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General Procedures

All commercial reagents were purchased and used as received without further purification.
K,PtCl, was purchased from Aldrich Chemical. "BusNBr and Cul were purchased from Aldrich
Chemical. Silica gel (40-60um) was purchased from Agela Technologies. Solvents toluene (low
water) and THF were purchased from J. T. Baker and Aldrich respectively. 2-Bromopyridine was
purchased from Alfa Aesar. 2-Bromo-4-tert-butylpyridine was purchased from AfferChem, Inc.
2-Bromo-4-methylpyridine, 2-bromo-5-methylpyridine and 2-bromo-4-(trifluoromethyl)pyridine
were purchased from Matrix Scientific. 2-Bromo-6-methylpyridine was purchased from
Oakwood Products, Inc. 2-Chloro-4-iodopyridine was purchased from Ark Pharm, Inc.

'H NMR spectra were recorded at 400 MHz, **C NMR NMR spectra were recorded at 100 or
125 MHz on Varian Liquid-State NMR instruments in DMSO-ds solutions and chemical shifts
were referenced to residual protiated solvent. *H NMR spectra were recorded with residual H,O
(8 = 3.33 ppm in DMSO-dg; 5 = 1.52 ppm in CD,Cl,) as internal reference; *C NMR spectra
were recorded with DMSO-ds (8 = 39.52 ppm) or CD,Cl; (6 = 53.84 ppm) as internal reference.
F NMR spectra was referenced to PhCF3 in Cg¢Dg (5 = -65.00 ppm) as external standard. The
following abbreviations (or combinations thereof) were used to explain *H NMR ultiplicities: s =
singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. Mass spectra were recorded
on Shimadzu Biotech Axima Performance MALDI-TOF mass spectrometer. The Microanalysis
Laboratory at Shanghai Institute of Organic Chemistry performed the elemental analysis. Density
functional theory (DFT) caculations were performed using the Titan software package (wave
function, Inc.) at the B3LYP/LACVP** |evel.

Steady state emission experiments at room temperature were performed on a Horiba Jobin

Yvon FluoroLog-3 spectrometer.
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Experimental Procedures
Synthesis of Ligand ON1:

cat. Cul/L /F( N
K,CO3 HBr (48%) N,N
N
Dioxane reﬂux 19h
110°C, 3.5d 96%
59% OH
1
10% Cul B
50% 1-methyl-1H-imidazole
N Toluene, 120 °C
H 4-6 days 74 Rl
99% SN
N }\I / cat. Cul/L / ,\N
N _ KO,
DMSO
O 90-100 °C, 6 d
OH Br 96%

Synthesis of 1-(3-methoxyphenyl)-3,5-dimethyl-1H-pyrazole A:

/

\

N

Z/
g

2

QZ

(6]
Ligand ON1

N

/N

N
©\0Me

A mixture of 1-iodo-3-methoxybenzene (7.15 mL, 60 mmol, 1.0 eq), 3,5-dimethyl-1H-pyrazole
(6.92 g, 72 mmol, 1.2 eq), Cul (0.46 g, 2.4 mmol, 0.04 eq), K,CO3 (17.41 g, 126 mmol, 2.1 eq),
trans-1,2-cyclohexanediamine (1.37 g, 12 mmol, 0.2 eq) and solvent dioxane (45 mL) was stirred
at a temperature of 110 °C for 3.5 days under a nitrogen atmosphere, then cooled down to
ambient temperature. The solid was filtered off and washed with ethyl acetate. The filtrate was
concentrated under reduced pressure and the residue was purified through column
chromatography on silica gel using hexane and ethyl acetate (10:1-3:1) as eluent to obtain the
desired product 1-(3-methoxyphenyl)-3,5-dimethyl-1H-pyrazole A as a brown liquid 7.12 g in
59% yield. '"H NMR (DMSO-dg, 400 MHz): & 2.18 (s, 3H), 2.30 (s, 3H), 3.80 (s, 3H), 6.06 (s,
1H), 6.95 (dd, J = 8.0, 2.4 Hz, 1H), 7.02-7.06 (m, 2H), 7.39 (t, J = 8.0 Hz, 1H).

Synthesis of 3-(3,5-dimethyl-1H-pyrazol-1-yl)phenol 1:
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A solution of 1-(3-methoxyphenyl)-3,5-dimethyl-1H-pyrazole A (7.10 g, 35.11 mmol) in
hydrogen bromide acid (45 mL, 48%) refluxed (110-120 °C) for 19 hours under a nitrogen
atmosphere. Then the mixture was cooled down to ambient temperature and neutralized with a
solution of K,COg3 in water until there was no gas to generate. Then the precipitate was filtered
off and washed with water for several times. The collected solid was dried in air under reduced
pressure to afford the product as a brown solid 6.33 g in 96% yield. 'H NMR (DMSO-ds, 400
MHz): 6 2.16 (s, 3H), 2.28 (s, 3H), 6.04 (s, 1H), 6.75-6.77 (m, 1H), 6.86-6.89 (m, 2H), 7.26 (t, J
= 8.0 Hz, 1H), 9.73 (s, 1H). *C NMR (DMSO-ds, 100 MHz): & 12.29, 13.30, 107.07, 111.10,
113.94, 114.43, 129.71, 138.95, 140.70, 147.57, 157.84.

