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1 Online availability

The original version of BSim is specified in (S1). BSim 2.0 and further information re-

garding details of the structure of a BSim simulation, its key features, and implementation

details including tutorials for generating all the necessary simulation elements (Figure S1)

are available at https://github.com/bsim-bristol/bsim. The full source code of BSim

2.0, including the code required to run the case study simulations presented here, is available

to download at the same URL ( https://github.com/bsim-bristol/bsim). The BSim 2.0

source distribution comes packaged with fully commented example scenarios illustrating in-

dividually, and in combination, all of the features available to the user (to date there are 25

such scenarios available online).

2 Methods and implementation of new features

In this section we expand in further detail the methods used to implement all of the new

features of BSim 2.0 described in the main text.

2.1 Cellular growth mechanics

All cells are simulated as individual agents with capsular geometry, with individual cell radius

rcell. Cell growth (Equation 1) is modelled using a per-cell ordinary differential equation

(ODE) model of rod elongation over time as in (S2)

dL

dt
= kgrowthL

(
1− L
Lmax

)
, (1)

where L is the cell length, kgrowth is the growth rate and Lmax is the limiting length (Table S1).

At the beginning of simulations, cells were initialised with lengths normally distributed about

Linit = 2.25 µm with standard deviation of 10%.

Division occurs once the mother cell has passed a set constant threshold length Ldiv.
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Initial cell length for all simulations was set to 2.25 µm with a maximal division threshold

of 4.5 µm (Table S1). When cells were randomly initialised at the start of simulations that

included growth, the initial cell lengths for individual cells were chosen according to a Normal

distribution centered on 2.25 µm with a variance of 10%.

In the cases where cells were deterministically arranged the cell count was varied from

a minimum of 10 cells in the smallest domain size investigated, to a maximum count such

that the density of cells was effectively maximised for a given domain geometry. Here,

cells’ positions were seeded at t = 0 such that all cells maintained an approximately equal

distance between each other, and the boundaries of the simulation domain (further details

below: ‘static population distributions’).

The elongation rate was chosen such that cell division occurred on average after 25

minutes of growth (normal for E. coli cells, in log phase, growing in a rich medium as would

be the case in a microfluidic chemostat). Upon division, daughter cells’ positions and lengths

were perturbed by a small amount (randomly chosen, with an amplitude between ±3% of

their length) at the location of division in order to break axial symmetry as in (S2).

Table S1: Model parameters for capsular cell morphology, growth and geometric interaction
mechanics.

Description Parameter Value Source

Cell radius rcell 0.5 µm (S2)

Growth rate kgrowth 0.002 s−1 20–25min generation time(S3).
Starting length Linit 2.25 µm (S2)
Limiting length Lmax 2.5× linit µm (S2)
Division threshold Ldiv 2.0linit µm (S2)

Internal spring constant kint 50 (units as Equation 2) Empirically selected.
Cell-cell spring constant kcell 50 (units as Equation 3) Empirically selected.
Cell-geometry spring constant kwall 50 (units as Equation 4) Empirically selected.

2.2 Cell-cell interactions

Cells are represented by capsular volumes, typical of E. coli. Specifically, cells are parametrised

by the two end points (designated x1 and x2) of a line segment along which a sphere of radius

rcell is extruded resulting in a capsule-shaped excluded volume. As the cells grow in time
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their length increases and thus a constraint on the distance dL between x1 and x2 is imposed

(we want dL to tend toward L at all times). In order to maintain this constraint, we define

a force of magnitude

FL =
1

2
kint (dL − L)2 , (2)

as in (S2), for every cell in the simulation. This force is computed, at each step of the

relaxation described below, and applied at x1 and x2 in the direction along the cell’s main

axis.

