## Supporting information

Isothermal crystallization kinetics and time-temperature-transformation of the conjugated polymer: poly(3-(2'-ethyl)hexylthiophene)

Liyang Yu,<sup>1\*</sup> Emily Davidson,<sup>2</sup> Anirudh Sharma,<sup>3</sup> Mats R. Andersson,<sup>3</sup> Rachel Segalman,<sup>2,4</sup> Christian Müller<sup>1\*</sup>

- 1. Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Göteborg, Sweden. E-mail: <a href="mailto:liyangy@chalmers.se">liyangy@chalmers.se</a>; <a href="mailto:christian.muller@chalmers.se">christian.muller@chalmers.se</a>
- 2. Departments of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States.
- 3. Flinders Centre for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia
- Materials Department, University of California, Santa Barbara, Santa Barbara, California
  93106, United States.

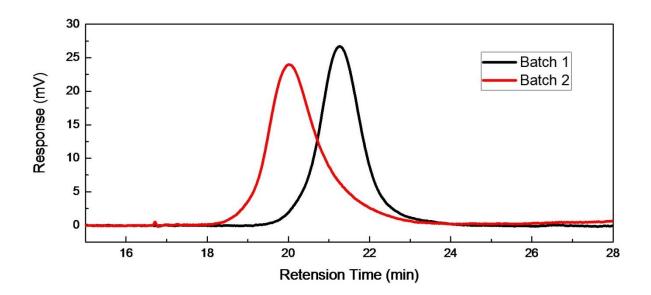



Figure S1. Size exclusion chromatography (SEC) analysis of the two batches of P3EHT.

| _ | Batch | Calibration method                            | $M_p$ | $M_n$ | $M_{\rm w}$ | $M_z$ | $M_{z+1}$ | $M_{\nu}$ | PDI   |
|---|-------|-----------------------------------------------|-------|-------|-------------|-------|-----------|-----------|-------|
|   |       | Polystyrene standard<br>Universal calibration | 44271 | 24305 | 43232       | 65836 | 106883    | 61725     | 1.779 |
|   |       |                                               |       |       | 34704       | 73317 | 186917    | 63148     | 2.767 |
|   | 2     | Polystyrene standard<br>Universal calibration | 14085 | 10599 | 15363       | 20747 | 28308     | 19827     | 1.449 |
|   |       | Universal calibration                         | 11675 | 6528  | 14501       | 27024 | 51146     | 24094     | 2.221 |

Table S1. Molecular weight values obtained from the SEC analysis for the two batches of P3EHT

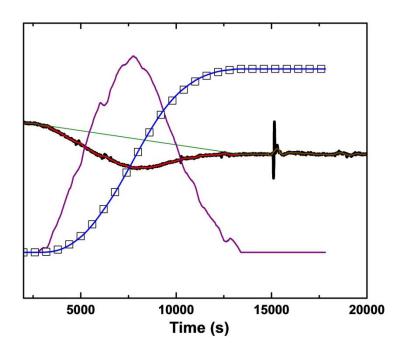



Figure S2. Plot showing all the data processing performed on the differential scanning calorimetry (DSC) isotherm for the higher molecular-weight P3EHT crystallizing at 50 °C: Black: raw data obtained from the DSC where data points were recorded every 3 seconds Red: smoothed curve from the raw data. Method: applying Savitzky–Golay filter where the window size was set to be 200 data points

Green: baseline. Method: fitting a line from the peak start to peak end by visualization based on the red curve

Purple: red curve after the baseline subtraction

Blue: integration of the purple curve with its maximum value normalized to 1

Black squares: reduced to evenly spaced X with sampling the mean value of every 200 data points from the blue curve

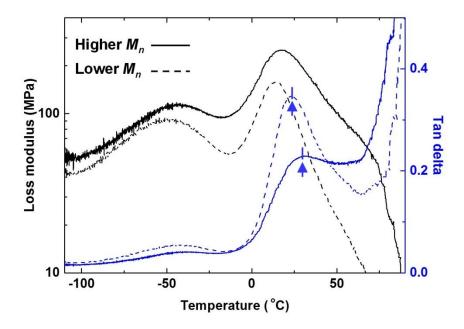



Figure S3. Loss modulus and loss tangent of higher (solid lines) and lower (dash lines) molecular weight P3EHT measured with dynamic mechanical analysis (DMA) at a frequency of 1 Hz; glass transition temperature ( $T_g$ ) from the peak of the loss tangent tan  $\delta$  (blue).

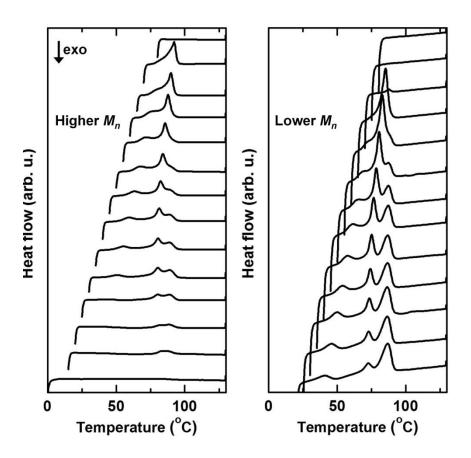



Figure S4. DSC thermogram displaying the sequential melting after the isothermal crystallization ( $T_c$  indicated as the lowest temperature of every scan) for 30,000 seconds of both batches of P3EHT.




Figure S5. Photograph of higher molecular P3EHT thin films isothermal crystallized on the Kofler bench for 48 hours.

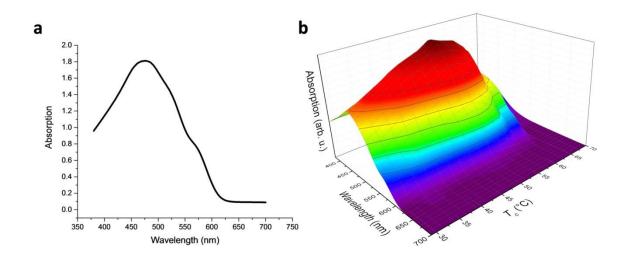



Figure S6. a) UV-vis absorption of the thin film in Fig. 3a for  $T_c = 50$  °C. (b) A plot illustrating the evolution of the absorption with  $T_c$ , obtained from the thin film in Fig. 3a.