Improved synthesis of 2-bromo-9-(pyridin-2-yl)-9H-carbazole 2:

A mixture of 2-bromocarbazole (3.91 g, 15.89 mmol, 1.0 eq), 2-bromopyridine (4.55 mL, 47.68
mmol, 3.0 eq), Cul (0.30 g, 1.59 mmol, 0.1 eq), K,CO3 (4.39 g, 31.78 mmol, 2.0 eq), 1-methyl-
1H-imidazole (0.63 mL, 7.95 mmol, 0.5 eq) and toluene (60 mL) was stirred at a temperature of
120 °C for 4-6 days under a nitrogen atmosphere, then cooled down to ambient temperature. The
reaction was monitored by TLC until the starting material 2-bromocarbazole was consumed
completely. The solid was filtered off and washed with ethyl acetate. The filtrate was
concentrated under reduced pressure and the excess 2-bromopyridine was also distillated under
reduced pressure at high temperature. The residue was purified through column chromatography
on silica gel using dichloromethane as eluent to obtain the desired product as a white solid 5.10 g
in 99% yield. *H NMR (DMSO-dg, 400 MHz): 6 7.37 (t, J = 8.0 Hz, 1H), 7.49-7.55 (m, 3H), 7.78
(d, J = 8.0 Hz, 1H), 7.83 (d, J = 8.4Hz, 1H), 7.99 (d, J = 1.6 Hz, 1H), 8.16 (td, J = 8.0, 2.0 Hz,
1H), 8.24 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 7.6 Hz, 1H), 8.77 (dd, J = 5.2, 1.2 Hz, 1H). This H
NMR data is in agreement with the reported literature®. It should be noted that the starting
material 2-bromocarbazole must be consumed completely and the excess must be removed from

the mixture, because it is difficult to separate from the product through column chromatography.
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Synthesis of 2-(3-(3,5-dimethyl-1H-pyrazol-1-yl)phenoxy)-9-(pyridin-2-yl)-9H-carbazole

Ligand ON1:
T

N N O
sWe'

Ligand ON1
To a dry pressure vessel equipped with a magnetic stir bar, added 3-(3,5-dimethyl-1H-pyrazol-1-
yl)phenol 2 (1.27 g, 6.75 mmol, 1.0 eq), 2-bromo-9-(pyridin-2-yl)-9H-carbazole 3 (2.62 g, 8.10
mmol, 1.2 eq), Cul (0.13 g, 0.675 mmol, 0.1 eq), picolinic acid (0.17 g, 1.35 mmol, 0.2 eq),
K3PO4 (2.87 g, 13.50 mmol, 2.0 eq) and DMSO (20 mL). The mixture was bubbled with nitrogen
for 30 minutes and then vessel was sealed. The mixture was stirred in an oil bath at a temperature
of 90-100°C for 6 days, then cooled down to ambient temperature. Diluted with ethyl acetate. The
solid was filtered off and washed with much ethyl acetate. The filtrate was then washed with
water for three time and then dried over sodium sulfate. Filtered and the solvent was removed
under reduced pressure, the residue was purified through column chromatography on silica gel
using hexane/ethyl acetate (10:1-3:1-2:1) as eluent to obtain the desired product as a colorless
sticky liquid 2.80 g in 96% yield. *"H NMR (DMSO-ds, 400 MHz): & 2.11 (s, 3H), 2.24 (s, 3H),
6.01 (s, 1H), 7.02-7.04 (m, 1H), 7.07-7.11 (m, 2H), 7.21-7.24 (m, 1H), 7.33 (t, J = 7.6 Hz, 1H),
7.41-7.48 (m, 3H), 7.53 (d, J = 2.4 Hz, 1H), 7.76 (d, J = 8.8 Hz, 2H), 8.07 (td, J = 7.6, 2.0 Hz,
1H), 8.21 (d, J = 8.0 Hz, 1H), 8.27 (d, J = 8.4 Hz, 1H), 8.66-8.68 (m, 1H). *C NMR (DMSO-ds,
100 MHz): & 12.21, 13.23, 102.42, 107.48, 111.10, 113.25, 113.32, 116.26, 118.25, 119.04,
120.03, 120.19, 121.25, 121.79, 122.13, 123.24, 125.98, 130.41, 139.24, 139.34, 139.51, 139.92,
140.93, 148.08, 149.52, 150.45, 154.77, 157.93.

Synthesis of 2-bromo-N,N-dimethylpyridin-4-amine®*:

\N/
»
I
- ,L\/\ 40"Buli 1.0 N7 2.5CBry H,0 @
. -~
OH hexar;e 0°C,1h  -78°C, 20min N” O Br
-5-0°C then 0°C, 1.5 h