The magnitudes of cell-cell interaction forces F (i,j)
cell for a pair of cells i and j are computed

using a semi-rigid-body approach as previously employed in (S2, S4–S6) amongst others. In

the absence of individual motility, cells are allowed to grow following the rules specified

above. The combined effects of growth, interaction between cells, and interactions with the

surrounding geometry mean that at the end of every simulation time-step some combination

of cells and the surrounding geometry are intersecting in a non-physical manner. This is

resolved by computing, for each pair of intersecting cells, an overlap-dependent volume ex-

clusion force(S7), as originally employed in molecular dynamics simulations and analogously

extended to spherical cells (S6) and subsequently capsular cells (S2). For any pair of cells

i and j we define the penetration depth, if it exists, as d(i,j)cell . We can then compute this

cell-cell interaction force as

F
(i,j)
cell = −2

5
kcell

∑
j∈Neighbours

(
d
(i,j)
cell

) 5
2
, (3)

once the set of all possible j i.e., the neighbours of cell i has been computed. The computation

of a cell’s neighbourhood can be either performed as a factorial loop through all cells in the

simulation or, more efficiently (Figure S2), by defining a grid over the spatial domain and

testing for intersection only between cell i and the cells in neighbouring grid squares; both

methods are implemented in BSim 2.0.
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2.3 Simulation domain used in our case study

The simulation domain (representing a microfluidic chamber, or microchemostat) was rep-

resented by a cuboid geometry (Figure S3), with dimensions that were varied between

12 × 10 × 1 µm3 and 100 × 85 × 1 µm3 in the x, y, and z axes respectively. The largest

simulated chamber was equivalent to those used in in-vivo experiments, such as those in

(S8, S9).

The chamber was closed on all sides except the bottom (x-aligned) long side. All bound-

aries were closed to physical cell passage, except for this single open side through which

signal diffusion occurred which permitted passage of cells in order to model the removal of

cells via external flow as occurs in real microfluidic experiments (for example, those discussed

in (S8, S10)). A lateral force corresponding to a typical flow rate of 250 µm s−1 was then

applied to any cells passing outside the open boundary of the domain.

2.4 Cell-geometry interaction

Geometry is represented internally using boxes or triangular-element meshes. Cell-geometry

interactions are implemented using a semi rigid-body approach similar to that for cell-cell

interactions, with methods defined in (S11, S12).

At each time step, potential intersections between cells and geometry in the domain are

computed. In brief, a capsule-plane intersection test is performed for each agent and each

mesh element. If a potential collision could occur, the intersection test is refined to take into

account the area of the triangular element that may intersect the agent’s bounding capsule.

Finally, the overlap distance d(i,e)wall between the plane of an element e and the capsule is

computed and an overlap-dependent volume exclusion force magnitude, as for the cell-cell

interactions, is computed for any cell that is in contact with an element of the mesh

F
(i,e)
wall = −2

5
kwall

∑
e∈Elements

(
d
(i,e)
wall

) 5
2
. (4)
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Collision force magnitudes are only computed and applied for those elements which are in

fact in interpenetration with a capsule; however, multiple elements may exert a repulsive

force on a single capsule (e.g., in the case of cells at a concave corner).

2.5 Cell position relaxation

The final step in solving position constraints and resolving unphysical penetration between

cell pairs, and cells and geometry involves applying the computed force magnitudes defined

in the previous sections to the cells, and integrating the cells’ positions. This is referred to

as the relaxation step, since after all collision pairs and forces are defined the positions of all

cells are simultaneously relaxed according to the computed forces in order to minimise all

overlaps of all intersections (S4). The forces are applied in directions which vary according

to the type of constraint force:

1. FL is applied with equal and opposite magnitude to x1 and x2 along the major axis of

the capsule (the vector from x1 and x2);

2. F (i,j)
cell is applied in the direction between the closest two points on the major axis of

the two colliding cells and its application to x1 and x2 is linearly weighted according

to the distance of the intersection point from x1 and x2;

