## Kinetics of the $S_N1$ dissociation of ligands L (nitriles, phosphines) in the complexes [CpFe(P-P)L]PF<sub>6</sub> with variable chelate ring size. A surprising bimolecular substitution in the non-chelate complex [CpFe(PPh<sub>2</sub>Me)<sub>2</sub>L]PF<sub>6</sub>

Henri Brunner,\*<sup>a</sup> Hikaru Kitamura,<sup>b</sup> and Takashi Tsuno\*<sup>b</sup>

<sup>a</sup>Institut für Anorganische Chemie, Universität Regensburg, 93040 Regensburg, Germany. E-mail: henri.brunner@chemie-uni.regensburg.de <sup>b</sup>Department of Applied Molecular Chemistry, College of Industrial Technology, Nihon University, Chiba 275-8575, Japan. E-mail: tsuno.takashi@nihon.-u.ac.jp

## Contents

| <b>Table S1.</b> Crystallographic Data for the Complexes (Mo $K_{\alpha}$ radiation)                                                                   | S6   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| <b>Figure S1.</b> Time-resolved ${}^{31}P{}^{1}H$ NMR spectra of the ligand exchange of                                                                |      |
| [CpFe(PPh <sub>2</sub> Me)NCMe]PF <sub>6</sub> with PPh(OMe) <sub>2</sub> (10 eq.) at 293 K in CDCl <sub>3</sub> .                                     | S10  |
| Figure S2. Time dependence of the concentrations of reactants and products                                                                             |      |
| in the reaction of [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> NCMe]PF <sub>6</sub> with 5 equivalents of PPh <sub>2</sub> (OMe)                           |      |
| in CDCl <sub>3</sub> at 293 K: $[CpFe(PPh_2Me)_2NCMe]PF_6$ ( $\square$ ), $[CpFe(PPh_2Me)_2$ .                                                         |      |
| $PPh_2(OMe)]PF_6(\blacklozenge), [CpFe(PPh_2Me){PPh_2(OMe)}_2]PF_6(\blacktriangle),$                                                                   |      |
| $[CpFe(PPh_2Me){PPh_2(OMe)}NCMe]PF_6(\bigcirc), [CpFe{PPh_2(OMe)}_2-$                                                                                  |      |
| NCMe] ( $\triangle$ ), and [CpFe{PPh <sub>2</sub> (OMe)} <sub>3</sub> ] ( $\diamondsuit$ ).                                                            | S11  |
| <b>Figure S3.</b> Time-resolved ${}^{31}P{}^{1}H$ NMR spectra of the ligand exchange of                                                                |      |
| [CpFe(PPh <sub>2</sub> Me)NCMe]PF <sub>6</sub> with PPh <sub>2</sub> (O <i>i</i> Pr) (1 eq.) at 293 K in CDCl <sub>3</sub> .                           | S12. |
| <b>Figure S4-1.</b> Figure S4-1. <sup>1</sup> H NMR Spectrum of [CpFe(dppm)NCMe]PF <sub>6</sub>                                                        |      |
| in acetone- $d_6$ at 293 K.                                                                                                                            | S13  |
| <b>Figure S4-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(dppm)NCMe]PF <sub>6</sub> in acetone- $d_6$                                                   |      |
| at 293 K (top: DEPT135, bottom: decoupling).                                                                                                           | S13  |
| <b>Figure S4-3.</b> <sup>31</sup> P $\{^{1}H\}$ NMR Spectrum of [CpFe(dppm)NCMe]PF <sub>6</sub> in                                                     |      |
| acetone- $d_6$ at 293 K.                                                                                                                               | S14  |
| <b>Figure S5-1.</b> <sup>1</sup> H NMR Spectrum of [CpFe(dppe)NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                                      | S14  |
| <b>Figure S5-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(dppe)NCMe]PF <sub>6</sub> in CDCl <sub>3</sub>                                                |      |
| at 293 K (top: DEPT135, bottom: decoupling).                                                                                                           | S15  |
| <b>Figure S5-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of [CpFe(dppe)NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                    | S15  |
| Figure S5-4. ORTEP drawing of [CpFe(dppe)NCMe]PF <sub>6</sub> . Hydrogen atoms and                                                                     |      |
| hexafluorophosphate anion are omitted for clarity.                                                                                                     | S16  |
| <b>Figure S6-1.</b> <sup>1</sup> H NMR Spectrum of [CpFe(dppp)NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                                      | S16  |
| <b>Figure S6-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(dppp)NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K                                       |      |
| (top: DEPT135, bottom: decoupling).                                                                                                                    | S17  |
| <b>Figure S6-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of [CpFe(dppp)NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                    | S17  |
| <b>Figure S6-4.</b> ORTEP drawing of [CpFe(dppp)NCMe]PF <sub>6</sub> · CHCl <sub>3</sub> . Hydrogen atoms,                                             |      |
| hexafluorophosphate anion, and one CHCl <sub>3</sub> molecule are omitted for clarity.                                                                 | S18  |
| <b>Figure S7-1.</b> <sup>1</sup> H NMR Spectrum of [CpFe(dppb)NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                                      | S18  |
| <b>Figure S7-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(dppb)NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K (top:                                 |      |
| DEPT135, bottom: decoupling).                                                                                                                          | S19  |
| <b>Figure S7-3.</b> <sup>31</sup> P $\{^{1}H\}$ NMR Spectrum of [CpFe(dppb)NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                         | S19  |
| <b>Figure S8-1.</b> <sup>1</sup> H NMR Spectrum of $[CpFe(PPh_2Me)_2I]$ in benzene- $d_6$ at 293 K.                                                    | S20  |
| <b>Figure S8-2.</b> <sup>13</sup> C NMR Spectra of $[CpFe(PPh_2Me)_2I]$ in benzene- $d_6$ at 293 K                                                     |      |
| (top: DEPT135, bottom: decoupling).                                                                                                                    | S20  |
| <b>Figure S8-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of $[CpFe(PPh_2Me)_2I]$ in benzene- $d_6$ at 293 K.                                  | S21  |
| <b>Figure S8-4.</b> ORTEP drawing of [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> I]· CH <sub>2</sub> Cl <sub>2</sub> . Hydrogen atoms                      |      |
| and one CH <sub>2</sub> Cl <sub>2</sub> molecule are omitted for clarity.                                                                              | S21  |
| <b>Figure S9-1.</b> <sup>1</sup> H NMR Spectrum of [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.         | S22  |
| Figure S9-2. <sup>13</sup> C NMR Spectra of [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K                 |      |
| (top: DEPT135, bottom: decoupling).                                                                                                                    | S22  |
| <b>Figure S9-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> NCMe]PF <sub>6</sub> in CDCl <sub>3</sub> |      |
| at 293 K.                                                                                                                                              | S23  |
|                                                                                                                                                        |      |