30 min
2-(Dimethylamino)ethanol (2.1 mL, 20.0 mmol, 2.0 eq) and hexane (25 mL) were added to a

three-necked flask equipped with a magnetic stir bar under nitrogen. The mixture was then cooled
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to -5 — 0 °C and "BuLi (16 mL, 40.0 mmol, 4.0 eq, 2.5 M in hexane) was added dropwise. After
stirring for 30 minutes, N,N-dimethylpyridin-4-amine (1.22 g, 10.0 mmol, 1,0 eq) was added. The
mixture was stirred at 0 °C for 1 hour, then cooled down to -78 °C in dry ice-acetone bath and
CBry4 (8.29 g, 25.0 mmol, 2.5 eq) was added. Then the temperature raised to 0 °C in 1.5 hours and
quenched with water (50 mL). The organic layer was separated and the aqurous alyer was
extracted with dichloromethane for three times. The organic layer was combined together, dried
over sodium sulphate. Filtered and the solvent was removed under reduced pressure, the residue
was purified through column chromatography on silica gel using hexane/ethyl acetate (2:1-1:1) as
eluent to obtain the desired product as a brown solid 832 mg in 41% yield. *H NMR (DMSO-ds,
400 MHz): & 2.96 (s, 6H), 6.64 (dd, J = 6.0, 2.4 Hz, 1H), 6.72 (d, J = 2.8 Hz, 1H), 7.86 (d, J = 6.0
Hz, 1H).

Synthesis of 2-chloro-4-phenylpyridine:

' B(OH), 2% Pd(dppf)Cl,CH,Cl,

| X . 3.0 K,COy
~ THF/H,0, reflux, 5h | N
N™ Cl 98% P

Nl
2-Chloro-4-iodopyridine (7.18 g, 30.0 mmol, 1.0 eq), phenylboronic acid (4.02 g, 33.0 mmol, 1.1
eq), Pd(dppf)Cl,CH.CI, (0.49 g, 0.6 mmol, 0.02 eq) and K,COj3 (12.44 g, 90.0 mmol, 3.0 eq)
were added to a three-necked flask equipped with a magnetic stir bar. The flask was evacuated
and backfilled with nitrogen, this evacuation and backfill procedure was repeated for another
twice. Then THF (60 mL) and H,O (15 mL) were added under nitrogen. The mixture refluxed for
5 hours and TLC monitored that the starting material 2-chloro-4-iodopyridine was consumed
completely. Then water (40 mL) was added and the organic layer was separated. The aqurous
layer was extracted with ethyl acetate twice. The organic layer was combined together, dried over
sodium sulphate. Filtered and the solvent was removed under reduced pressure, the residue was
purified through column chromatography on silica gel using hexane/ethyl acetate (10:1) as eluent
to obtain the desired product as a yellow solid 5.56 g in 98% vyield. *H NMR (DMSO-ds, 400
MHz): & 7.52-7.54 (m, 3H), 7.76 (d, J = 4.8 Hz, 1H), 7.85 (br, 3H), 8.47 (d, J = 4.8 Hz, 1H).

Synthesis of 9-(2-chloropyridin-4-yl)-9H-carbazole:
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10% Cul
I H 20% L-proline
<, ‘ 2.0 K,CO;3 N
| Q DMSO

N~ Tl 90-100 °C, 3 d | N

85% N~ >cl

A mixture of 2-chloro-4-iodopyridine (700 mg, 2.92 mmol, 1.2 eq), carbazole (407 mg, 2.43
mmol, 1.0 eq), Cul (46 mg, 0.24 mmol, 0.1 eq), K,CO;3 (671 mg, 4.86 mmol, 2.0 eq), L-proline
(56 mg, 0.49 mmol, 0.2 eq) in DMSO (10 mL) was stirred at a temperature of 90-100 °C for 3
days under a nitrogen atmosphere and then cooled down to ambient temperature. The mixture
was diluted with a plenty of ethyl acetate, and then washed with water three times. The organic
layer was separated and dried over sodium sulphate. The solid was filtered off and washed with
ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified
through column chromatography on silica gel using hexane and ethyl acetate (10:1-5:1) as eluent
to obtain the desired product as a colorless sticky liquid 565 mg in 83% vyield. *H NMR (DMSO-
de, 400 MHz): & 7.39 (t, J = 7.6 Hz, 2H), 7.52 (dd, J = 8.0, 0.8 Hz, 2H), 7.66 (d, J = 8.4 Hz, 2H),
7.83 (dd, J =5.6, 0.8 Hz, 1H), 7.94 (d, J = 2.0 Hz, 1H), 8.29 (d, J = 8.0 Hz, 2H), 8.69 (d, J = 5.6
Hz, 1H).

General procedure for the synthesis of ligands with a substitute on the pyridine ring:

(:/R R =4-NMe, 88% (Ligand ON1-NMe,)
4% Pd;(dba)z Y N R = 4-(9-carbazolyl) 97% (Ligand ON1-Cz)
N N R =4-Me 94% (Ligand ON1-Me)

N 8% JohnPhos N
+ Lo ‘ _ 16'BuONa _ N O R = 5-Me 94% (Ligand ON1-mMe)
X Tquene/D|oxane R = 6-Me 88% (Ligand ON1-oMe)
X=Br,Cl 95-105°C, 2d O R =4-Bu 94% (Ligand ON1-tBu)
(0]

R =4-Ph 95% (Ligand ON1-Ph)
Ligands R = 4-CF; 96% (Ligand ON1-CFj3)