3. F (i,e)
wall is applied along the normal of the element e in the direction of the cell i.

2.6 Delay equations for GRNs

In single-cell models gene regulatory networks (GRNs) are typically simulated using ordinary

differential equation (ODE), or delayed differential equation (DDE) systems either to reduce

the number of equations in the model or to take into account mechanistic delays affecting the

biochemical reactions of interest (S13, S14). In BSim 2.0 we leverage a unified ODE and DDE

solver framework provided by the OpenSourcePhysics1 library. Available solvers include both
1http://www.opensourcephysics.org/
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fixed-step and variable-step solvers of order 2–8. State variables can be coupled to external

chemical fields, with an exchange of chemicals occurring once every major simulation time

step according to a linear gradient (as is typical in the modelling of small signalling molecule

diffusion, e.g., (S15, S16)).

Upon cell division, internal contents are split between the daughter cells. Daughter cells

inherit the perturbed (according to their relative volume) current state of all dependent

variables (as is typical in agent-based approaches (S17)). New DDE objects are created for

the, also newly-instantiated, daughter cells; the mother cell’s DDE system is re-initialised

upon division. Since DDEs are being simulated, it is necessary to consider the effects of

history upon division. To simplify proceedings, the history for each state variable in an

internal system is reset to a constant value equal to that state variable’s value at division

time t = tdiv. This may potentially cause the solution of a system to diverge upon division

from a solution that had simply continued with a fully-defined history; thus our method

may not be appropriate in all cases, and when modelling cell division coupled to DDEs in

this way care should be taken to judiciously deal with differences in time scales between the

cell lifetime and the delay lengths. In the specific situation of our case study, we found that

the dynamics of the full system (oscillations with period greater than 3 hours) vary on a

timescale far longer than the cell cycle (approximately 20–25 min) and significantly longer

than the delay employed in the model (7.5 min).

3 Validation: a consortium case study

Here we more extensively describe the system of our case study presented in the main text,

and its implementation details in BSim 2.0. The system described in (S9) consists of a

consortium of engineered cells of two types, Activator and Repressor cells; these are coupled

together through two spatially uniform external chemical concentrations. This biological

system is ideal for stress-testing our newly implemented features: its desired behaviour de-
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pends strongly on functional feedbacks between multiple spatially distributed populations

of cells through a diffusive cell-cell quorum sensing mechanism, so that they act together as

a consortium, with internal single-cell GRNs characterised by delayed and highly nonlinear

dynamics. The growth of cellular populations inside a microfluidic chemostat is significantly

affected by both the chemostat topology and the single-cell morphology (S2, S5). In the

case of multiple populations such dynamics are of particular interest and must be simulated

accurately in order to correctly predict a consortium-wide behaviour particularly when pro-

totyping new circuit designs. Accurate representation of internal GRN dynamics is crucial.

3.1 BSim 2.0 implementation

The original system is modelled by 16 coupled nonlinear DDEs; this includes both the

internal dynamics of two engineered species’ GRNs, and those of the two external chemicals

I and H, whose concentrations have no spatial component in the original model description.

Further details of the original model equations can be found in the Supplementary Material

of (S9). In our BSim 2.0 implementation (Figure S3) we first split the original system as

follows: equations corresponding to (i) Activator cells’ internal dynamics; (ii) Repressor

cells’ internal dynamics; (iii) external chemical concentrations. Activator and Repressor

cells were implemented as capsular cells, with internal GRN dynamics described by coupled

DDEs corresponding to the components (i) and (ii) respectively of the split system. The two

external chemicals were modelled as spatially non-uniform discretized diffusion PDEs, which

were coupled to intracellular GRN dynamics according to each individual cell’s position.