| <b>Figure S9-4.</b> ORTEP drawing of [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> NCMe]PF <sub>6</sub> . Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.                                                                                               | S23        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>Figure S10-1.</b> <sup>1</sup> H NMR Spectrum of $[CpFe(dppm)P(OMe)_3]PF_6$ in acetone- $d_6$ at 293 K.                                                                                                                                                              | S24        |
| <b>Figure S10-2.</b> <sup>13</sup> C NMR Spectra of $[CpFe(dppm)P(OMe)_3]PF_6$ in acetone- $d_6$ at 293 K (top: DEPT135, bottom: decoupling).                                                                                                                           | S24        |
| <b>Figure S10-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of $[CpFe(dppm)P(OMe)_3]PF_6$ in acetone- $d_6$ at 293 K.                                                                                                                                            | S25        |
| <b>Figure S10-4.</b> ORTEP drawing of [CpFe(dppm)P(OMe) <sub>3</sub> ]PF <sub>6</sub> . Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.                                                                                                           | S25        |
| <b>Figure S11-1.</b> <sup>1</sup> H NMR Spectrum of [CpFe(dppe)P(OMe) <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.<br><b>Figure S11-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(dppe)P(OMe) <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K | S26        |
| (top: DEPT135, bottom: decoupling).<br><b>Figure S11-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of [CpFe(dppe)P(OMe) <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub>                                                                                       | S26        |
| at 293 K.<br><b>Figure S11-4.</b> ORTEP drawing of [CpFe(dppe)P(OMe) <sub>3</sub> ]PF <sub>6</sub> . Hydrogen atoms and hour fluorenhoenhote enion are emitted for elevity.                                                                                             | S27        |
| <b>Figure S12-1.</b> <sup>1</sup> H NMR Spectrum of $[CpFe(dppp)P(OMe)_3]PF_6$ in CDCl <sub>3</sub> at 293 K.<br><b>Figure S12-2.</b> <sup>13</sup> C NMR Spectra of $[CpFe(dppp)P(OMe)_3]PF_6$ in CDCl <sub>3</sub> at 293 K.                                          | S27<br>S28 |
| (top: DEPT135, bottom: decoupling).<br><b>Figure S12-3.</b> ${}^{31}P{}^{1}H{}$ NMR Spectrum of [CpFe(dppp)P(OMe) <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub>                                                                                                    | S28        |
| at 293 K.<br><b>Figure S12-4.</b> ORTEP drawing of [CpFe(dppp)P(OMe) <sub>3</sub> ]PF <sub>6</sub> . Hydrogen atoms and                                                                                                                                                 | S29        |
| hexafluorophosphate anion are omitted for clarity.<br><b>Figure S13-1.</b> <sup>1</sup> H NMR Spectrum of [CpFe(dppb)P(OMe) <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                                                                                | S29<br>S30 |
| <b>Figure S13-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(dppb)P(OMe) <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).                                                                                                   | S30        |
| <b>Figure S13-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of $[CpFe(dppb)P(OMe)_3]PF_6$ in CDCl <sub>3</sub> at 293 K.                                                                                                                                         | S31        |
| <b>Figure S13-4.</b> ORTEP drawing of $2([CpFe(dppp)P(OMe)_3]PF_6) \cdot 3CHCl_3$ .<br>Hydrogen atoms, hexafluorophosphate anion, and three CHCl_3 molecules are                                                                                                        |            |
| Figure S14-1. <sup>1</sup> H NMR Spectrum of [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> P(OMe) <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub>                                                                                                                          | S31        |
| <b>Figure S14-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> P(OMe) <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling)                                                                       | 532        |
| <b>Figure S14-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> P(OMe) <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K                                                                                        | S32        |
| <b>Figure S14-4.</b> ORTEP drawing of $[CpFe(PPh_2Me)_2P(OMe)_3]PF_6$ · $CH_2Cl_2$ .<br>Hydrogen atoms, hexafluorophosphate anion, and one $CH_2Cl_2$ molecule are                                                                                                      | ~~~        |
| omitted for clarity.<br><b>Figure S15-1.</b> <sup>1</sup> H NMR Spectrum of $[CpFe{P(OMe)_3}_3]PF_6$ in CDCl <sub>3</sub> at 293 K.                                                                                                                                     | S33<br>S34 |
| <b>Figure S15-2.</b> <sup>13</sup> C NMR Spectra of $[CpFe{P(OMe)_3}_3]PF_6$ in CDCl <sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).                                                                                                                          | S34        |
| Figure S15-3. <sup>•</sup> P{ <sup>+</sup> H} NMR Spectrum of [CpFe{P(OMe) <sub>3</sub> } <sub>3</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K                                                                                                                   | S35        |

| <b>Figure S15-4.</b> ORTEP drawing of [CpFe{P(OMe) <sub>3</sub> }]PF <sub>6</sub> . Hydrogen atoms and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| hexafluorophosphate anion are omitted for clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S35         |
| <b>Figure S16-1.</b> <sup>1</sup> H NMR Spectrum of [CpFe(dppe)PPh(OMe) <sub>2</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S36         |
| <b>Figure S16-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(dppe)PPh(OMe) <sub>2</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S36         |
| <b>Figure S16-3.</b> <sup>31</sup> P $\{^{1}H\}$ NMR Spectrum of [CpFe(dppe)PPh(OMe) <sub>2</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>S</b> 37 |
| <b>Figure S16-4.</b> ORTEP drawing of [CnFe(dnne)PPh(OMe) <sub>2</sub> ]PF <sub>4</sub> . Hydrogen atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~~ .        |
| and hexafluorophosphate anion are omitted for clarity.<br><b>Figure S17-1.</b> <sup>1</sup> H NMR Spectrum of [CpFe(dppe)PPh <sub>2</sub> (OMe)]PF <sub>6</sub> in CDCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S37         |
| at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S38         |
| <b>Figure S17-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(dppe)PPh <sub>2</sub> (OMe)]PF <sub>6</sub> in CDCl <sub>3</sub> at 202 K (top: DEPT125, bettom: decoupling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 620         |
| <b>Eigune S17.3</b> ${}^{31}D({}^{1}H)$ NMP Spectrum of [CnEe(dnne)DDb.(OMe)]DE. in CDC].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 330         |
| at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S39         |
| <b>Figure S17-4.</b> ORTEP drawing of [CpFe(dppe)PPh <sub>2</sub> (OMe)]PF <sub>6</sub> . Hydrogen atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             |
| and hexafluorophosphate anion are omitted for clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S39         |
| <b>Figure S18-1.</b> <sup>1</sup> H NMR Spectrum of $[CpFe(dppe)PPh_2(OEt)]PF_6$ in CDCl <sub>3</sub> at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S40         |
| <b>Figure S18-2.</b> <sup>13</sup> C NMR Spectra of [CpFe(dppe)PPh <sub>2</sub> (OEt)]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | G 40        |
| (top: DEP1135, bottom: decoupling). $\Gamma_{1} = \Gamma_{1} = $ | 840         |
| Figure S18-3. "P{H} NMR Spectrum of [CpFe(dppe)PPh <sub>2</sub> (OEt)]PF <sub>6</sub> in CDCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.4.1       |
| at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 841         |
| <b>Figure S18-4.</b> ORTEP drawing of [CpFe(dppe)PPh <sub>2</sub> (OEt)]PF <sub>6</sub> . Hydrogen atoms and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~           |
| hexafluorophosphate anion are omitted for clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S41         |
| Figure S19-1. H NMR Spectrum of $[CpFe(dppe)PPh_2(OiPr)]PF_6$ in CDCl <sub>3</sub> at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 842         |
| Figure S19-2. C NMR Spectra of [CpFe(dppe)PPh <sub>2</sub> (O <sub>l</sub> Pr)]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K $(1 - D)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | G 4 2       |
| (top: DEP1135, bottom: decoupling).<br>Eigenvers S10.2 $3^{31}$ D(11) NMD Superformer of Conference DPh (O(De))DF in CDC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 542         |
| Figure S19-5. $P\{H\}$ NMR Spectrum of [CpFe(dppe)PPn <sub>2</sub> (OPT)]PF <sub>6</sub> in CDCl <sub>3</sub><br>at 202 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 642         |
| at 293 K. E. $(10.4 \text{ OPTED } 1 \text{ I} \text{ CLO E } (1 \text{ OPD} \text{ IDE } \text{ OLO} 1 \text{ II} 1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 545         |
| Figure S19-4. OR TEP drawing of [CpFe(dppe)PPh <sub>2</sub> (OiPr)]PF <sub>6</sub> . CHCl <sub>3</sub> . Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.42        |
| atoms, hexafluorophosphate anion, and one $CHCl_3$ molecule are omitted for clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 843         |
| Figure S20-1. H NMR Spectrum of $[CpFe(PPn_2Me)PPn(OMe)_2]PF_6$ in CDCl <sub>3</sub> at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G 4 4       |
| 293 K.<br>Etamore S20.2 $\frac{13}{2}$ NIMP Supreme of Current (DDL Ma) DDL (OMa) DDE in CDCL at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 844         |
| Figure S20-2. C NMR Spectra of $[CpFe(PPn_2Me)_2PPn(OMe)_2]PF_6$ in CDCI <sub>3</sub> at 202 K (ton: DEDT125, bettom: decounting)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | C11         |
| <b>Event</b> S20.2 $\frac{3^{1}}{10}$ (11) NMD Spectrum of [CnEe(DDb Me) DDb(OMe) 1DE in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 544         |
| Figure S20-3. $P\{H\}$ NMR Spectrum of [Cpre(PPh2Me) <sub>2</sub> PPh(OMe) <sub>2</sub> ]PF <sub>6</sub> m<br>CDCL at 202 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S15         |
| CDC13 at 275 K.<br>Elements S20 4 ODTED drawing of [CrEe(DDh Me) DDh(OMe) ]DE (CU C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 545         |
| Figure S20-4. ORTEP drawing of [Cpre(PPn_2Me)_2PPn(OMe)_2]PF6' CH <sub>2</sub> Cl <sub>2</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| $r_1$ and $r_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q15         |
| Figure S21 1 <sup>-1</sup> H NMP Spectrum of [CpEa(dppp)DDb.(OMa)]DE. in CDC1. at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 545         |
| Figure 521-1. If there spectrum of $[Cpre(uppp)rrn2(Ome)]rr6 m CDC13 at 203 K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 516         |
| <b>Figure S21-2</b> <sup>13</sup> C NMR Spectra of [CnFe(dnnn)PPh <sub>2</sub> (OMe)]PF <sub>2</sub> in CDCl <sub>2</sub> at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0+0         |
| 293 K (top: DEPT135 bottom: decounling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S46         |
| <b>Figure S21-3.</b> ${}^{31}P{}^{1}H{}$ NMR Spectrum of [CnFe(dnpn)PPh <sub>2</sub> (OMe)]PF <sub>4</sub> in CDCl <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 510         |
| - Bure set of the showing of following the showing the showing the set of the showing the set of the set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |

| at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S47         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure S21-4. ORTEP drawing of [CpFe(dppp)PPh <sub>2</sub> (OMe)]PF <sub>6</sub> . Hydrogen atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| and hexafluorophosphate anion are omitted for clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S47         |
| Figure S22-1. <sup>1</sup> H NMR Spectrum of [CpFe(dppp)PPh <sub>2</sub> (OEt)]PF <sub>6</sub> in CDCl <sub>3</sub> at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S48         |
| (top: DEPT135, bottom: decoupling)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | \$48        |
| <b>Figure S22-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of [CpFe(dppp)PPh <sub>2</sub> (OEt)]PF <sub>6</sub> in CDCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0-0         |
| at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S49         |
| Figure S22-4. ORTEP drawing of [CpFe(dppp)PPh <sub>2</sub> (OEt)]PF <sub>6</sub> . Hydrogen atoms and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| hexafluorophosphate anion are omitted for clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S49         |
| Figure S23-1. <sup>1</sup> H NMR Spectrum of [CpFe(dppp)PPh(OMe) <sub>2</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub> at $202 K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 850         |
| <b>Figure S23-2</b> . <sup>13</sup> C NMR Spectra of [CnFe(dnpp)PPh(OMe) <sub>2</sub> ]PF <sub>4</sub> in CDCl <sub>2</sub> at 293 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 330         |
| (top: DEPT135, bottom: decoupling).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S50         |
| <b>Figure S23-3.</b> <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of [CpFe(dppp)PPh(OMe) <sub>2</sub> ]PF <sub>6</sub> in CDCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             |
| at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S51         |
| <b>Figure S23-4.</b> ORTEP drawing of [CpFe(dppp)PPh(OMe) <sub>2</sub> ]PF <sub>6</sub> . Hydrogen atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 951         |
| Even $S^2 (1 - \frac{1}{2})$ INMP Spectrum of [CpEe(DPh Me)(DPh (OMe))] DE in CDCl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 331         |
| Figure 524-1. If NMK Spectrum of $[Cpre(PPn_2Me){PPn_2(OMe)}_2]PF_6 in CDC1_3 + 202 K$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 953         |
| at 293 K. $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>3</b> 52 |
| Figure S24-2. $P{H}$ NMR Spectrum of [CpFe(PPh <sub>2</sub> Me){PPh <sub>2</sub> (OMe)} <sub>2</sub> ]PF <sub>6</sub> in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| $CDCl_3$ at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S52         |
| <b>Figure S24-3.</b> ORTEP drawing of $[CpFe(PPh_2Me){PPh_2(OMe)}_2]PF_6 \cdot 2CH_2Cl_2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |
| Hydrogen atoms, hexafluorophosphate anion and CH <sub>2</sub> Cl <sub>2</sub> molecules are omitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| for clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S53         |
| Figure S25-1. <sup>1</sup> H NMR Spectrum of [CpFe {PPh <sub>2</sub> (OMe)} <sub>2</sub> NCMe]PF <sub>6</sub> in CDCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |
| at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S53         |
| <b>Figure S25-2.</b> <sup>13</sup> C NMR Spectra of [CpFe{PPh <sub>2</sub> (OMe)} <sub>2</sub> NCMe]PF <sub>6</sub> in CDCl <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |
| at 293 K (top: DEPT135, bottom: decoupling).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S54         |
| Figure S25-3. ${}^{31}P{}^{1}H$ NMR Spectrum of [CpFe{PPh <sub>2</sub> (OMe)} <sub>2</sub> NCMe]PF <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             |
| in CDCl <sub>2</sub> at 293 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \$54        |
| <b>Figure S25</b> A OPTED drawing of [CnEa (DDb. (OMa)). NCMa]DE. Hydrogen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 557         |
| stems and haveflyagenhagehete onion are emitted for elevity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 955         |
| atoms and nexalluorophosphate anion are omitted for clarity. $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{$ | 333         |
| Figure S26-1. H NMR Spectrum of $[CpFe{PPh_2(OMe)}_3]PF_6$ in CDCl <sub>3</sub> at 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 855         |
| Figure S26-2. <sup>13</sup> C NMR Spectra of $[CpFe{PPh_2(OMe)}_3]PF_6$ in CDCl <sub>3</sub> at 293 K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |
| (top: DEPT135, bottom: decoupling).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S56         |
| Figure S26-3. <sup>31</sup> P{ <sup>1</sup> H} NMR Spectrum of $[CpFe{PPh_2(OMe)}_3]PF_6$ in CDCl <sub>3</sub> at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |             |
| 293 K.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S56         |
| <b>Figure S26-4.</b> ORTEP drawing of [CpFe{PPh <sub>2</sub> (OMe)} <sub>3</sub> ]PF <sub>6</sub> . Hydrogen atoms,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |
| hexafluorophosphate anion, CH <sub>2</sub> Cl <sub>2</sub> molecule are omitted for clarity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S57         |