To a dry pressure Schlenk tube equipped with a magnetic stir bar, added 2-(3-(3,5-dimethyl-1H-
pyrazol-1-yl)phenoxy)-9H-carbazole 5 (1.0 eq, 5 was prepared according our reported
literature.>®), 2-bromo(chloro)pyridin derrivative (1.2-2.0 eq, if it is a solid), Pdx(dba); (0.04 eq),
JohnPhos (0.08 eq) and '‘BuONa (1.6 eq). The tube was evacuated and back-filled with nitrogen
and this evacuation/back-fill procedure was repeated for another twice. Then the solvents toluene
(4 mL/mmol 5), dioxane (4 mL/mmol 5) and 2-bromo(chloro)pyridin derrivative (1.2-2.0 eq, if it
is a liquid) were added under the protection of nitrogen. The tube was sealed and the mixture was
stirred in an oil bath at a temperature of 95-105°C for 2 days. Then the mixture was cooled down

to ambient temperature. The solvent was removed under reduced pressure and the residue was
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purified through column chromatography on silica gel using hexane/ethyl acetate as eluent to

obtain the desired product.

\
N—

N N O
oL
Ligand ON1-NMe,

2-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenoxy)-9H-carbazole 5 (530 mg, 1.5 mmol, 1.0 eq)
reacted with 2-bromo-4-N,N-dimethylaminopyridine (362 mg, 1.8 mmol, 1.2 eq) as the general
procedure. Purification of the crude product by flash chromatography on silica gel (eluent:
hexane/ethyl acetate = 3:1-2:1-1:1) afforded the title compound as a colorless solid 624 mg in
88% yield. ‘H NMR (DMSO-ds, 400 MHz): & 2.10 (s, 3H), 2.23 (s, 3H), 2.94 (s, 6H), 5.99 (s,
1H), 6.63 (dd, J = 6.0, 1.6 Hz, 1H), 6.74 (d, J = 1.6 Hz, 1H), 7.02-7.07 (m, 2H), 7.12 (s, 1H),
7.22 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.37-7.46 (m, 3H), 7.74 (d, J = 8.4 Hz, 1H),
8.15-8.17 (m, 2H), 8.22 (d, J = 2.0 Hz, 1H). *C NMR (DMSO-ds, 100 MHz): § 12.23, 13.22,
38.89, 101.14, 102.07, 105.77, 107.49, 111.33, 112.71, 113.49, 116.46, 118.27, 119.63, 119.99,
120.64, 121.63, 122.92, 125.70, 130.38, 139.21, 139.73, 140.24, 140.97, 148.07, 148.90, 151.08,

154.84, 156.09, 157.86.
,N%

0
“
s

Ligand ON1-Cz

Q.

2-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenoxy)-9H-carbazole 5 (589 mg, 1.66 mmol, 1.0 eq)
reacted with 9-(2-chloropyridin-4-yl)-9H-carbazole (560 mg, 2.0 mmol, 1.2 eq) as the general
procedure. Purification of the crude product by flash chromatography on silica gel (eluent:
hexane/ethyl acetate = 10:1-3:1) afforded the title compound as a brown solid 958 mg in 97%

yield. '"H NMR (DMSO-ds, 400 MHz): § 2.07 (s, 3H), 2.17 (s, 3H), 5.95 (s, 1H), 7.01 (dd, J = 7.6,
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2.4 Hz, 1H), 7.06-7.09 (m, 2H), 7.15-7.18 (m, 1H), 7.27-7.32 (m, 3H), 7.35-7.43 (m, 4H), 7.67 (d,
J=8.4Hz, 2H), 7.72 (d, J = 2.0 Hz, 1H), 7.75 (dd, J = 5.6, 2.0 Hz, 1H), 7.89 (d, J = 8.8 Hz, 1H),
7.91 (d, J = 2.0 Hz, 1H), 8.17-8.21 (m, 3H), 8.24 (d, J = 8.8 Hz, 1H), 8.87 (d, J = 5.6 Hz, 1H).
13C NMR (DMSO-ds, 100 MHz): § 12.16, 13.21, 103.03, 107.44, 110.16, 111.38, 113.08, 113.63,
115.07, 116.06, 118.16, 118.73, 120.21, 120.33, 120.65, 121.18, 121.45, 121.76, 123.49, 123.63,
126.08, 126.57, 130.35, 138.94, 139.16, 139.38, 140.04, 140.93, 147.11, 148.04, 151.38, 152.44,
154.68, 158.04.

\

N/

‘N
Ligand ON1-Me

2-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenoxy)-9H-carbazole 5 (530 mg, 1.5 mmol, 1.0 eq)
reacted with 2-bromo-4-methylpyridine (387 mg, 2.25 mmol, 1.5 eq) as the general procedure.

N
QL

Purification of the crude product by flash chromatography on silica gel (eluent: hexane/ethyl
acetate = 10:1-4:1) afforded the title compound as a colorless solid 628 mg in 94% yield. 'H
NMR (DMSO-dg, 400 MHz): & 2.14 (s, 3H), 2.28 (s, 3H), 2.46 (s, 3H), 6.05 (s, 1H), 7.06 (dd, J
= 8.0, 2.4 Hz, 1H), 7.09-7.13 (m, 2H), 7.26 (dt, J = 8.0, 1.2 Hz, 1H), 7.31 (d, J = 5.2 Hz, 1H),
7.35(t, J =7.2 Hz, 1H), 7.44-7.52 (m, 3H), 7.61 (s, 1H), 7.78 (d, J = 8.0, 1H), 8.24 (d, J = 8.0 Hz,
1H), 8.29 (d, J = 8.8 Hz, 1H), 8.53 (d, J = 4.8 Hz, 1H). *C NMR (DMSO-ds, 100 MHz): § 12.22,
13.22, 20.58, 102.38, 107.48, 111.18, 113.15, 113.29, 116.34, 118.25, 119.48, 119.91, 120.15,
121.12, 121.76, 123.14, 123.16, 125.92, 130.39, 139.24, 139.38, 139.98, 140.93, 148.07, 149.07,
150.47, 150.70, 154.79, 157.90.