In BSim 2.0, the dynamics of both the signalling species I and H are modelled using

two partial differential equations (PDEs) — diffusion equations with an added local first

order degradation term simulated using a finite volume discretization — with diffusion and

degradation rates specified as in (S16). Reflective boundary conditions were applied to the

discretized equations for the five closed sides of the domain. A Dirichlet boundary condition

was applied at the bottom open side, with a constant zero external concentration representing
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the diffusion-dominated flow out of the microfluidic chamber. Unless otherwise specified, the

rate of flux at this boundary was set to 0.1 µm2sec−1, corresponding to the value of µe, the

external dilution, as originally specified in (S9). Internal per-cell GRNs were implemented as

two distinct systems of delay equations. The intra-cellular embedded GRN equations were

directly coupled to the discretized concentrations of I and H at the position of each cell,

which were sampled and exchanged at every time step of the simulation.

3.2 Results

We first investigated the simplest possible scenario, that of a small 12× 10× 1 µm3 chamber

with two fixed cells: a single Activator cell and single Repressor cell (Figure S5). We varied

the rate of diffusion through the open microchemostat boundary as well as the rate of

degradation of the signalling chemicals, in order to ascertain whether the original model’s

parameters would allow the system to function correctly when implemented as-is into a

spatially-extended model. When no flux was applied across the open boundary (Figure S5-a

and -b) the model performed correctly, i.e., consortium-wide oscillations equivalent to those

generated by the non-agent-based DDE model were measured, regardless of whether spatially

uniform degradation was present in the model or not. We then tested the model with an

open boundary leak rate equal to the diffusivity of the signalling molecules (Figure S5-c).

In this case the model failed to generate robust oscillations across the consortium, since the

concentrations of signalling chemicals I and H were decreased too rapidly with respect to

the rest of the system thus not allowing the two populations to communicate correctly. A

more conservative leak rate, equivalent to the dilution rate specified in (S9), rectified this

issue (Figure S5-d).

We then investigated the range of system behaviours as the size of a fully-packed cham-

ber was varied (Figure S6). Here, we chose the hypothetical ‘worst-case’ experimental sce-

nario where the two populations are distributed as two blocks in opposing halves of the

microchemostat (each being uniformly distributed within its own half). We refer to this

S10



scenario as the ‘worst-case’ since the average cell-cell distance (between cells in opposing

populations) is maximal here impacting significantly on the efficacy of intercellular signalling

which depends on rapid diffusion between populations. In this case, for all chambers larger

than the smallest tested (12×10×1 µm3; Figure S6-a), the system did not perform as desired

(Figure S6-b–d). Cells within populations became desynchronised, and external signals were

no longer strong enough to effectively propagate between populations.

Clearly, when directly adapted to take into account spatial dynamics in the location

of bacterial populations, as well as diffusive signalling, the DDE model no longer predicts

behaviour consistent with the observed experimental results. There are some shortcom-

ings regarding the model’s parameters when spatial features are taken into account; this

may put into question measurements taken from cell populations in order to identify mod-

els/parameters. For a given model, its parameters are often valid only in a certain context,

or range of contexts. It is interesting that the DDE model does take into account the

main dynamical features of the system as experimentally validated, in (S9); the spatially ex-

tended model requires adaptation in order to function as desired. In the case of the original

DDE model, many model parameters were chosen from a large set of Monte-Carlo simula-

tion generated distributions, in order to generate the desired behaviour (oscillations in the

consortium). Mathematically speaking, there are a number parameter combinations that

would satisfy this criterion as the study in (S9) does indeed show. However, not all of the

parameters that are valid for the original DDE system are valid in the spatially extended

system.

We found that in a more experimentally realistic scenario with both populations uniformly

intermixed, the ‘best-case’ where signalling is concerned since the average inter-population

distance between cells of the two types is minimised, the system performed as expected

(Figure S8). Here the diffusive signalling between cells was most efficient and resulted in both

a rapid and strong response across the population (consistent with the DDE model which

does in fact assume the existence of such a ‘well-mixed’ population), and synchronisation
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Table S2: Modified model parameters for the case study, used in delay equations adapted
from (S9) coupled to a spatial chemical diffusion model.