| Complex                                            | [CpFe(dppe)NCMe]PF <sub>6</sub>                                      | [CpFe(dppe)PPh <sub>2</sub> -<br>(OMe)]PF <sub>6</sub> | [CpFe(dppe)PPh <sub>2</sub> -<br>(OEt)]PF <sub>6</sub> | [CpFe(dppe)PPh <sub>2</sub> -<br>(O <i>i</i> Pr)]PF <sub>6</sub> CHCl <sub>3</sub> | [CpFe(dppe)P(OM) <sub>3</sub> ]<br>PF <sub>6</sub> |
|----------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|
| Empirical formula                                  | C <sub>33</sub> H <sub>32</sub> FeNP <sub>2</sub> , F <sub>6</sub> P | $C_{44}H_{42}FeOP_3, F_6P$                             | $C_{45}H_{44}FeP_3, F_6P$                              | $\frac{C_{46}H_{46}FeOP_3, CHCl_3,}{F_6P}$                                         | $C_{34}H_{38}FeO_3P_3, F_6P$                       |
| Formula weight                                     | 705.35                                                               | 880.5                                                  | 894.53                                                 | 1027.93                                                                            | 788.37                                             |
| Crystal system                                     | monoclinic                                                           | monoclinic                                             | Monoclinic                                             | triclinic                                                                          | monoclinic                                         |
| Space group                                        | $P2_1/n$                                                             | C2/c                                                   | C2/c                                                   | PĪ                                                                                 | $P2_1/c$                                           |
| <i>a</i> (Å)                                       | 12.4692(5)                                                           | 38.785(13)                                             | 37.9260(12)                                            | 10.8369(8)                                                                         | 11.1635(4)                                         |
| b (Å)                                              | 15.5620(6)                                                           | 12.895(4)                                              | 12.6048(5)                                             | 12.6462(9)                                                                         | 16.6012(6)                                         |
| c (Å)                                              | 16.9467(5)                                                           | 16.767(4)                                              | 18.0209(6)                                             | 17.9320(14)                                                                        | 19.9065(7)                                         |
| $\alpha$ (°)                                       | 90                                                                   | 90                                                     | 90                                                     | 77.660(2)                                                                          | 90                                                 |
| $\beta(^{\circ})$                                  | 99.3700(10)                                                          | 104.747(10)                                            | 105.1740(10)                                           | 79.840(2)                                                                          | 107.2940(10)                                       |
| γ (°)                                              | 90                                                                   | 90                                                     | 90                                                     | 75.172(2)                                                                          | 90                                                 |
| $V(\text{\AA})^3$                                  | 3244.6(2)                                                            | 8109(4)                                                | 8314.4(5)                                              | 2301.4(3)                                                                          | 3522.4(2)                                          |
| Ζ                                                  | 4                                                                    | 8                                                      | 8                                                      | 2                                                                                  | 4                                                  |
| pcalcd (Mg/m <sup>3</sup> )                        | 1.4424                                                               | 1.442                                                  | 1.429                                                  | 1.483                                                                              | 1.487                                              |
| Abs coeff $(mm^{-1})$                              | 0.672                                                                | 0.592                                                  | 0.579                                                  | 0.702                                                                              | 0.676                                              |
| Abs correct                                        | multi-scan                                                           | multi-scan                                             | multi-scan                                             | multi-scan                                                                         | multi-scan                                         |
| Transmiss max/min                                  | 1.0000/0.7731                                                        | 1.0000/0.5305                                          | 1.0000/0.5305                                          | 1.0000/0.6457                                                                      | 1.0000/0.4249                                      |
| F(000)                                             | 1448                                                                 | 3632                                                   | 3696                                                   | 1056                                                                               | 1624                                               |
| Crystal size (mm)                                  | 0.25 x 0.17 x 0.15                                                   | 0.24 x 0.07 x 0.05                                     | 0.23 x 0.20 x 0.14                                     | 0.38 x 0.17 x 0.10                                                                 | 0.38 x 0.18 x 0.08                                 |
| <i>Θ</i> range (°)                                 | 3.013-24.999                                                         | 3.07-24.997                                            | 3.02-25                                                | 3.08-27.408                                                                        | 3.10-25                                            |
| Rflns/unique                                       | 24949/5702                                                           | 27894/6912                                             | 30802/7298                                             | 22240/10310                                                                        | 26969/6195                                         |
| R <sub>int</sub>                                   | 0.0528                                                               | 0.1417                                                 | 0.0835                                                 | 0.0619                                                                             | 0.0745                                             |
| Data/params                                        | 5702/398                                                             | 6912/506                                               | 7298/514                                               | 10310/561                                                                          | 6195/436                                           |
| Goodness of fit $F^2$                              | 1.039                                                                | 0.909                                                  | 1.087                                                  | 1.088                                                                              | 1.058                                              |
| $R_1/wR_2$ ( $I > 2\sigma(I)$ )                    | 0.0396/0.0850                                                        | 0.084/0.1786                                           | 0.051/0.1182                                           | 0.0529/0.1133                                                                      | 0.0413/0.1009                                      |
| $R_1/wR_2$ (all data)                              | 0.0544/0.0916                                                        | 0.1411/0.2155                                          | 0.0835/0.1382                                          | 0.0922/0.137                                                                       | 0.0549/0.1087                                      |
| Abs. struct. param                                 | -                                                                    | -                                                      | -                                                      | -                                                                                  | -                                                  |
| Largest diff. peak and hole (e $\text{\AA}^{-3}$ ) | 0.473/-0.321                                                         | 0.424/-0.484                                           | 0.505/-0.427                                           | 0.709/-0.682                                                                       | 0.619/-0.47                                        |
| CCDC No.                                           | 1535363                                                              | 1535364                                                | 1535365                                                | 1535366                                                                            | 1535367                                            |