0,85

Ligand ON1-mMe
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2-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenoxy)-9H-carbazole 5 (353 mg, 1.0 mmol, 1.0 eq)
reacted with 2-bromo-5-methylpyridine (258 mg, 1.5 mmol, 1.5 eq) as the general procedure.
Purification of the crude product by flash chromatography on silica gel (eluent: hexane/ethyl
acetate = 10:1-5:1) afforded the title compound as a colorless solid 420 mg in 94% yield. *H
NMR (DMSO-dg, 400 MHz): 6 2.12 (s, 3H), 2.25 (s, 3H), 2.39 (s, 3H), 6.03 (s, 1H), 7.04 (dd, J
= 8.0, 2.4 Hz, 1H), 7.07-7.11 (m, 2H), 7.23 (dd, J = 8.0, 2.0 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H),
7.41-7.49 (m, 3H), 7.66 (d, J = 8.4 Hz, 1H), 7.71 (d, J = 8.0, 1H), 7.89 (dd, J = 8.0, 2.0 Hz, 1H),
8.22 (d, J = 7.2 Hz, 1H), 8.27 (d, J = 8.0 Hz, 1H), 8.50 (d, J = 2.0 Hz, 1H). *C NMR (DMSO-ds,
125 MHz): 6 12.21, 13.23, 17.48, 102.16, 107.49, 110.95, 113.14, 113.26, 116.28, 118.26, 118.64,
119.87, 120.19, 121.04, 121.80, 123.07, 125.92, 130.42, 131.64, 139.25, 139.49, 139.79, 140.05,
140.92, 148.09, 148.10, 149.50, 154.74, 157.95.

.
O
Ligand ON1-0Me

2-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenoxy)-9H-carbazole 5 (475 mg, 1.34 mmol, 1.0 eq)
reacted with 2-bromo-6-methylpyridine (461 mg, 2.68 mmol, 2.0 eq) as the general procedure.
Purification of the crude product by flash chromatography on silica gel (eluent: hexane/ethyl
acetate = 10:1-5:1) afforded the title compound as a brown solid 526 mg in 88% yield. *H NMR
(DMSO-dg, 400 MHz): & 2.11 (s, 3H), 2.24 (s, 3H), 2.48 (s, 3H), 6.02 (s, 1H), 7.07 (td, J = 8.0,
2.4 Hz, 2H), 7.14 (t, J = 2.0 Hz, 1H), 7.24-7.29 (m, 2H), 7.32 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.2
Hz, 1H), 7.48 (t, J = 8.0 Hz, 1H), 7.51 (d, J = 2.0, 1H), 7.54 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0
Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 8.20 (d, J = 7.6 Hz, 1H), 8.25 (d, J = 8.0 Hz, 1H). **C NMR
(DMSO-ds, 100 MHz): & 12.23, 13.23, 23.82, 102.00, 107.51, 111.15, 112.98, 113.68, 115.74,

116.72, 118.42, 119.75, 120.14, 121.13, 121.28, 121.71, 123.23, 125.88, 130.42, 139.23, 139.30,
139.60, 139.93, 140.97, 148.10, 149.75, 155.13, 157.62, 158.34.
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Ligand ON1-tBu

Ligand ON1tBu was prepared according our reported literature.®* 2-(3-(3,5-Dimethyl-1H-
pyrazol-1-yl)phenoxy)-9H-carbazole 5 (530 mg, 1.5 mmol, 1.0 eq) reacted with 2-bromo-4-tert-
butylpyridine (642 mg, 3.0 mmol, 2.0 eq) as the general procedure. Purification of the crude
product by flash chromatography on silica gel (eluent: hexane/ethyl acetate = 10:1-5:1) afforded
the title compound as a brown solid 685 mg in 94% yield. '"H NMR (DMSO-ds, 400 MHz): &
1.26 (s, 9H), 2.11 (s, 3H), 2.23 (s, 3H), 6.00 (s, 1H), 7.06-7.08 (m, 1H), 7.10 (dd, J = 8.0, 2.4 Hz,
1H), 7.14 (t, J = 2.4 Hz, 1H), 7.24-7.26 (m, 1H), 7.31 (t, J = 7.2 Hz, 1H), 7.38 (d, J = 2.0 Hz, 1H),
7.41-7.48 (m, 3H), 7.61 (d, J = 1.6, 1H), 7.74 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.0 Hz, 1H), 8.26
(d, J = 8.8 Hz, 1H), 8.55 (d, J = 4.8 Hz, 1H). *C NMR (DMSO-dg, 100 MHz): § 12.21, 13.22,
30.01, 34.81, 101.37, 107.50, 111.11, 113.01, 113.81, 115.78, 116.80, 118.49, 119.27, 119.72,
120.13, 121.11, 121.83, 123.20, 125.90, 130.45, 139.19, 139.43, 139.94, 141.01, 148.07, 149.37,
150.60, 155.32, 157.50, 163.03.