Description Parameter Original value Optimised value

Cell wall diffusivity of H DH 3 min−1 6 min−1
Cell wall diffusivity of I DI 2.1 min−1 21 min−1
Synthesis rate of H φH 16 min−1 8 min−1
Synthesis rate of I φI 2 min−1 4 min−1

External diffusion of inducers(S16) Dext 800 µm2sec−1 –
External degradation of inducers µe 0.1 min−1 0
Leak rate at open boundary µleak 800 µm2sec−1 0.1 (original µe)

within cell populations (Figure S8-b).

In order to mitigate the significant effects of cell separation that were present in our

worst-case scenario, and that would occur in any realistic situation where cells grow and

cluster together, we optimised the parameters chiefly responsible for inter-cell signalling in

the model: DH , DI , φH , φI (Figure S4, Table S2). We performed a wide-range perturbation

over these parameters, consisting of 256 simulations of all combinations of 4 perturbations

on each parameter. The best result was then refined within a smaller range of perturbations

on each parameter resulting in the values indicated in Table S2. In this case, the cell wall

diffusivity of both H and I were increased, meaning that cells were more efficiently able to

sequester the lower concentrations of signalling molecules present in the spatially extended

scenario. Meanwhile the synthesis rate of H was decreased, reducing the positive feedback

strength within the Activator cells’ population, and the synthesis rate of I was increased

strengthening the Repressor cells’ negative feedback effect that is necessary for the generation

of robust population-wide oscillations. We were still unable to force the whole population

of Activator cells to synchronise through this approach (Figure S4), however the average

performance of the model was noticeably improved compared to the original parameters

(Figure S6-c).

Furthermore, the optimised parameters did change the mean behaviour of the two cellular

populations (see Figure S8) when simulations were run in a ‘well-mixed’ scenario where

agents belonging to the two different populations are uniformly intermixed. Compared to
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the original parameters, the strength of the Repressor cells’ output is approximately doubled,

the strength of the Activator cells’ output is halved, and the overall period of oscillations

is lengthened on average from 3 hours to approximately 4 hours. However otherwise the

behaviour of the system remained qualitatively the same as previously.

Finally, we determined that it was indeed necessary to use the modified parameters in a

full growth scenario, under the most realistic experimental conditions. Cells of both popu-

lations were initialised at random positions throughout a 100× 85× 1 µm3 microchemostat.

Growth and division were enabled for all cells, and boundary conditions were set such that

the leak rate was equal to µe in the original model. With the original model’s parameters

from (S9), the system failed to either fully synchronise or to oscillate reliably (Figure S7).

In contrast, using the modified signalling parameters the system behaved comparably to the

in-vivo experiments presented in (S9) (Figure 1-c, and Movie S1), even when cells began to

cluster together and mixing was no longer optimal. This can be explained by noting that the

model in (S9) is simpler than the one adopted here as it does not explicitly take into account

spatial characteristics of the system instead assuming (as in our ‘best-case’ scenario) that

the two populations of cells are evenly distributed spatially and well mixed with respect to

each other.

3.2.1 Note on selection of single cells

The single-cell time series shown in Figure 1-c(iii) and Figure S7-b) were computed as follows.

All cells in the simulation were treated as individuals; mother-daughter cell lines were not

explicitly tracked, however the age of each individual cell (simulation time since since birth)

was stored. Cells aged continuously through the simulation until the point at which they left

the simulation domain, the time of which was effectively their time of death. On completion

of the simulation, all individual cells were sorted by their total lifetime, and the 50 longest

lived cells were selected. These 50 cells were then sorted by their birth time, and their time

series were plotted as a heatmap in the aforementioned Figures.
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3.2.2 Computational resources

All simulations in the case study were performed either on a workstation with two Intel R©

Xeon R© E5-2630 v3 CPUs and 64Gb of RAM, or on an equivalently-specified node of the

University of Bristol HPC facility ‘BlueCrystal’. In general, simulations were run on a single

core; thus, where stochastic effects were present in the model multiple simulations could be

run in parallel in a Monte-Carlo approach.