**Table S1.** Crystallographic Data for the Complexes (Mo $K_{\alpha}$  radiation)

| Complex                                   | [CpFe(dppe)PPh-                                                                    | [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> NCMe] | [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> - | [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> - | [CpFe(PPh <sub>2</sub> Me) <sub>2</sub> I]                                          |
|-------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------------|
|                                           | $(OMe)_2]PF_6$                                                                     | PF <sub>6</sub>                               | $P(OMe)_3]PF_6 CH_2Cl_2$                  | $PPh(OMe)_2]PF_6$                         | $CH_2Cl_2$                                                                          |
|                                           |                                                                                    |                                               |                                           | CH <sub>2</sub> Cl <sub>2</sub>           |                                                                                     |
| Empirical formula                         | C <sub>39</sub> H <sub>40</sub> FeO <sub>2</sub> P <sub>3</sub> , F <sub>6</sub> P | $C_{33}H_{34}NP_2Fe$ , $F_6P$                 | $C_{34}H_{40}FeOP_2$ , $F_6P$ ,           | $C_{39}H_{42}FeO_2P_3, F_6P_2$            | C <sub>31</sub> H <sub>31</sub> FeIP <sub>2</sub> , CH <sub>2</sub> Cl <sub>2</sub> |
|                                           |                                                                                    |                                               | CH <sub>2</sub> Cl <sub>2</sub>           | CH <sub>2</sub> Cl <sub>2</sub>           |                                                                                     |
| Formula weight                            | 830.41                                                                             | 707.37                                        | 875.31                                    | 921.38                                    | 733.17                                                                              |
| Crystal system                            | orthorhombic                                                                       | triclinic                                     | Monoclinic                                | monoclinic                                | triclinic                                                                           |
| Space group                               | Pbca                                                                               | PĪ                                            | $P2_1/c$                                  | $P2_1/n$                                  | $P\overline{1}$                                                                     |
| <i>a</i> (Å)                              | 12.2498(4)                                                                         | 9.493(5)                                      | 8.9902(2)                                 | 11.6214(11)                               | 10.035(4)                                                                           |
| $b(\dot{A})$                              | 19.1993(9)                                                                         | 12.392(5)                                     | 22.0037(6)                                | 23.3763(19)                               | 11.862(5)                                                                           |
| <i>c</i> (Å)                              | 31.6611(12)                                                                        | 14.053(5)                                     | 20.2720(5)                                | 15.6475(13)                               | 13.738(5)                                                                           |
| α (°)                                     | 90                                                                                 | 90.386(16)                                    | 90                                        | 90                                        | 70.821(16)                                                                          |
| $\beta(^{\circ})$                         | 90                                                                                 | 93.909(16)                                    | 103.5440(10)                              | 104.939(2)                                | 86.016(13)                                                                          |
| γ (°)                                     | 90                                                                                 | 102.325(14)                                   | 90                                        | 90                                        | 83.341(15)                                                                          |
| $V(\text{\AA})^3$                         | 7446.3(5)                                                                          | 1611.0(12)                                    | 3974.32(18)                               | 4107.2(6)                                 | 1533.3(11)                                                                          |
| Ζ                                         | 8                                                                                  | 2                                             | 4                                         | 4                                         | 2                                                                                   |
| pcalcd (Mg/m <sup>3</sup> )               | 1.481                                                                              | 1.458                                         | 1.491                                     | 1.490                                     | 1.588                                                                               |
| Abs coeff $(mm^{-1})$                     | 0.642                                                                              | 0.677                                         | 0.751                                     | 0.7160                                    | 1.798                                                                               |
| Abs correct                               | multi-scan                                                                         | multi-scan                                    | multi-scan                                | multi-scan                                | multi-scan                                                                          |
| Transmiss max/min                         | 1.0000/0.9909                                                                      | 1.0000/0.7628                                 | 1.0000/0.7531                             | 1.0000/0.52964                            | 1.0000/0.5972                                                                       |
| F (000)                                   | 3408                                                                               | 728                                           | 1800                                      | 1896                                      | 736                                                                                 |
| Crystal size (mm)                         | 0.52 x 0.08 x 0.07                                                                 | 0.36 x 0.30 x 0.15                            | 0.70 x 0.24 x 0.18                        | 0.26 x 0.13 x 0.06                        | 0.20 x 0.13 x 0.08                                                                  |
| $\Theta$ range (°)                        | 2.087-24.999                                                                       | 3.045-24.999                                  | 3.236-24.999                              | 3.07-25.00                                | 3.02-27.485                                                                         |
| Rflns/unique                              | 55723/6451                                                                         | 12799/5654                                    | 47138/6868                                | 31695/7216                                | 15116/6935                                                                          |
| $R_{\rm int}$                             | 0.1841                                                                             | 0.0323                                        | 0.045                                     | 0.2042                                    | 0.0459                                                                              |
| Data/params                               | 6451/471                                                                           | 5654/400                                      | 6868/465                                  | 7216/496                                  | 6935/345                                                                            |
| Goodness of fit $F^2$                     | 1.047                                                                              | 1.069                                         | 0.962                                     | 1.035                                     | 1.057                                                                               |
| $R_1/wR_2$ ( $I > 2\sigma(I)$ )           | 0.0741/0.1462                                                                      | 0.0412/0.0881                                 | 0.0377/0.0917                             | 0.0923/0.1442                             | 0.0429/0.0838                                                                       |
| $R_1/wR_2$ (all data)                     | 0.1118/0.1674                                                                      | 0.053/0.0925                                  | 0.0464/0.0962                             | 0.1735/0.1766                             | 0.0555/0.0888                                                                       |
| Abs. struct. param                        | -                                                                                  | -                                             | -                                         | -                                         | -                                                                                   |
| Largest diff. peak and hole (e $Å^{-3}$ ) | 0.813/-0.691                                                                       | 0.511/-0.334                                  | 0.941/-0.608                              | 0.526/-0.528                              | 1.172/-0.843                                                                        |
| CCDC No.                                  | 1535368                                                                            | 1535369                                       | 1535370                                   | 1535371                                   | 1535372                                                                             |
|                                           |                                                                                    |                                               |                                           |                                           |                                                                                     |