Ligand ON1-Ph
2-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenoxy)-9H-carbazole 5 (530 mg, 1.5 mmol, 1.0 eq)
reacted with 2-chloro-4-phenylpyridine (342 mg, 1.8 mmol, 1.2 eq) as the general procedure.
Purification of the crude product by flash chromatography on silica gel (eluent: hexane/ethyl
acetate = 10:1-5:1-3:1) afforded the title compound as a brown solid 725 mg in 95% yield. *H
NMR (DMSO-dg, 400 MHz): 8 2.13 (s, 3H), 2.25 (s, 3H), 6.04 (s, 1H), 7.10 (dd, J = 8.0, 2.4 Hz,
1H), 7.12-7.15 (m, 2H), 7.25-7.27 (m, 1H), 7.37 (t, J = 7.6 Hz, 1H), 7.46-7.57 (m, 6H), 7.79 (dd,
J=4.8,1.6, 1H), 7.85-7.88 (m, 3H), 8.00 (d, J = 0.4 Hz, 1H), 8.26 (d, J = 7.6 Hz, 1H), 8.31 (d, J

= 8.8 Hz, 1H), 8.74 (d, J = 5.2 Hz, 1H). *C NMR (DMSO-dg, 100 MHz): § 12.19, 13.21, 102.13,
s11



107.49, 111.22, 113.20, 113.58, 116.14, 116.49, 118.33, 119.73, 119.95, 120.14, 121.23, 121.77,
123.29, 126.01, 127.10, 129.20, 129.62, 130.37, 136.62, 139.19, 139.44, 140.01, 140.98, 148.06,
150.08, 150.46, 151.29, 155.08, 157.76.

CF3

N N O
L
Ligand ON1-CF5
2-(3-(3,5-Dimethyl-1H-pyrazol-1-yl)phenoxy)-9H-carbazole 5 (707 mg, 2.0 mmol, 1.0 eq)
reacted with 2-bromo-4-(trifluoromethyl)pyridine (904 mg, 4.0 mmol, 2.0 eq) as the general
procedure. Purification of the crude product by flash chromatography on silica gel (eluent:
hexane/ethyl acetate = 10:1-5:1) afforded the title compound as a brown solid 962 mg in 96%
yield. *H NMR (DMSO-ds, 400 MHz): & 2.13 (s, 3H), 2.26 (s, 3H), 6.04 (s, 1H), 7.08 (dd, J = 8.0,
2.4 Hz, 1H), 7.12-7.15 (m, 2H), 7.25-7.27 (m, 1H), 7.38 (t, J = 7.6 Hz, 1H), 7.48 (t, J = 8.0 Hz,
2H), 7.58 (d, J = 1.6 Hz, 1H), 7.81-7.83 (m, 2H), 8.10 (s, 1H), 8.25 (d, J = 7.6 Hz, 1H), 8.30 (d, J
= 8.8 Hz, 1H), 8.95 (d, J = 4.8 Hz, 1H). **C NMR (DMSO-ds, 100 MHz): & 12.16, 13.18, 102.47,
107.46, 111.09, 113.43, 113.71, 114.52 (q, J = 3.9 Hz), 116.37, 117.37 (q, J = 2.7 Hz), 118.32,
120.25, 121.77,121.81, 122.55 (q, J = 272.5 Hz), 123.59, 126.16, 130.35, 139.09, 139.19, 139.56
(9, J = 34.7 Hz), 139.73, 140.98, 148.06, 151.32, 151.53, 155.05, 157.75. °F NMR (DMSO-ds,
376 MHz): 5 -63.32.

S12



'H NMR spectrum of Ligand ON1 at 400 MHz instrument in DMSO-ds solution:
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3C NMR spectrum of Ligand ON1 at 100 MHz instrument in DMSO-ds solution:
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'H NMR spectrum of Ligand ON1-Cz at 400 MHz instrument in DMSO-ds solution:
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3C NMR spectrum of Ligand ON1-Cz at 100 MHz instrument in DMSO-dg solution:
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'H NMR spectrum of Ligand ON1-Me at 400 MHz instrument in DMSO-ds solution:
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'H NMR spectrum of Ligand ON1-mMe at 400 MHz instrument in DMSO-ds solution:
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'H NMR spectrum of Ligand ON1-0Me at 400 MHz instrument in DMSO-dg solution:
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'H NMR spectrum of Ligand ON1-tBu at 400 MHz instrument in DMSO-dg solution:
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'H NMR spectrum of Ligand ON1-Ph at 400 MHz instrument in DMSO-ds solution:
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'H NMR spectrum of Ligand ON1-CF; at 400 MHz instrument in DMSO-dg solution:
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F NMR spectrum of Ligand ON1-CF3 at 376 MHz instrument in DMSO-ds solution:
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3C NMR spectrum of PtON1 at 100 MHz instrument in DMSO-ds solution:
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3C NMR spectrum of PtON1 at 100 MHz instrument in CD,Cl, solution:
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3C NMR spectrum of PtON1-Cz at 100 MHz instrument in DMSO-ds solution:
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'H NMR spectrum of PtON1-Me at 400 MHz instrument in DMSO-ds solution:
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'H NMR spectrum of PtON1-mMe at 400 MHz instrument in CD,Cl, solution:
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/
PtON1-mMe

impurity
M l | A

ELi'rh
BIE)
H

&

|B5'ES
OPR'Es
801'v
0BE'YS

siz00)
5740
04
b
e
SizEl
bEPI
S5
265541
20861 N
ezoz

20822} —

1ee've)
vaivzh—

£5082) —
846z, s
spege)