3.3 Implications for microfluidic chemostats

The design of microfluidic chambers is crucial for the success of in-vivo experiments, however

the choice of an ‘optimal’ design often relies on a trial-and-error approach using physical

devices, therefore resulting in a necessarily small exploration of the possible design space.

For a growing population of cells of a single species, the effects of chamber geometry on

growth and alignment are known (S2, S5). However, to date, few experiments have been

undertaken to describe the effects of chamber geometry on engineered GRNs, and certainly

the behaviour of multiple populations growing together in microfluidic devices has not been

characterised.

It is relatively easy to obtain a stable population of a single engineered species, for exam-

ple, using a confined rectangular chamber with a flow along one or more sides (S8). While

this is adequate for investigating single-population quorum effects, in the case of consortia

consisting of multiple interacting engineered species it is desirable to have a predictable,

or controllable, ratio of the populations; this is not guaranteed with traditional microfluidic

chemostat designs. The design studied here, while employed successfully in the experimental

scenario of (S9), did not guarantee long-term stability of both populations especially when

the dimensions of the microchemostat were reduced. Specifically, in our case study, 6 of 8

simulations undertaken in the 50× 42× 1 µm3 chamber lost one of the two populations, and

4 of 9 simulations undertaken in the 100×85×1 µm3 lost one population after 8 to 16 hours

of experimental time had elapsed. This is clearly inadequate for performing experiments
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that require observation of long-term dynamics.

Instead a chamber that is open on two opposite sides such as that employed in-vivo

in (S10) for a single population, investigated in-silico with multiple populations in (S14),

can guarantee stable growth of multiple different cellular populations. However, with both

opposite edges of the chamber open to an external flow, the chemical quorum effect within

the chamber may be weakened.

Furthermore, the effective total rate of signal degradation arises from the combined effect

of the diffusion rate (Dext) away from the neighbourhood of a bacterium, the local degra-

dation rate µe, and the effective rate of loss at the chamber’s open boundaries. Specifically,

as the rate of diffusion out of the chamber increases, the effective ‘degradation’ of signal in-

creases. This results in a communication failure between the two consortia (see Figure S5);

the range of viable diffusion-related loss rates (corresponding in reality to a range of external

flow speeds) is relatively narrow.
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4 SI Figures and Movies

4.1 Supplementary Figures

BSimExample

main()

simulation properties: BSim

BSimChemicalField

simulation objects

BSimParticle

BSimVesicle

BSimBacterium

BSimCapsuleBacterium

BSimOdeSystem

BSimOdeSolver

sim.export()sim.preview()

run
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BSimUtils

Mover

integration

Figure S1: An outline of the hierarchical and sequential structure of a BSim simulation’s
definition, referred to here as the ‘BSimExample’. The BSimExample consists of a ‘main()’
method, which facilitates entry into the program and allows it to by externally executed in
order to run the simulation. Simulation properties are first defined in the core BSim object.
One can then define a desired combination of simulation objects that they wish to have
included in the experiment, including cells, ODE/DDE systems, and chemical fields (which
permit signalling through aggregate diffusion); these can be coupled together in some ways,
e.g., a BSimBacterium may contain a BSimOdeSystem and may be coupled to a BSim-
ChemicalField. Integration through time is defined through a BSimTicker. Additionally,
one may specify a ‘Mover’ that integrates the positions of capsular bacteria by computing
their physical interactions with each other and the environment. Finally one can define a
set of exporters, to record data as the simulation runs, and must subsequently run the sim-
ulation using a preview (rendered to screen) or export mode (where data is recorded using
the exporters defined above).
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Figure S2: Simulation scaling and performance. Simulations were undertaken in a microflu-
idic chemostat geometry, of the same design as in our case study (closed on all sides apart
from one; see Figure S3). The chemostat was initialised with a population of 10 bacteria;
these were allowed to grow and divide, reaching a dynamic equilibrium, at which point the
simulation was continued for a total of 100 further timesteps. The chemostat dimensions
were varied between 10×10×1 µm3 and 100×100×1 µm3 in order to obtain representative
timing measures for a variety of simulation sizes. The number of cells and the time required
to perform a full collision resolution and position constraint correction were recorded at
each timestep. The mean population, and mean time (ms) required to complete collision
iterations, for the final 50 timesteps of each simulation are plotted for the iterative solver
(squares) and for the grid solver (stars); x and y error bars indicate SD for population size
and CPU time respectively over the 50 timesteps plotted. The solid line indicates quadratic
scaling of CPU time per simulation timestep with respect to number of bacteria, and the
dashed line indicates (improved) linear scaling of the grid solver.
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External media flow