**Table S1.** Crystallographic Data for the Complexes (Mo $K_{\alpha}$  radiation)

| Complex                                     | [CpFe(dppp)NCMe]<br>PF <sub>6</sub> CHCl <sub>3</sub> | [CpFe(dppp)-<br>P(OMe) <sub>3</sub> ]PF <sub>6</sub> | [CpFe(dppp)-<br>PPh(OMe) <sub>2</sub> ]PF <sub>6</sub> | [CpFe(dppp)-<br>PPh <sub>2</sub> (OMe)PF <sub>6</sub> | [CpFe(dppp)-<br>PPh <sub>2</sub> (OEt)]PF <sub>6</sub> |
|---------------------------------------------|-------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| Empirical formula                           | $C_{34}H_{34}FeNP_2, F_6P,$<br>CHCl <sub>2</sub>      | $C_{35}H_{40}FeO_3P_3, F_6P$                         | $C_{39}H_{40}FeO_2P_3, F_6P$                           | $C_{45}H_{44}FeOP_3, F_6P$                            | $C_{46}H_{46}FeOP_3, F_6P$                             |
| Formula weight                              | 838.75                                                | 802.4                                                | 848.46                                                 | 894.53                                                | 908.56                                                 |
| Crystal system                              | monoclinic                                            | orthorhombic                                         | Orthorhombic                                           | orthorhombic                                          | monoclinic                                             |
| Space group                                 | C2/c                                                  | Pca2 <sub>1</sub>                                    | $P$ na $2_1$                                           | $Pn2_1a$                                              | $P2_1/c$                                               |
| a (Å)                                       | 27.0808(19)                                           | 17.1671(6)                                           | 14.1022(4)                                             | 12.6131(14))                                          | 13.3871(10)                                            |
| b (Å)                                       | 12.0515(8)                                            | 9.4816(3)                                            | 19.7486(4)                                             | 16.3705(19)                                           | 13.6101(9)                                             |
| c(Å)                                        | 22.5312(16)                                           | 21.5862(6)                                           | 13.9570(6)                                             | 19.791(2)                                             | 25.3570(18)                                            |
| $\alpha$ (°)                                | 90                                                    | 90                                                   | 90                                                     | 90                                                    | 90                                                     |
| $\beta(^{\circ})$                           | 92.450(2)                                             | 90                                                   | 90                                                     | 90                                                    | 104.8700(10)                                           |
| γ (°)                                       | 90                                                    | 90                                                   | 90                                                     | 90                                                    | 90                                                     |
| $V(A)^3$                                    | 7346.7(9)                                             | 3513.6(3)                                            | 3887.0(2)                                              | 4086.4(8)                                             | 4465.3(5)                                              |
| Ζ                                           | 8                                                     | 4                                                    | 4                                                      | 4                                                     | 4                                                      |
| pcalcd (Mg/m <sup>3</sup> )                 | 1.517                                                 | 1.517                                                | 1.45                                                   | 1.454                                                 | 1.351                                                  |
| Abs coeff (mm <sup>-1</sup> )               | 0.818                                                 | 0.679                                                | 0.616                                                  | 0.589                                                 | 0.540                                                  |
| Abs correct                                 | multi-scan                                            | multi-scan                                           | multi-scan                                             | multi-scan                                            | multi-scan                                             |
| Transmiss max/min                           | 1.0000/0.0938                                         | 1.0000/0.5765                                        | 1.0000/0.6350                                          | 1.0000/0.6262                                         | 1.0000/0.8813                                          |
| F (000)                                     | 3424                                                  | 1656                                                 | 1752                                                   | 1848                                                  | 55402                                                  |
| Crystal size (mm)                           | 0.24 x 0.18 x 0.17                                    | 0.19 x 0.11 x 0.10                                   | 0.30 x 0.14 x 0.11                                     | 0.24 x 0.24 x 0.11                                    | 0.41 x 0.36 x 0.35                                     |
| $\Theta$ range (°)                          | 2.992-27.456                                          | 3.032-27.431                                         | 3.068-24.987                                           | 3.009-24.999                                          | 2.993-25.00                                            |
| Rflns/unique                                | 34985/8360                                            | 53039/7954                                           | 47657/6811                                             | 30590/7182                                            | 55402/7852                                             |
| R <sub>int</sub>                            | 0.176                                                 | 0.1408                                               | 0.0826                                                 | 0.0629                                                | 0.0443                                                 |
| Data/params                                 | 8360/443                                              | 7954/445                                             | 6811/471                                               | 7182/515                                              | 7852/582                                               |
| Goodness of fit $F^2$                       | 1.032                                                 | 1.087                                                | 1.047                                                  | 1.052                                                 | 1.200                                                  |
| $R_1/wR_2(I>2\sigma(I))$                    | 0.082/0.1862                                          | 0.0487/0.0945                                        | 0.0388/0.0888                                          | 0.0467/0.1136                                         | 0.1177/0.3143                                          |
| $R_1/wR_2$ (all data)                       | 0.1625/0.2365                                         | 0.0743/0.1071                                        | 0.0484/0.0938                                          | 0.053/0.1181                                          | 0.122/0.3163                                           |
| Abs. struct. param                          | -                                                     | 0.015(12)                                            | 0.011(10)                                              | 0.014(9)                                              | -                                                      |
| Largest diff. peak and hole (e $(A^{-3})$ ) | 0.71/-0.836                                           | 0.468/-0.575                                         | 0.393/-0.327                                           | 0.915/-0.389                                          | 1.976/-1.093                                           |
| CCDC No.                                    | 1535373                                               | 1535374                                              | 1535375                                                | 1535376                                               | 1535377                                                |

**Table S1.** Crystallographic Data for the Complexes (Mo $K_{\alpha}$  radiation)

| Complex                         | [CpFe(dppm)-                 | [CpFe(dppb)-                   | $[CpFe{PPh_2(OMe)}_2-$         | [CpFe(PPh <sub>2</sub> Me)-       | $[CpFe{PPh_2(OMe)}_3]$              |
|---------------------------------|------------------------------|--------------------------------|--------------------------------|-----------------------------------|-------------------------------------|
|                                 | $P(OMe)_3]PF_6$              | $P(OMe)_3]PF_6, CHCl_3$        | NCMe]PF <sub>6</sub>           | $\{PPh_2(OMe)\}_2]PF_6,$          | $PF_6$ , $CH_2Cl_2$                 |
|                                 |                              |                                |                                | 2CH <sub>2</sub> Cl <sub>2</sub>  |                                     |
| Empirical formula               | $C_{33}H_{36}FeO_3P_3, F_6P$ | $2(C_{36}H_{42}FeO_{3}P_{3}),$ | $C_{33}H_{34}FeO_2P_3, F_6P_2$ | $C_{44}H_{44}FeO_2P_3$ , $F_6P$ , | $C_{44}H_{44}FeO_3P_3$ , $F_6P_2$ , |
|                                 |                              | $3(CHCl_3), 2(F_6P)$           |                                | $2(CH_2Cl_2)$                     | CH <sub>2</sub> Cl <sub>2</sub>     |
| Formula weight                  | 774.35                       | 1990.95                        | 739.37                         | 1068.37                           | 999.45                              |
| Crystal system                  | monoclinic                   | monoclinic                     | monoclinic                     | triclinic                         | triclinic                           |
| Space group                     | $P2_1/c$                     | $P2_1/a$                       | $P2_1/c$                       | $P\bar{1}$                        | PĪ                                  |
| $a(\text{\AA})$                 | 19.3216(4)                   | 14.7697(5)                     | 9.6678(5)                      | 12.1751(16)                       | 12.4693(4)                          |
| b(A)                            | 18.9000(4)                   | 31.5883(8)                     | 28.7237(14)                    | 12.9407(19)                       | 13.1771(6)                          |
| <i>c</i> (Å)                    | 19.6203(4)                   | 18.7195(5)                     | 12.8949(7)                     | 17.154(2)                         | 16.1150(6)                          |
| $\alpha$ (°)                    | 90                           | 90                             | 90                             | 68.006(4)                         | 101.983(2)                          |
| $\beta(^{\circ})$               | 111.7630(10)                 | 97.9320(10)                    | 112.4920(10)                   | 69.407(4)                         | 102.7650(10)                        |
| γ (°)                           | 90                           | 90                             | 90                             | 82.255(4)                         | 108.874(2)                          |
| $V(\text{\AA})^3$               | 6654.2 (2)                   | 8650.0(4)                      | 3308.5(3)                      | 2345.9(6)                         | 2329.12(16)                         |
| Ζ                               | 8                            | 4                              | 4                              | 2                                 | 2                                   |
| pcalcd (Mg/m <sup>3</sup> )     | 1.546                        | 1.529                          | 1.484                          | 1.513                             | 1.425                               |
| Abs coeff $(mm^{-1})$           | 0.714                        | 0.837                          | 0.667                          | 0.748                             | 0.639                               |
| Abs correct                     | multi-scan                   | multi-scan                     | multi-scan                     | multi-scan                        | multi-scan                          |
| Transmiss max/min               | 1.0000/ 0.8467               | 1.0000/0.8227                  | 1.0000/0.8698                  | 1.0000/0.7954                     | 1.0000/0.8063                       |
| F (000)                         | 3184                         | 4072                           | 1520                           | 1096                              | 1028                                |
| Crystal size (mm)               | 0.50 x 0.14 x 0.13           | 0.55 x 0.16 x 0.10             | 0.32 x 0.25 x 0.24             | 0.49 x 0.38 x 0.26                | 0.42 x 0.39 x 0.04                  |
| $\Theta$ range (°)              | 3.009-25.00                  | 3.046-24.999                   | 3.109-24.996                   | 3.181-25                          | 3.18-25                             |
| Rflns/unique                    | 77137/11683                  | 107735/15210                   | 41814/5824                     | 29577/8225                        | 18459/8220                          |
| R <sub>int</sub>                | 0.0752                       | 0.0832                         | 0.0402                         | 0.0568                            | 0.0296                              |
| Data/params                     | 11688/853                    | 15210/1027                     | 5825/418                       | 8225/572                          | 8220/562                            |
| Goodness of fit $F^2$           | 1.036                        | 1.045                          | 1.033                          | 1.077                             | 1.044                               |
| $R_1/wR_2$ ( $I > 2\sigma(I)$ ) | 0.0431/0.087                 | 0.078/0.1986                   | 0.0449/0.1095                  | 0.0811/0.2378                     | 0.0856/0.2547                       |
| $R_1/wR_2$ (all data)           | 0.0752/0.0979                | 0.1122/0.2221                  | 0.0537/0.1152                  | 0.1099/0.2763                     | 0.0979/0.2691                       |
| Largest diff. peak and hole (e  | 0.49/-0.399                  | 1.495/-0.966                   | 1.058/-1.028                   | 1.545/-1.112                      | 4.179/-1.231                        |
| Å <sup>-3</sup> )               |                              |                                |                                |                                   |                                     |
|                                 |                              |                                |                                |                                   |                                     |
| Abs. struct. param              | -                            | -                              | -                              | -                                 | -                                   |
| CCDC No.                        | 1535378                      | 1535379                        | 1549806                        | 1549807                           | 1550539                             |