AT

Shher ———
eoeyl
080 b — 77—
sorarl
szaarl
85475}

£0Z'ES)
ETrEs)

i

W

T
10

T
15

PtONI1-mMe

g

S27



'H NMR spectrum of PtON1-oMe at 400 MHz instrument in CD,Cl, solution:
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'H NMR spectrum of PtON1-tBu at 400 MHz instrument in CD,Cl, solution:>*
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3C NMR spectrum of PtON1-tBu at 100 MHz instrument in CD,Cl, solution:**
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3C NMR spectrum of PtON1-Ph at 100 MHz instrument in DMSO-ds solution:
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3C NMR spectrum of PtON1-CF3 at 100 MHz instrument in CD,Cl, solution:
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Figure S1. Molecular structures for the tertradentate Pt(I1) complexes discussed in this report.

S33



Figure S2: Optimized molecular structure of PtON1 based on the DFT calculation, top-view
(left) and side-view (right)®

Figure S3: Optimized molecular structure of PtON1-NMe; based on the DFT calculation, top-

view (left) and side-view (right)
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Figure S4: Optimized molecular structure of PtON1-Cz based on the DFT calculation, top-

view (left) and side-view (right)

Figure S5: Optimized molecular structure of PtON1-Me based on the DFT calculation, top-

view (left) and side-view (right)
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Figure S6: Optimized molecular structure of PtON1-mMe based on the DFT calculation, top-

view (left) and side-view (right)

Figure S7: Optimized molecular structure of PtON1-oMe based on the DFT calculation, top-

view (left) and side-view (right)
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Figure S8: Optimized molecular structure of PtON1-tBu based on the DFT calculation, top-

view (left) and side-view (right)’

Figure S9: Optimized molecular structure of PtON1-CF; based on the DFT calculation, top-
view (left) and side-view (right)
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Figure S10: Optimized molecular structure of PtON1-Ph based on the DFT calculation, top-

view (left) and side-view (right)

Figure S11: Optimized molecular structures of PtON1-Me (left) and PtON1oMe (right) based
on the DFT calculation, top-view.
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Figure S12: Chemical Structures of PtON1, PtONG6, PtON7 and their derivatives.
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Table S 1: Selected bond lengths (A) for PtON1 and its analoges based on the DFT calculation
and X-ray crystallographic analysis.

Pt complexes Pt-N1(C,) Pt-C, Pt-Cs Pt-Ny4
PtON1 (DFT)> 2.18 1.98 1.98 2.19
PtON1-NMe, (DFT) | 2.18 1.98 1.99 2.18
PtON1-Cz (DFT) 2.18 1.98 1.98 2.18
PtON1-Me (DFT) | 2.18 1.98 1.99 2.18
PtON1-mMe (DFT) | 2.18 1.98 1.99 2.19
PtON1-oMe (DFT) |2.19 1.98 1.98 2.23
PtON1-tBu (DFT)> | 2.18 1.98 1.99 2.18
PtON1-Ph (DFT) 2.18 1.98 1.98 2.18
PtON1-CF; (DFT) | 2.18 1.98 1.98 2.18
PtON6 (DFT)™ 2.18 1.98 1.98 2.18
PtONG6-tBu (DFT)>® | 2.17 1.98 1.98 2.17
PtON7 (DFT)™ 2.08 1.99 2.02 2.19
PtON7-tBu (DFT)>® | 2.08 1.99 2.02 2.19
PtON7-dtb (DFT)*> | 2.08 1.99 2.03 2.19
PtON7-dtb (X-ray)™> | 2.038(4) 1.973(4) 2.012(4) 2.111(3)

(():rlNl N,
9 D

cz/ \Ca

./

Table S2: Selected bond angles (9 for PtON1 and its analoges based on the DFT calculation
and X-ray crystallographic analysis.