Activators Repressors

H_ext

I_ext

Signalling

Figure S3: Case study: model implementation. The original DDE system of 16 equations
was split across two discrete cell populations (Activator cells: blue, Repressor cells: green).
These were coupled via external diffusion in a 3D chemical field modelled by discretised
diffusion equations. The cells were embedded within a virtual microfluidic chemostat with
rectangular geometry, with dimensions ranging between 12 × 10 × 1 µm3 (the smallest size
investigated) and 100× 80× 1 µm3 (the largest, corresponding to the chamber used in (S8)
for example); simulations of the different sized chambers with fixed populations are shown
in Figure S6-a–d. All boundaries were considered fixed except for the lower boundary which
was open to both diffusion and the physical passage of cells, allowing for a flux of cells to
occur into the external media flow as the population grew.
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Figure S4: Parameter modifications relating to generation and diffusion of I. We ran 256
simulations ranging over combined perturbations in DH , DI , φH , φI , the parameters related
most closely to intercellular signalling. This wide-range characterisation was then refined
resulting in the optimised parameters indicated in Table S2. Here, we plot the simulation
output for the optimised signalling parameter set. Simulations were run with populations
initialised in two separate uniform-density blocks (as in Figure S6) in the half-sized 50×42×
1 µm3 microfluidic chemostat, corresponding to a worst-case experimental scenario. Growth
and division were not included in the model; a fixed number of 525 cells were simulated, with
Activator and Repressor cells’ populations each comprising exactly half of this total. a) The
mean of each population’s output is plotted, for Activator cells (blue) and Repressor cells
(green). Solid lines indicate the mean population output for each species; the filled regions
indicate the range (min–max) of each population’s output. b) Single-cell output amplitudes
for the entire population. The amplitudes of fluorescence outputs measured from Activator
cells (blue) and Repressor cells (green) are indicated; time series are plotted for all individual
cells (rows), with simulation time increasing left-to-right.
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Figure S5: Two-cell model simulations. The degradation of external signalling chemicals,
and the open boundary condition (Figure S3), were varied to test the conditions of our BSim
2.0 case study implementation. A single Activator cell and single Repressor cell were placed,
at a uniform distance of 5µm from one another, in a 12×10×1 µm3 chamber. The cells were
not permitted to move or grow throughout the duration of the simulation. a) No flux through
the open boundary; and no spatial degradation term. b) No flux through the open boundary;
spatial degradation set to a uniform value of µe = 0.1 as in the original DDE model shown in
(S9). c) Open boundary flux set equal to the diffusion coefficient of each signalling chemical,
D, equivalent to a real experimental scenario in which signalling molecule transport at the
chamber boundary is diffusion-limited; no separate spatial degradation. d) Open boundary
flux set to µe = 0.1; no separate spatial degradation.
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Figure S6: Model failure as domain size and average cell-cell distance are increased. The size
of the microfluidic chemostat was varied as follows: a) 12× 10× 1 µm3; b) 25× 20× 1 µm3;
c) 50× 42× 1 µm3; d) 100× 85× 1 µm3. Cells were initialised with uniform density in two
separate halves of the domain (Activator cells in the left half, Repressor cells in the right
half). Cell density was chosen such that the chamber was completely filled at each size: a)
30 cells; b) 130 cells; c) 525 cells; d) 2125 cells. Growth and division were not included
in the model. For each chamber size, the mean of the population output is plotted, for
Activator cells (blue) and Repressor cells (green). Solid lines indicate the mean population
output for each species; the filled regions indicate the range (min–max) of each population’s
output. In each case, panels on the right show the single-cell output amplitudes for the
entire population. The amplitudes of fluorescence outputs measured from Activator cells
(blue) and Repressor cells (green) are indicated; time series are plotted for all individual
cells (rows), with simulation time increasing left-to-right.
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Figure S7: Results of our spatially extended case study, with original cell-cell signalling
parameters. a) Simulation with realistic cell morphology, growth and division with cells
initialised at randomly chosen positions, in a full-sized 100 × 85 × 1 µm3 rectangular mi-
crofluidic chemostat. Mean population output (solid lines) is plotted, for Activator cells
(blue) and Repressor cells (green); filled regions indicate mean ±SD. Black dashed line in-
dicates the proportion of activator cells present in the chemostat over time. b) Single-cell
output is plotted from the 50 longest-lived cells in the simulation (see section 3.2.1); the
amplitudes of fluorescence outputs measured from Activator cells (blue) and Repressor cells
(green) are indicated; time series are plotted for 50 individual cells (rows), with simulation
time increasing left-to-right. c) Simulation snapshots rendered at points indicated by red
arrows in (i). Individual cells are indicated by capsules, coloured blue (Activator cells) and
green (Repressor cells), with the intensity of each colour corresponding directly to the level
of output fluorescence. Simulations were initialised with 500 cells of each type; the filled
chamber (snapshots) contains on average 2150 cells when full.
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Figure S8: A ‘well-mixed’ population scenario guarantees good model performance that
is equivalent to the continuum DDE model. The two cell populations were simulated at
fixed positions uniformly mixed and distributed throughout the half-sized 50 × 42 × 1 µm3