**Table S1.** Crystallographic Data for the Complexes (Mo $K_{\alpha}$  radiation)



**Figure S1.** Time-resolved  ${}^{31}P{}^{1}H$  NMR spectra of the ligand exchange of [CpFe(PPh<sub>2</sub>Me)NCMe]PF<sub>6</sub> with PPh(OMe)<sub>2</sub> (10 eq.) at 293 K in CDCl<sub>3</sub>.



**Figure S2.** Time dependence of the concentrations of reactants and products in the reaction of  $[CpFe(PPh_2Me)_2NCMe]PF_6$  with 5 equivalents of  $PPh_2(OMe)$  in  $CDCl_3$  at 293 K:  $[CpFe(PPh_2Me)_2NCMe]PF_6$  ( $\blacksquare$ ),  $[CpFe(PPh_2Me)_2PPh_2(OMe)]PF_6$  ( $\blacklozenge$ ),  $[CpFe(PPh_2Me)\{PPh_2(OMe)\}_2]PF_6$  ( $\blacktriangle$ ),  $[CpFe(PPh_2Me)\{PPh_2(OMe)\}_2NCMe]PF_6$  ( $\blacklozenge$ ),  $[CpFe\{PPh_2(OMe)\}_2NCMe]$  ( $\bigtriangleup$ ), and  $[CpFe\{PPh_2(OMe)\}_3]$  ( $\diamondsuit$ ).



**Figure S3.** Time-resolved  ${}^{31}P{}^{1}H$  NMR spectra of the ligand exchange of [CpFe(PPh<sub>2</sub>Me)NCMe]PF<sub>6</sub> with PPh<sub>2</sub>(O*i*Pr) (1 eq.) at 293 K in CDCl<sub>3</sub>.



**Figure S4-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppm)NCMe]PF<sub>6</sub> in acetone-*d*<sub>6</sub> at 293 K.



**Figure S4-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppm)NCMe]PF<sub>6</sub> in acetone- $d_6$  at 293 K (top: DEPT135, bottom: decoupling).



**Figure S4-3.** <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppm)NCMe]PF<sub>6</sub> in acetone- $d_6$  at 293 K.



**Figure S5-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppe)NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S5-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppe)NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S5-3. <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppe)NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S5-4.** ORTEP drawing of [CpFe(dppe)NCMe]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S6-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppp)NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S6-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppp)NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



**Figure S6-3.** <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppp)NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S6-4.** ORTEP drawing of [CpFe(dppp)NCMe]PF<sub>6</sub>· CHCl<sub>3</sub>. Hydrogen atoms, hexafluorophosphate anion, and one CHCl<sub>3</sub> molecule are omitted for clarity.



**Figure S7-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppb)NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S7-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppb)NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



**Figure S7-3.** <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppb)NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S8-1.** <sup>1</sup>H NMR Spectrum of  $[CpFe(PPh_2Me)_2I]$  in benzene- $d_6$  at 293 K.



**Figure S8-2.** <sup>13</sup>C NMR Spectra of  $[CpFe(PPh_2Me)_2I]$  in benzene-*d*<sub>6</sub> at 293 K (top: DEPT135, bottom: decoupling).



**Figure S8-3.** <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of  $[CpFe(PPh_2Me)_2I]$  in benzene-*d*<sub>6</sub> at 293 K.



**Figure S8-4.** ORTEP drawing of  $[CpFe(PPh_2Me)_2I]$ ·  $CH_2Cl_2$ . Hydrogen atoms and one  $CH_2Cl_2$  molecule are omitted for clarity.



**Figure S9-1.** <sup>1</sup>H NMR Spectrum of [CpFe(PPh<sub>2</sub>Me)<sub>2</sub>NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S9-2.** <sup>13</sup>C NMR Spectra of [CpFe(PPh<sub>2</sub>Me)<sub>2</sub>NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



**Figure S9-3.** <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(PPh<sub>2</sub>Me)<sub>2</sub>NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S9-4.** ORTEP drawing of  $[CpFe(PPh_2Me)_2NCMe]PF_6$ . Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S10-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppm)P(OMe)<sub>3</sub>]PF<sub>6</sub> in acetone-*d*<sub>6</sub> at 293 K.



**Figure S10-2.** <sup>13</sup>C NMR Spectra of  $[CpFe(dppm)P(OMe)_3]PF_6$  in acetone- $d_6$  at 293 K (top: DEPT135, bottom: decoupling).



**Figure S10-3.** <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of  $[CpFe(dppm)P(OMe)_3]PF_6$  in acetone- $d_6$  at 293 K.



**Figure S10-4.** ORTEP drawing of [CpFe(dppm)P(OMe)<sub>3</sub>]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S11-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppe)P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S11-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppe)P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



**Figure S11-3.** <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppe)P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S11-4.** ORTEP drawing of [CpFe(dppe)P(OMe)<sub>3</sub>]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S12-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppp)P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S12-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppp)P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



**Figure S12-3.** <sup>31</sup>P $\{^{1}H\}$  NMR Spectrum of [CpFe(dppp)P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S12-4.** ORTEP drawing of [CpFe(dppp)P(OMe)<sub>3</sub>]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S13-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppb)P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S13-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppb)P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S13-3. <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppb)P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S13-4.** ORTEP drawing of  $2([CpFe(dppp)P(OMe)_3]PF_6) \cdot 3CHCl_3$ . Hydrogen atoms, hexafluorophosphate anion, and three CHCl\_3 molecules are omitted for clarity.



