Supporting Information

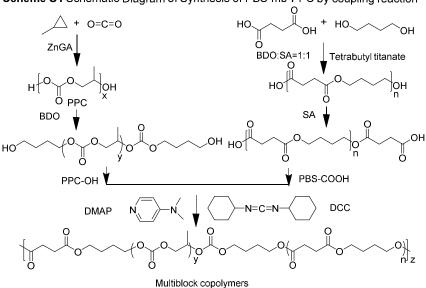
A novel multiblock copolymer of CO₂-based PPC-*mb*-PBS: from simulation to experiment

Jiaxiang Qin,^{1§} Weikeng Luo,^{1§} Meng Li,² Pin Chen, ³ Shuanjin Wang,¹ Shan Ren,¹ Dongmei Han¹, Min Xiao^{1*},and Yuezhong Meng^{1*}

- State Key Laboratory of Optoelectronic Materials and Technologies/ The Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
- Department of Applied Chemistry, School of Science, Xi'an Jiaotong University, No.28, Xianning West Road, Xi'an, Shaanxi, 710049, P.R. China
- National Supercomputer Centre in Guangzhou, No. 132, Waihuan Dong Road, Guangzhou, 510006, P.R. China

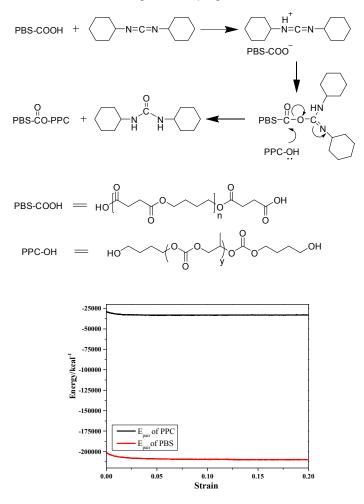
*Correspondence authors.

E-mail: mengyzh@mail.sysu.edu.cn; stsxm@mail.sysu.edu.cn


5 pages, 2 schemes, 5 figures and 1 table

Measurement:

¹H-NMR spectra of the polyesters were recorded on a Bruker DRX-500 NMR spectrometer at room temperature. Deuterated chloroform (CDCl₃) was used as solvent, chemical shifts were expressed in ppm with respect to tetramethylsilane (TMS). Diffusion ordered spectroscopy (DOSY) experiments were performed with a Bruker DRX-600 NMR spectrometer operating at 600 MHz, using CDCl₃ as solvent. Number-average molecular mass (Mn)and polydispersity index (PDI) of the resultant polymer product were measured using a gel permeation chromatography (GPC) system (Waters 515 HPLC Pump, Waters 2414 detector) with a set of three columns (Waters Styragel 500, 10,000, and 100,000 A °) and chloroform (HPLC grade) as eluent. The GPC system was calibrated by a series of poly-styrene standards with polydispersities of 1.02 standards. The glass transition temperature (T_g) of the copolymers was measured by a DSC (Netzsch Model 204) and the measurements were carried out under nitrogen flow from -70 to 180 $^{\circ}$ C at a heating rate of 5 $^{\circ}$ C /min. T_{g} of the samples was determined from the second run. The tensile tests were performed using a temperature-controlled tensile tester (New SANS, Shenzhen, China) at 0 and 25 $^{\circ}$ C with a crosshead speed of 50 mm/min. Five specimens of each sample were tested, and the average results were recorded.


Film preparation:

Prior to measurements of mechanical properties, the film samples of PPC, PBS and PPC-*mb*-PBSs copolymers (thickness ~0.2 mm) were obtained by solution-cast method. The polyester was dissolved in chloroform (10 wt %) and then cast on a polytetrafluoroethylene (PTFE) dish, followed by evaporation of solvent at 25 °C for 24 h. The films were further dried at 40 °C in vacuum for 24 h.

Scheme S1 Schematic Diagram of Synthesis of PBS-mb-PPC by coupling reaction

Scheme S2 Schematic Diagram of coupling reaction between PPC-OH and PBS-COOH

 $E_{\text{pair}} = \text{Pairwise energy} (E_{\text{vdwl}} + E_{\text{coul}} + E_{\text{long}}), E_{\text{vdwl}} = \text{Vander Waal pairwise energy (includes etail)}, E_{\text{coul}} = \text{Coulombic pairwise energy}, E_{\text{long}} = \text{Long-range kspace energy}$

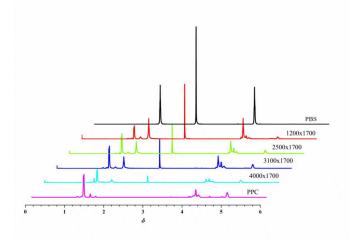


Fig. S2 ¹H-NMR spectra of PPC-mb-PBS copolyester: δ(PC,CH)=5.0, δ(BS,CH₂)=2.7

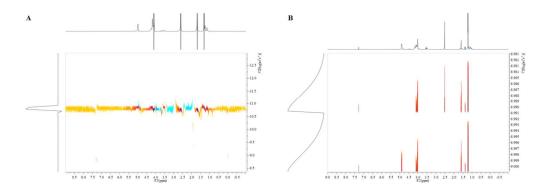
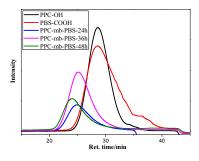



Fig. S3 DOSY spectrum of copolyester : (A) PPC-mb-PBS; (B) Mixture of PPC-OH and PBS-COOH

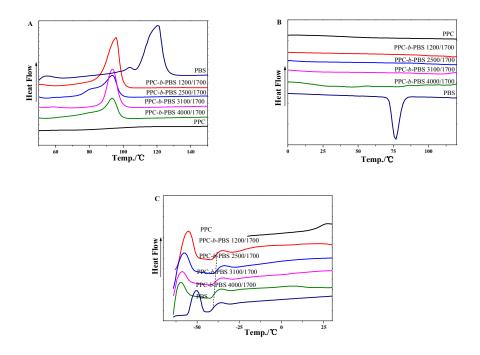


Fig. S5 DSC curves of PPC, PBS and PPC-mb-PBS: (A) first heating runs (B) cooling runs; (C) second

heating runs

Tab. S1 Comparison of experimental results with calculation datas from simulations of different block sizes

Block length (PPC-b-PBS)	$T_{ m g}^{ m a}$ /°C	$T_{ m g}{}^{ m b}\!/{ m C}$	Deviation rate/%
PBS	-40.2	-42.0	4.5
1200/1700	-38.2	-39.1	2.3
2700/1700	-42.5	-38.1	11.5
3100/1700	-41.4	-39.0	6.2
4000/1700	-40.9	-39.9	2.5
РРС	-22.3	23.2	4.0

^a Measured by DSC. ^b Calculated by molecular dynamic simulation.