Support information

Understanding Composition-Dependent Synergy of PtPd Alloy Nanoparticles in Electrocatalytic Oxygen Reduction Reaction

Jinfang Wu^{a,b}, Shiyao Shan^b, Hannah Cronk^b, Fangfang Chang^b, Haval Kareem^b, Yinguang Zhao^b, Jin Luo^b, Valeri Petkov^c*, and Chuan-Jian Zhong^{b,*}

^a Department of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China

^b Department of Chemistry, State University of New York at Binghamton, Binghamton, NY13902, USA

^c Department of Physics, Central Michigan University, Mt. Pleasant, Michigan 48859, USA

(* To whom correspondence should be addressed. Emails: cjzhong@binghamton.edu; petko1vg@cmich.edu)

Synthesis of Pt_nPd_{100-n} nanoalloy. Pt_nPd_{100-n} nanoalloys with different bimetallic compositions are synthesized by wet chemical method in dioctyl ether solvent. The general synthesis involved the use of metal precursors, Pt(acac)₂ and Pd(acac)₂, in controlled molar ratios. These precursors were mixed into dioctyl ether solvent. Oleic acid and oleylamine as capping agents involving were also added into the solvent as well as 1, 2-hexadecanediol as the reducing agent. In a typical procedure for the synthesis of Pt₄₇Pd₅₃, 0.3933 g Pt(acac)₂, 0.3046 g Pd(acac)₂, 0.6201 g 1, 2-hexadecanediol and 40 mL dioctyl ether were added to a 3-neck flask under stirring. 1 mL oleylamine and 1mL oleic acid were also added to the mixed solution. The solution was heated to 105 °C under N₂, at which the metal precursors started to decompose and the solution turned dark. Then N₂ purging was stopped and the mixture was further heated up to 220 °C with reflux for 30 mins. After cooling to room temperature, the product was precipitated out by ethanol washing and centrifugation. The synthesis of other ratios nanoalloys, Pt₁₄Pd₈₆ and Pt₆₄Pd₃₆, followed the protocol of Pt₄₇Pd₅₃, and the only difference was the amount of metal precursors. 0.1966 g Pt(acac)₂ and 0.4570 g Pd(acac)₂ were used for the synthesis of Pt₁₄Pd₈₆, while 0.5810 g Pt(acac)₂ and 0.1523 g Pd(acac)₂ were added for Pt₆₄Pd₃₆.

Table S1 Compositions of the composition in as-synthesized PtPd NPs vs. feeding ratio in the synthesis

PtPd feeding ratio	as synthesized NPs		
25:75	14:86		
50:50	47:53		
75:25	64:36		

Figure S1. (A) Experimental (symbols) and model-derived (lines) atomic PDFs for carbon supported $Pt_{36}Pd_{64}$ nanoparticles thermal-treated under N_2+H_2 ; Lines in red represent the best model approximation to the experimental data. (B) plot of the fcc-lattice parameters as a function of relative Pt content in Pt_nPd_{100-n} (n=14, 47 and 64) nanoparticles.

Figure S2. High-angle annular dark field scanning TEM (upper panel), High-resolution TEM (middle panel) and TEM images (bottom panel) for (A) $Pt_{14}Pd_{86}/C$, (B) $Pt_{47}Pd_{53}/C$, (C) $Pt_{64}Pd_{36}/C$ nanoparticles

Figure S3. Comparison of ECA (A), mass activities and specific activities (B) for Pt_nPd_{100-n}/C (n=14, 47, 64) catalysts. Electrode: Glassy carbon (0.196 cm²) inked with 10 µg catalysts; Electrolyte: O₂-saturated 0.1 M HClO₄

and metal mass loading for PtPd/C catalysts in 0.1 M HClO ₄ solution				
Catalyst	$\frac{\text{ECA}}{(m^2/g_{pt+Pd})}$	Mass Activity (A/ mg _{Pt+Pd})	Specific activity (mA/cm ² _{Pt+Pd})	
E-tek Pt/C	69	0.185	0.27	
E-tek Pd/C	26	0.049	0.64	
Pt ₁₄ Pd ₈₆ /C	46	0.196	0.42	
Pt ₄₇ Pd ₅₃ /C	18	0.038	0.21	
Pt ₆₄ Pd ₃₆ /C	20	0.104	0.24	

 Table S2. Comparison of ECA, mass activity and specific activity normalized to Pt mass loading and metal mass loading for PtPd/C catalysts in 0.1 M HClO₄ solution

Table S3. The electron configuration and natural atomic charge of the optimized structureof PtxPd4-x (x=0, 1, 2, 3, 4) clusters

cluster	Atom No.	Electron Configuration	charge	e-transfer
Pd4	1Pd	$5s^{0.51}4d^{9.41}5p^{0.08}$	0.00	1Pd
	2Pd	$5s^{0.51}4d^{9.41}5p^{0.08}$	0.00	
	3Pd	$5s^{0.51}4d^{9.41}5p^{0.08}$	0.00	3Pd 4Pd
	4Pd	$5s^{0.51}4d^{9.41}5p^{0.08}$	0.00	2Pd
Pt1Pd3	1Pd	$5s^{0.40}4d^{9.44}5p^{0.08}$	0.09	
	2Pd	$5s^{0.40}4d^{9.44}5p^{0.08}$	0.09	
	3Pt	$6s^{1.00}5d^{9.15}6p^{0.10}$	-0.24	IPe-0-2Pd
	4Pd	$5s^{0.33}4d^{9.55}5p^{0.06}$	0.06	-4120
Pt2Pd2	1Pd	$5s^{0.26}4d^{9.56}5p^{0.06}$	0.12	2Pt
	2Pt	$6s^{0.86}5d^{9.16}6p^{0.10}$	-0.12	1
	3Pt	$6s^{0.86}5d^{9.16}6p^{0.10}$	-0.12	4Pd 3Pt
	4Pd	$5s^{0.26}4d^{9.56}5p^{0.06}$	0.12	1Pd -
Pt3Pd1	1Pt	$6s^{0.70}5d^{9.18}6p^{0.14}6d^{0.01}$	-0.02	1Pt
	2Pt	$6s^{0.70}5d^{9.18}6p^{0.14}6d^{0.01}$	-0.02	
	3Pt	$6s^{0.70}5d^{9.18}6p^{0.14}6d^{0.01}$	-0.02	2Pt3Pt
	4Pd	$5s^{0.25}4d^{9.60}5p^{0.03}6p^{0.07}$	0.06	4Pd a

	1Pt	$6s^{0.76}5d^{9.17}6p^{0.07}$	0.00	
D+1	2Pt	$6s^{0.76}5d^{9.17}6p^{0.07}$	0.00	3P t 2P t 4P t
Γ (4	3Pt	$6s^{0.76}5d^{9.17}6p^{0.07}$	0.00	1P t
	4Pt	$6s^{0.76}5d^{9.17}6p^{0.07}$	0.00	•

Figure S4. The stable adsorption configurations of O₂ on surface of PtxPd201-x (x=0, 24, 96, 144, 201) clusters

Table S4 Adsorption energy for O_2 on PtxPd201-x (x=0, 24, 96, 144, 201) clusters					
	Pt201	Pt144Pd57	Pt96Pd105	Pt24Pd144	Pd201
O ₂	-1.86 eV	-1. 82 eV	-2.08 eV	-2.40 eV	-2.11 eV