2} \mathrm{O}_{6}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 554.2697$, found 554.2693.

Copper-catalyzed reaction of N-(cyanomethyl)-4-methyl- N-(3-phenylprop-2-ynyl)-

 benzenesulfonamide (13) with bis(pinacolato)diboron.

In a nitrogen-filled glove box, to a screw-cap vial (4 mL) equipped with a magnetic stir bar were added N-linkered alkyne-nitrile $\mathbf{1 3}^{3}(97.3 \mathrm{mg}, 0.3 \mathrm{mmol})$, toluene (1.5 mL) and DBU ($4.5 \mu \mathrm{~L}, 0.03 \mathrm{mmol}$), and stirred for 1 min . Then $\mathrm{B}_{2} \mathrm{pin}_{2}(91.4 \mathrm{mg}, 0.36 \mathrm{mmol})$, $\mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol}), \operatorname{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{KO}^{t} \mathrm{Bu}(1.7 \mathrm{mg}, 0.015 \mathrm{mmol})$ were added successively. The vial was tightly capped, taken outside the glove box, and stirred at room temperature for 36 h . Then the resulting mixture was diluted with ethyl acetate, washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate $=6 / 1$). The products contain starting material 13 (59\% NMR yield) and 14 (7\% NMR yield), which could not be separated from each other by column chromatography. Further separation by Recycling Preparative HPLC was then performed, and $\mathbf{1 4}$ was isolated in 4\% yield which contained a small amount of impurity.

Copper-catalyzed hydroborylation of N-(cyanomethyl)-4-methyl- N-(3-phenylprop-2-ynyl)-benzenesulfonamide (13).

To further confirm the structure of compound $\mathbf{1 4}$, hydroborylation of $\mathbf{1 3}$ was also carried out. The NMR spectra of the resulting product $\mathbf{1 4}$ was identical to that obtained by above reaction.

In a nitrogen-filled glove box, to a screw-cap vial (4 mL) equipped with a magnetic stir bar were added $\mathrm{CuCl}(1.5 \mathrm{mg}, 0.015 \mathrm{mmol})$, $\mathrm{dppf}(8.3 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathrm{KO}^{t} \mathrm{Bu}(3.4$
$\mathrm{mg}, 0.03 \mathrm{mmol})$ and toluene $(1.5 \mathrm{~mL})$, and stirred for 2 min . Then $\mathrm{B}_{2} \mathrm{pin} 2(91.4 \mathrm{mg}, 0.36$ mmol) was added, the resulting mixture was stirred for 2 min before N-linkered alkyne-nitrile $\mathbf{1 3}$ ($97.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) was added. The vial was tightly capped and taken outside the glove box. $\mathrm{CH}_{3} \mathrm{OH}(19.2 \mathrm{mg}, 0.6 \mathrm{mmol})$ was then added, and the resulting mixture was stirred at room temperature for 36 h . The mixture was filtered through a pad of silica gel. Then the solvent was evaporated under the reduced pressure and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/ethyl acetate $=10 / 1$ to $8 / 1$) to afford the title product $14 \mathrm{in} 62 \%$ yield (84.6 mg) as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.30(\mathrm{~s}, 12 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 4.09(\mathrm{~s}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.38$ $(\mathrm{m}, 7 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 21.50,24.67,35.99,45.97$, 84.03, 114.14, 127.76, 128.08, 128.28, 129.11, 129.67, 134.01, 135.97, 144.14, 147.30. The carbon directly attached to the boron atom was not detected, likely due to quadrupolar broadening. IR (film): 2976, 2923, 1613, 1594, 1354, 1323, 1162, $1143,1091,861,814$, $750,658 \mathrm{~cm}^{-1}$. HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{33}{ }^{10} \mathrm{BN}_{3} \mathrm{O}_{4} \mathrm{~S}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}: 469.2316$, found 469.2312 .

References:

1) You, X.; Xie, X.; Chen, H.; Li, Y.; Liu, Y. Chem. Eur. J. 2015, 21, 18699.
2) Zhang, X.; Xie, X.; Liu, Y. Chem. Sci. 2016, 7, 5815.
3) You, X.; Xie, X.; Wang, G.; Xiong, M.; Sun, R.; Chen, H.; Liu, Y. Chem. Eur. J. 2016, 22, 16765.
4) Grolleau, J.; Gohier, F.; Allain, M.; Legoupy, S.; Cabanetos, C.; Frère, P. Organic Electronics, 2017, 42, 322.
5) Cade, I. A.; Ingleson, M. J. Chem. Eur. J. 2014, 20, 12874.

Figure S1. X-ray crystal structure of compound $\mathbf{2 k}$

Figure S2. X-ray crystal structure of compound 2v,

Figure S3. X-ray crystal structure of compound 5
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1b

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1e F
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

\%	+		$\stackrel{\circ}{-}$					\|		

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$1 i$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$1 / 00 \int_{1 / 01}^{0.97} \int_{0.95}^{9.98} \quad 9^{9.93}$

1h Wll
12
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

		$\left.\right\|_{i} ^{\text {®. }}$				$\underbrace{\circ}$		¢	$\stackrel{0}{\infty}$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

	-	\%	

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 LLLLLLLUUU|NHHUNUUU

10
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1p

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

n

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1w

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2a

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200
150
100
50
0 PPI
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

2j
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

200
150
100
50
1
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

21
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

20

200
150
100
50
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

2q

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

2t

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$)

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}\right.$, DMSO- $d_{6}, 80{ }^{\circ} \mathrm{C}$)

$2 \mathbf{u}^{\prime}$

${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$)

${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- $d_{6}, 80{ }^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$)

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}\right.$, DMSO- $d_{6}, 80^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$3 a$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\stackrel{\substack{\stackrel{\circ}{\circ} \\ \stackrel{\circ}{\circ}}}{\Gamma^{\circ}}$

3a

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

OTBS

$4 a$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$4 a-d$

 .
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$)

${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$)

2-OAc

${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- $d_{6}, 80^{\circ} \mathrm{C}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

14

[^0]: ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-4.92,-4.37,18.28,25.76,63.65,84.87,93.07,110.41$,

