Supporting Information

Chiral Discrimination of Diamines by a Binaphthalene Bridged Porphyrin dimer

Wenxin Lu, Huifang Yang, Xinyao Li, Chiming Wang, Xiaopeng Zhan, Dongdong Qi, Yongzhong Bian and Jianzhuang Jiang

Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, University of Science and Technology Beijing, Beijing 100083, China

Content

1. Chemicals and instruments, page S3.
2. Synthetic scheme and characterization, pages S4-S7.
3. UV-Vis spectrophotometric titration, pages S8-S13.
4. CD titration, pages S14 and S15.
5. Molecular modeling, pages S16 and S17.
6. ${ }^{1} \mathrm{H}$ NMR titration, pages S18-S25.
7. CD data of (S)-H1 with chiral 1,2-diamines, page S26.
8. Selected structural parameters from the DFT-optimized structures, page S27.
9. The ${ }^{1} \mathrm{H}$ NMR chemical shift data of free and bound $(R)-/(S)$-PPDA and $(R)-/(S)$-DPEA in the presence of $(S)-\mathbf{H 1}$ in CDCl_{3} at 298 K , pages S 28 and S 29 .
10. Reference, page S30.

Chemicals and Instruments

Column chromatography was carried out on silica gel (200-300 mesh, Qingdao Ocean Chemicals) with the indicated eluent. Toluene and N, N-dimethylformamide (DMF) were freshly distilled from CaH_{2} under nitrogen. 5-(4-hydroxyphenyl)-10,15,20-tris(4-tert-butylphenyl)porphyrin $(\mathrm{Zn}(\mathrm{TTBPP}))^{[\mathrm{S} 1]}$ was prepared according to the published procedures. All other reagents and solvents were used as received.
${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker DPX 400 spectrometer (400 MHz) in CDCl_{3} and the chemical shifts were reported relative to internal SiMe_{4}. MALDI-TOF mass spectra were taken on a Bruker Microflex ${ }^{\text {TM }}$ LRF spectrometer with dithranol as the matrix. Elemental analyses were performed on an Elementar Vavio El III elemental analyzer. Electronic absorption spectra were recorded on a Lambda 750 spectrophotometer. CD spectra were recorded on a JASCO J-1500 spectropolarimeter.

Synthetic scheme of $(R)-/(S)-H 1$.

Figure S1. ${ }^{1} \mathrm{H}$ NMR spectrum of (a) (R)- $\mathbf{H} 1$ and (b) $(S)-\mathbf{H} 1$ in CDCl_{3} at 293 K. * indicate the residual solvent signals.

Figure S2. ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectra of $(S)-\mathbf{H} \mathbf{1}$ in CDCl_{3} at 293 K . * indicate the residual solvent signals.

Figure S3. CD spectra of (S)-H1 (black) and (R)-H1 (red) in CHCl_{3} at 298 K .

UV-Vis Spectrophotometric Titration.

Method for Evaluation of Association Constants ($K_{\text {assoc }}$)
The association constant $K_{\text {assoc }}$ for the $1: 1$ complexes was derived by using the non-linear curve fitting based on the equation:
$\Delta A b s=\left(\mathrm{A}_{\infty}\left(1+K_{\text {assoc }}[\mathrm{G}]+K_{\text {assoc }}[\mathrm{H}]\right)-\left(\mathrm{A}_{\infty}{ }^{2}\left(K_{\text {assoc }}[\mathrm{G}]+K_{\text {assoc }}[\mathrm{H}]+1\right)^{2}-4 K_{\text {assoc }}{ }^{2}[\mathrm{H}] *[\mathrm{G}]\right.\right.$
$\left.\left.\mathrm{A}_{\infty}{ }^{2}\right)^{0.5}\right) / 2 K_{\text {assoc }}[\mathrm{H}]$
Where $[\mathrm{G}]$ and $[\mathrm{H}]$ represent $[\text { Guest }]_{\text {total }}$ and $[\text { Host }]_{\text {totala }}$, respectively; A_{∞} denotes $\Delta A b s$ at 100% complexation; A_{∞} and $K_{\text {assoc }}$ are parameters. ${ }^{[S 2]}$

For the 1:2 complexes, the apparent association constant $K_{\text {assoc }}$ was evaluated from the same equation, but $[\mathrm{H}]=2 *[\text { Host }]_{\text {total }} .{ }^{[\mathrm{S} 2]}$

Figure S4. (a) Spectral change upon titration of $(R)-\mathbf{H 1}$ with (S)-DACH in CHCl_{3} at 298 K . (b) Changes in ΔA at 420 nm for evaluating $K_{\text {assoc }}$, the solid line represents the non-liner least square fit for $1: 1$ complexation. $[(R)-\mathbf{H} 1]=1.0 \times 10^{-6} \mathrm{M}$; (S)-DACH $/[(R)-\mathbf{H 1}]=0-15$.