N;(Cy)-Pt- N,-Pt- N;(C1)-Pt-

Pt complexes C,-Pt-C; | C3-Pt-N C,-Pt-N
p C, 2 3 3 4 N1(C1) Ca 2 4
PtON1 (DFT)> | 79.09 91.54 89.31 102.10 165.66 168.16
(PE)CI):.’?_I)l'NMeZ 79.03 91.43 88.93 102.53 165.33 169.19
PtON1-Cz (DFT) | 79.09 91.05 88.98 102.45 165.39 168.73
PtON1-Me

(DFT) 78.94 91.63 89.36 102.01 165.98 168.19
PtON1-mMe

(DFT) 79.03 91.58 89.31 102.12 165.75 167.97
PtON1-oMe

(DFT) 78.76 90.69 87.78 105.33 162.21 168.66
Z;CIJ:_IFI)ls-gtBu 79.06 91.57 89.24 102.15 165.74 168.18
PtON1-Ph (DFT) | 79.15 91.53 89.41 101.95 165.73 168.10
PtON1-CF; 79.25 91.55 89.35 101.86 166.15 167.67
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(DFT)
PtON6 (DFT)>® | 79.10 91.14 90.55 100.24 167.20 172.12
Zt;;.'\r'fggtB“ 79.13 9119  |90.40 | 100.39 166.94 172.10
PtON7 (DFT)® | 79.74 80.90  |89.06 | 103.25 164.74 168.89
(P[t)%.Nr;s'gtB” 79.77 80.09  |89.02 |103.11 165.11 168.81
(P[t)%.'\'r;s;dtb 79.58 8078 | 89.06 | 103.40 164.86 169.11
rpggw'dtb (X- 1 80.30(15) | 89.38(16) | 90.54(13) | 101.58(13) | 165.71(14) | 167.68(13)
or N
Cl ! N4
[ }
4 :,
LO
N Nd
N \F'T/ M '
PtON1
‘_
| | 1 ' | ' | ' | | | ! 1
-3.0 2.5 2.0 -1.5 -1.0 05 0.0 0.5 1.0

Potential (V) vs Fc'/Fc
Figure S13: The cyclic voltammogram for PtON1 with the molecular structure inset in the plot.
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Figure S14: The cyclic voltammogram for PtON1-Me with the molecular structure inset in the
plot.
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Figure S15: The cyclic voltammogram for PtON1-oMe with the molecular structure inset in
the plot.
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Figure S16: The cyclic voltammogram for PtON1-NMe, with the molecular structure inset in
the plot.
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Figure S17: The cyclic voltammogram for PtON1-CF3 with the molecular structure inset in the
plot.
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PtON1-tBu

T T T T T T T T T
30 25 20 -15 10 -05 00 05 1.0
Potential (V) vs Fc'/Fc

Figure S18: The cyclic voltammogram for PtON1-tBu with the molecular structure inset in the
plot.

PtON1-Cz
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Figure S19: The cyclic voltammogram for PtON1-Cz with the molecular structure inset in the
plot.
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Figure S20: The cyclic voltammogram for PtON1-Ph with the molecular structure inset in the

pl.ot. :
y I\
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PtON7-dtb
T T . '
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Potential (V) vs Fc'/Fc Title
Figure S21: The cyclic voltammogram for PtON7-dtb with the molecular structure inset in the

plot.
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Figure S22: Absorption spectra (in CH,Cl,) and emission spectra (room temperature in CH,Cl,,
77K in 2-methyl THF) of PtONL1. The T, absorption transition and the chemical structure of
PtON1 are shown in the inset.’
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Figure S23: Absorption spectra (in CH,Cl,) and emission spectra (room temperature in CH,Cl,,
77K in 2-methyl THF) of PtON1-NMe,. The T; absorption transition and the chemical structure
of PtON1-NMe; are shown in the inset.
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Figure S24: Absorption spectra (in CH,Cl,) and emission spectra (room temperature in CH,Cl,,
77K in 2-methyl THF) of PtON1-Cz. The T; absorption transition and the chemical structure of

PtON1-Cz are shown in the inset.
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Figure S25: Absorption spectra (in CH,Cl,) and emission spectra (room temperature in CH,Cl,,
77K in 2-methyl THF) of PtON1-Me. The T; absorption transition and the chemical structure of

PtON1-Me are shown in the inset.
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Figure S26: Absorption spectra (in CH,Cl,) and emission spectra (room temperature in CH,Cl,,
77K in 2-methyl THF) of PtON1-mMe. The T; absorption transition and the chemical structure
of PtON1-mMe are shown in the inset.
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Figure S27: Absorption spectra (in CH,Cl,) and emission spectra (room temperature in CH,Cl,,
77K in 2-methyl THF) of PtON1-oMe. The T; absorption transition and the chemical structure of
PtON1-oMe are shown in the inset.
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Figure S28: Absorption spectra (in CH,Cl,) and emission spectra (room temperature in CH,Cl,,
77K in 2-methyl THF) of PtON1-tBu. The T; absorption transition and the chemical structure of
PtON1-tBu are shown in the inset.?
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Figure S29: Absorption spectra (in CH,Cl,) and emission spectra (room temperature in CH,Cl,,
77K in 2-methyl THF) of PtON1-CF;. The T; absorption transition and the chemical structure of
PtON1-CF; are shown in the inset.
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Figure S30: Absorption spectra (in CH,Cl,) and emission spectra (room temperature in CH,Cl,,
77K in 2-methyl THF) of PtON1-Ph. The T; absorption transition and the chemical structure of

PtON1-Ph are shown in the inset.
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Figure S31: Photoluminescence spectra of PtON1-mMe (left) and PtON1-oMe (right) at room
temperature in CH,CI; (solid lines), doped in PMMA (dotted lines) and 77K in 2-Me-THF (dash-

dotted lines) with the molecular structure of each emitter inset.
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Figure S32: Excitation spectra of PtON1(monitored at 450 nm and 480 nm respectively)
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