Figure S14-1. <sup>1</sup>H NMR Spectrum of [CpFe(PPh<sub>2</sub>Me)<sub>2</sub>P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S14-2.** <sup>13</sup>C NMR Spectra of [CpFe(PPh<sub>2</sub>Me)<sub>2</sub>P(OMe)<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S14-3.  ${}^{31}P{}^{1}H$  NMR Spectrum of  $[CpFe(PPh_2Me)_2P(OMe)_3]PF_6$  in CDCl<sub>3</sub> at 293 K.



**Figure S14-4.** ORTEP drawing of  $[CpFe(PPh_2Me)_2P(OMe)_3]PF_6$ · CH<sub>2</sub>Cl<sub>2</sub>. Hydrogen atoms, hexafluorophosphate anion, and one CH<sub>2</sub>Cl<sub>2</sub> molecule are omitted for clarity.



Figure S15-1. <sup>1</sup>H NMR Spectrum of [CpFe{P(OMe)<sub>3</sub>}<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S15-2.** <sup>13</sup>C NMR Spectra of  $[CpFe{P(OMe)_3}_3]PF_6$  in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S15-3.  ${}^{31}P{}^{1}H$  NMR Spectrum of [CpFe{P(OMe)<sub>3</sub>}]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K



**Figure S15-4.** ORTEP drawing of  $[CpFe{P(OMe)_3}_3]PF_6$ . Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S16-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppe)PPh(OMe)<sub>2</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S16-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppe)PPh(OMe)<sub>2</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S16-3. <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppe)PPh(OMe)<sub>2</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S16-4.** ORTEP drawing of [CpFe(dppe)PPh(OMe)<sub>2</sub>]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



Figure S17-1. <sup>1</sup>H NMR Spectrum of [CpFe(dppe)PPh<sub>2</sub>(OMe)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S17-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppe)PPh<sub>2</sub>(OMe)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S17-3. <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppe)PPh<sub>2</sub>(OMe)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S17-4.** ORTEP drawing of [CpFe(dppe)PPh<sub>2</sub>(OMe)]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



Figure S18-1. <sup>1</sup>H NMR Spectrum of [CpFe(dppe)PPh<sub>2</sub>(OEt)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S18-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppe)PPh<sub>2</sub>(OEt)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S18-3. <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppe)PPh<sub>2</sub>(OEt)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S18-4.** ORTEP drawing of [CpFe(dppe)PPh<sub>2</sub>(OEt)]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S19-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppe)PPh<sub>2</sub>(O*i*Pr)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S19-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppe)PPh<sub>2</sub>(O*i*Pr)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S19-3.  ${}^{31}P{}^{1}H$  NMR Spectrum of [CpFe(dppe)PPh<sub>2</sub>(O*i*Pr)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S19-4.** ORTEP drawing of  $[CpFe(dppe)PPh_2(OiPr)]PF_6$ · CHCl<sub>3</sub>. Hydrogen atoms, hexafluorophosphate anion, and one CHCl<sub>3</sub> molecule are omitted for clarity.



Figure S20-1. <sup>1</sup>H NMR Spectrum of [CpFe(PPh<sub>2</sub>Me)PPh(OMe)<sub>2</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S20-2.** <sup>13</sup>C NMR Spectra of [CpFe(PPh<sub>2</sub>Me)<sub>2</sub>PPh(OMe)<sub>2</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



**Figure S20-3.** <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of  $[CpFe(PPh_2Me)_2PPh(OMe)_2]PF_6$  in CDCl<sub>3</sub> at 293 K.



**Figure S20-4.** ORTEP drawing of  $[CpFe(PPh_2Me)_2PPh(OMe)_2]PF_6$ · CH<sub>2</sub>Cl<sub>2</sub>. Hydrogen atoms, hexafluorophosphate anion, and one CH<sub>2</sub>Cl<sub>2</sub> molecule are omitted for clarity.



Figure S21-1. <sup>1</sup>H NMR Spectrum of [CpFe(dppp)PPh<sub>2</sub>(OMe)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S21-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppp)PPh<sub>2</sub>(OMe)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S21-3. <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppp)PPh<sub>2</sub>(OMe)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S21-4.** ORTEP drawing of [CpFe(dppp)PPh<sub>2</sub>(OMe)]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



Figure S22-1. <sup>1</sup>H NMR Spectrum of [CpFe(dppp)PPh<sub>2</sub>(OEt)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S22-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppp)PPh<sub>2</sub>(OEt)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S22-3. <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of [CpFe(dppp)PPh<sub>2</sub>(OEt)]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S22-4.** ORTEP drawing of [CpFe(dppp)PPh<sub>2</sub>(OEt)]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S23-1.** <sup>1</sup>H NMR Spectrum of [CpFe(dppp)PPh(OMe)<sub>2</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S23-2.** <sup>13</sup>C NMR Spectra of [CpFe(dppp)PPh(OMe)<sub>2</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S23-3.  ${}^{31}P{}^{1}H$  NMR Spectrum of [CpFe(dppp)PPh(OMe)<sub>2</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S23-4.** ORTEP drawing of [CpFe(dppp)PPh(OMe)<sub>2</sub>]PF<sub>6</sub>. Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S24-1.** <sup>1</sup>H NMR Spectrum of [CpFe(PPh<sub>2</sub>Me){PPh<sub>2</sub>(OMe)}<sub>2</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



Figure S24-2. <sup>31</sup>P{<sup>1</sup>H} NMR Spectrum of  $[CpFe(PPh_2Me){PPh_2(OMe)}_2]PF_6$  in CDCl<sub>3</sub> at 293 K.



**Figure S24-3.** ORTEP drawing of  $[CpFe(PPh_2Me){PPh_2(OMe)}_2]PF_6 \cdot 2CH_2Cl_2$ . Hydrogen atoms, hexafluorophosphate anion and  $CH_2Cl_2$  molecules are omitted for clarity.



**Figure S25-1.** <sup>1</sup>H NMR Spectrum of [CpFe{PPh<sub>2</sub>(OMe)}<sub>2</sub>NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S25-2.** <sup>13</sup>C NMR Spectra of [CpFe{PPh<sub>2</sub>(OMe)}<sub>2</sub>NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S25-3.  ${}^{31}P{}^{1}H$  NMR Spectrum of [CpFe{PPh<sub>2</sub>(OMe)}<sub>2</sub>NCMe]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S25-4.** ORTEP drawing of  $[CpFe{PPh_2(OMe)}_2NCMe]PF_6$ . Hydrogen atoms and hexafluorophosphate anion are omitted for clarity.



**Figure S26-1.** <sup>1</sup>H NMR Spectrum of [CpFe{PPh<sub>2</sub>(OMe)}<sub>3</sub>]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S26-2.** <sup>13</sup>C NMR Spectra of  $[CpFe{PPh_2(OMe)}_3]PF_6$  in CDCl<sub>3</sub> at 293 K (top: DEPT135, bottom: decoupling).



Figure S26-3.  ${}^{31}P{}^{1}H$  NMR Spectrum of [CpFe{PPh<sub>2</sub>(OMe)}]PF<sub>6</sub> in CDCl<sub>3</sub> at 293 K.



**Figure S26-4.** ORTEP drawing of  $[CpFe{PPh_2(OMe)}_3]PF_6$ . Hydrogen atoms, hexafluorophosphate anion,  $CH_2Cl_2$  molecule are omitted for clarity.