Figure S5. (a) Spectral change upon titration of $(R)-\mathbf{H 1}$ with (R)-PPDA in CHCl_{3} at 298 K . (b) Changes in ΔA at 420 nm for evaluating $K_{\text {assoc }}$, the solid line represents the non-liner least square fit for $1: 1$ complexation. $[(R)-\mathbf{H} 1]=1.0 \times 10^{-6} \mathrm{M}$; $(R)-\mathrm{PPDA} /[(R)-\mathbf{H} \mathbf{1}]=0-15$.

Figure S6. (a) Spectral change upon titration of (R) - $\mathbf{H 1}$ with (S)-PPDA in CHCl_{3} at 298 K . (b) Changes in ΔA at 420 nm for evaluating $K_{\text {assoc }}$, the solid line represents the non-liner least square fit for $1: 1$ complexation. $[(R)-\mathbf{H} 1]=1.0 \times 10^{-6} \mathrm{M}$; $(S)-\mathrm{PPDA} /[(R)-\mathbf{H 1}]=0-15$.

Figure S7. (a) Spectral change upon titration of (R)-H1 with (R)-DPEA in CHCl_{3} at 298 K . (b) Changes in ΔA at 420 nm for evaluating $K_{\text {assoc }}$, the solid line represents the non-liner least square fit for 1:2 complexation. $[(R)-\mathbf{H 1}]=1.0 \times 10^{-6} \mathrm{M}$; $(R)-\mathrm{DPEA} /[(R)-\mathbf{H 1}]=0-200$.

Figure S8. (a) Spectral change upon titration of (R)-H1 with (S)-DPEA in CHCl_{3} at 298 K . (b) Changes in ΔA at 420 nm for evaluating $K_{\text {assoc }}$, the solid line represents the non-liner least square fit for 1:2 complexation. $[(R)-\mathbf{H} 1]=1.0 \times 10^{-6} \mathrm{M}$; $(S)-\mathrm{DPEA} /[(R)-\mathbf{H 1}]=0-200$.

Figure S9. CD spectral change upon titration of (R)-H1 with (R)-DACH (a) and $(S)-\mathrm{DACH}(\mathrm{b})$ in CHCl_{3} at $298 \mathrm{~K},[(R)-\mathbf{H 1}]=1.0 \times 10^{-6} \mathrm{M} ; \mathrm{DACH} /[(R)-\mathbf{H 1}]=$ $0-100$.

Figure S10. CD spectra of (S)-H1 before (black) and after (red) the addition of: (a) (R)-DACH (20 equiv), (b) (S)-DACH (20 equiv), (c) (R)-PPDA (20 equiv), (d) (S)-PPDA (20 equiv), (e) (R)-DPEA (200 equiv), and (f) (S)-DPEA (200 equiv).

Computational details: DFT calculations on the optimization of geometric molecular structures were performed at DFT method at the B97D/6-31G(D) level using Gaussian 09 (Version D.01) program. ${ }^{[53]}$ The torsion angle (Φ) between the two chromophores is the spatial angel of C15-C5-C5'-C15'. The interchromophoric distance is the distance of $\mathrm{Zn}-\mathrm{Zn}$.

Figure S11. Optimized molecular structures of $(S)-\mathrm{H} 1 \supset(R)$-PPDA and (S)-H1 $\supset(S)$-PPDA by DFT method at the B97D/6-31G(D) level. The torsion angle Φ is the spatial angel of $\mathrm{C} 15-\mathrm{C} 5-\mathrm{C}^{\prime}-\mathrm{C} 15^{\prime}$; the interchromophoric distance is the $\mathrm{Zn}-\mathrm{Zn}$ distance in \AA. .

Figure S12. Optimized molecular structures of $(S)-\mathbf{H 1} @[(R) \text {-DPEA }]_{2}$ and $(S)-H 1 @[(S)-D P E A]_{2}$ by DFT method at the B97D/6-31G(D) level. The torsion angle $\boldsymbol{\Phi}$ is the spatial angel of $\mathrm{C} 15-\mathrm{C} 5-\mathrm{C} 5^{\prime}-\mathrm{C} 15^{\prime}$; the interchromophoric distance is the $\mathrm{Zn}-\mathrm{Zn}$ distance in \AA.