microfluidic chemostat; a fixed number of 525 cells were simulated, with Activator and
Repressor cells’ populations each comprising exactly half of this total. a) The mean of the
population output is plotted, for Activator cells (blue) and Repressor cells (green). Solid lines
indicate the mean population output for a simulation with the original model’s signalling
parameters; dashed lines indicate the mean output when optimised signalling parameters
were used. b) Single-cell output amplitudes for the original (left) and optimised (right)
parameters. The amplitudes of fluorescence outputs measured from Activator cells (blue)
and Repressor cells (green) are indicated; time series are plotted for 260 individual cells
(rows), with simulation time increasing left-to-right.
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4.2 Supplementary Movies

Supplementary Movie S1: Agent-based simulation of consortium oscillator case study, corre-

sponding to data and snapshots shown in Figure 1-c. The left panel shows a 3D rendering of

the BSim simulation: Activator cells are depicted as blue capsules, and Repressor cells are

colored green. The color intensity is proportional to the level of measurable output of the

individual Activator cells (mature CFP; Ma in the original DDE model) and Repressor cells

(mature YFP; Mr in the original DDE model) at the given time instant. The simulation

was performed in a 100 × 85 × 1µm3 chamber (boundary indicated by purple box outline).

Cells were initialized at uniformly distributed positions throughout the chamber, with a uni-

formly mixed distribution of both populations consisting of 500 rod-shaped Activator cells

and 500 Repressor cells. Growth and cell division were included in the model. The average

total number of cells in the simulation once the chamber was full (after 1 hour) was approx-

imately 2150. All cells’ parameters were uniform in this simulation. The three panels on the

right hand side indicate, from top to bottom: the distribution of outputs (Activator cells,

blue; Repressor cells, green) as a histogram at the current time instant; the mean output

of the Activator cell population (blue line) and of the Repressor cell population (green line)

over time; the number of Activator cells (blue line) and Repressor cells (green line) active in

the simulation over time. The current time instant of the simulation is indicated by filled

circles in each time series.
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