Figure S13. ${ }^{1} \mathrm{H}$ NMR titration spectra of $(S)-\mathbf{H} 1(0.75 \mathrm{mM})$ with (R)-DACH $(0.0-1.0$ equiv, 0.25 equiv additions) at 298 K in CDCl_{3}.

Figure S14. ${ }^{1} \mathrm{H}$ NMR titration spectra of (S)-H1 $(0.75 \mathrm{mM})$ with (S)-DACH $(0.0-1.0$ equiv, 0.25 equiv additions) at 298 K in CDCl_{3}.

Figure S15. ${ }^{1} \mathrm{H}$ NMR titration spectra of $(S)-\mathbf{H} 1(0.75 \mathrm{mM})$ with rac-DACH $(0.0-1.0$ equiv, 0.25 equiv additions) at 298 K in CDCl_{3}.

Figure S16. ${ }^{1} \mathrm{H}$ NMR titration spectra of (S)-H1 $(0.75 \mathrm{mM})$ with (R)-PPDA $(0.0-1.0$ equiv, 0.25 equiv additions) at 298 K in CDCl_{3}.

Figure S17. ${ }^{1} \mathrm{H}$ NMR titration spectra of (S)-H1 $(0.75 \mathrm{mM})$ with (S)-PPDA ($0.0-1.0$ equiv, 0.25 equiv additions) at 298 K in CDCl_{3}.

FigureS 18. Selected region of $400 \mathrm{MHz}{ }^{1} \mathrm{H}$ NMR spectra in the presence of $(S)-\mathbf{H} 1$ (0.75 mM) in CDCl_{3} at 293 K : (a) (S)-PPDA (0.75 equiv); (b) (R)-PPDA (0.75 equiv).

Figure S19. ${ }^{1} \mathrm{H}$ NMR titration spectra of (S)-H1 $(0.75 \mathrm{mM})$ with (R)-DPEA ($0.0-1.0$ equiv, 0.25 equiv additions) at 298 K in CDCl_{3}.

Figure S20. ${ }^{1} \mathrm{H}$ NMR titration spectra of (S)-H1 $(0.75 \mathrm{mM})$ with (S)-DPEA ($0.0-1.0$ equiv, 0.25 equiv additions) at 298 K in CDCl_{3}.

Table S1. CD data of (S)-H1 with chiral 1,2-diamines. ${ }^{\text {a }}$

Compounds	$\lambda(\Delta \varepsilon) \mathrm{nm}\left(\mathrm{mol}^{-1} \cdot \mathrm{~L} \cdot \mathrm{~cm}^{-1}\right)$		$\begin{gathered} \mathrm{A}_{\mathrm{CD}} \\ \left(\mathrm{~mol}^{-1} \cdot \mathrm{~L} \cdot \mathrm{~cm}^{-1}\right) \end{gathered}$
	1st	2nd	
(S)-H1	430 (+200)	420 (-202)	402
$(S)-\mathrm{H} 1 \supset(R)$-DACH	443 (-387)	428 (+349)	-736
$(S)-\mathrm{H} 1 \supset(S)$-DACH	444 (+176)	425 (-203)	379
(S)-H1 $\supset(R)$-PPDA	440 (-294)	427 (+214)	-508
(S)-H1 $\supset(S)$-PPDA	443 (+24)	423 (-52)	76
(S)-H1@ ${ }^{(}(R)$-DPEA $]_{2}$	436 (+106)	423 (-107)	213
(S)-H1@ ${ }^{(}(S)$-DPEA $]_{2}$	435 (+49)	421 (-94)	143

${ }^{\text {a }}$ In $1.0 \times 10^{-6} \mathrm{M} \mathrm{CHCl}_{3}$ solution at $298 \mathrm{~K} ; \lambda$: peak or trough wavelength in nm ; molar extinction coefficients $\Delta \varepsilon=[\theta] / 32982$; total amplitude $\mathrm{A}_{\mathrm{CD}}=\Delta \varepsilon_{1}-\Delta \varepsilon_{2}$ in $\mathrm{mol}^{-1} \cdot \mathrm{~L} \cdot \mathrm{~cm}^{-1}$.

Table S2. Selected structural parameters from the DFT-optimized structures. ${ }^{\text {a }}$

Compound	Torsion angle $\Phi /{ }^{\circ}$	Interchromophoric distance R / \AA
(S)-H1	+ 21.22	3.48
$(S)-\mathrm{H} 1 \supset(R)$-DACH	-43.18	5.42
$(S)-\mathrm{H} 1 \supset(S)$-DACH	+ 42.49	5.50
(S)-H1 $\supset(R)$-PPDA	- 31.73	5.18
(S)-H1 $\supset(S)$-PPDA	+ 50.52	6.10
(S)-H1@ $\left.{ }^{(S R)-D P E A}\right]_{2}$	+ 10.94	4.69
(S)-H1@ ${ }^{(S)}$-DPEA $]_{2}$	+ 23.45	4.41

${ }^{\mathrm{a}} \Phi$ is the spatial angel of $\mathrm{C} 15-\mathrm{C} 5-\mathrm{C} 5$ '-C15'; R is the $\mathrm{Zn}-\mathrm{Zn}$ distance in \AA.

Table S3. The ${ }^{1} \mathrm{H}$ NMR chemical shift (δ, ppm), complexation-induced shift (CIS, $\Delta \delta$, $\mathrm{ppm})$ and chemical shift nonequivalence ($\Delta \Delta \delta, \mathrm{ppm}$) values of free and bound $(R)-/(S)-\operatorname{PPDA}(0.56 \mathrm{mM})$ in the presence of $(S)-\mathbf{H 1}(0.75 \mathrm{mM})$ in CDCl_{3} at 298 K .

Proton	Free $(R)-P P D A$ δ	$(S)-\mathbf{H} 1 \supset(R)-P P D A$ $\delta\left(\Delta \delta_{1}\right)$	$(S)-\mathbf{H} 1 \supset(S)$-PPDA $\delta\left(\Delta \delta_{2}\right)$	$\Delta \Delta \delta$
$\mathbf{N - H}$	1.25	$-6.65(-7.90)$	$-6.56(-7.81)$	0.09
$\mathbf{N - H}$,	1.25	$-7.17(-8.42)$	$-7.47(-8.72)$	0.30
$\mathbf{H}^{\mathbf{1}}$	2.82	$-5.01(-7.83)$	$-4.81(-7.63)$	0.20
$\mathbf{H}^{\mathbf{2}}$	2.78	$-6.00(-8.78)$	$-6.14(-8.92)$	0.14
$\mathbf{H}^{\mathbf{3}}$	2.97	$-5.15(-8.12)$	$-5.41(-8.38)$	0.26
\mathbf{H}^{4}	2.55	$-2.29(-4.84)$	$-2.03(-4.58)$	0.26
$\mathbf{H}^{\mathbf{5}}$	2.49	$-3.41(-5.90)$	$-3.31(-5.80)$	0.10

${ }^{\mathrm{a}} \Delta \delta=\delta_{\text {bound }}-\delta_{\text {free } ;}{ }^{\mathrm{b}} \Delta \Delta \delta=\left|\Delta \delta_{1}-\Delta \delta_{2}\right|$.

Table S4. The ${ }^{1} \mathrm{H}$ NMR chemical shift (δ, ppm) and complexation-induced shift (CIS, $\Delta \delta, \mathrm{ppm})$ values of free and bound $(R)-/(S)$-PPDA $(0.75 \mathrm{mM})$ in the presence of (S)-H1 $(0.75 \mathrm{mM})$ in CDCl_{3} at 298 K .

Proton	Free (R)-DPEA			
δ			Bound (R)-DPEA	
:---:	:---:	:---:		
$\delta\left(\Delta \delta_{1}\right)$	Bound (S)-DPEA			
$\delta\left(\Delta \delta_{2}\right)$				

${ }^{\mathrm{a}} \Delta \delta=\delta_{\text {bound }}-\delta_{\text {free }}$.

Reference:

[S1] Zhang, X. Y.; Li, Y.; Qi, D. D.; Jiang, J. J.; Yan, X. Z.; Bian, Y. Z. J. Phys. Chem.B., 2010, 114, 13143-13151.
[S2] Thordarson, P., Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 2011, 40, (3), 1305-1323
[S3] Frisch M., Trucks G., Schlegel H., Scuseria G., Robb M., Cheeseman J., et al. Gaussian 09, Revision D.01. Wallingford, CT: Gaussian Inc.; 2013.

