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SI.1 – Summary of the approximations

Classical trajectories

In the coupled-trajectory mixed quantum-classical (CT-MQC) algorithm,1,2 classical trajec-

tories are employed to mimic the dynamics of the nuclear wavefunction χ(R, t) that evolves

according to the time-dependent Schrödinger equation of the exact factorization3,4

(
Nn∑
ν=1

[−i~∇ν + Aν(R, t)]
2

2Mν

+ ε(R, t)

)
χ(R, t) = i~∂tχ(R, t). (S1)

The trajectories can be assimilated to a moving grid, therefore it seems more natural to work

in a reference frame that moves with the trajectories, i.e., the Lagrangian frame, rather than

in the fixed Eulerian frame. In the Lagrangian frame time derivatives are calculated “along

the flow”, thus all partial time derivatives have to be replaced by total derivatives, using the

chain rule d/dt = ∂t +
∑

ν Vν · ∇ν . Here, the quantity Vν is the velocity of the moving grid

point, i.e., the velocity of each trajectory which will be determined below.

Writing the nuclear wavefunction in polar form, χ(R, t) = |χ(R, t)|e(i/~)S(R,t), the real

part of Eq. (S1) yields

∂

∂t
S(R, t) = −

Nn∑
ν=1

[∇νS(R, t) + Aν(R, t)]
2

2Mν

− ε(R, t) + ~2
Nn∑
ν=1

1

2Mν

∇2
ν |χ(R, t)|
|χ(R, t)|

, (S2)

a Hamilton-Jacobi equation in the presence of the time-dependent vector potential Aν(R, t)

and of a potential term (last term in Eq. (S2)) known in the framework of Bohmian dynamics

as quantum potential. The imaginary part of Eq. (S1) yields a continuity equation for the

nuclear density. Neglecting the quantum potential, Eq. (S2) becomes a (standard) classical

Hamilton-Jacobi equation,

Ṡ(R, t) = −
Nn∑
ν=1

[
[∇νS(R, t) + Aν(R, t)]

2

2Mν

−Vν · ∇νS(R, t)

]
− ε(R, t), (S3)
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where Ṡ stands for the full time derivative of S. The canonical momentum of the moving

grid is defined as MνVν = ∇νS0(R, t) + Aν(R, t) = Pν . Taking the spatial derivative ∇ν′

on both sides, Eq. (S3) reduces to a classical evolution equation for the characteristics

Ṗν(t)
∣∣∣
R(I)(t)

=−∇ν

(
ε(R, t) +

Nn∑
ν′=1

Aν′(R, t) ·
Pν′(R, t)

Mν

)
+ Ȧν(R, t)

∣∣∣∣∣
R(I)(t)

. (S4)

At time t all quantities are evaluated at the grid point R(I)(t).

Choice of the gauge

The product form the electron-nuclear wavefunction Ψ(r,R, t) = ΦR(r, t)χ(R, t) is invariant

under a (R, t)-phase transformation5–7 of ΦR(r, t) and χ(R, t). In order to fix this gauge

freedom, the additional constraint

ε(R, t) +
Nn∑
ν=1

Aν(R, t) ·
Pν(R, t)

Mν

= 0. (S5)

is imposed in the CT-MQC scheme. Eq. (S4) thus simplifies to Ṗν(t) = Ȧν(t).

Time-dependent potential energy surface

The expression of the time-dependent potential energy surface is

ε(R, t) =
〈

ΦR(t)
∣∣∣ĤBO + Û coup

en − i~∂t
∣∣∣ΦR(t)

〉
r
, (S6)

with the electron-nuclear coupling operator defined as

Û coup
en [ΦR, χ] =

Nn∑
ν=1

[
(−i~∇ν −Aν)

2

2Mν

+
1

Mν

(
−i~∇νχ

χ
+ Aν

)
· (−i~∇ν + Aν)

]
. (S7)
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Neglecting the first term in the definition of Û en
coup[ΦR, χ] that depends on second-order

derivatives of the electronic wavefunction with respect to the nuclear positions, and working

in the Lagrangian frame, the approximate expression of the time-dependent potential energy

surface, εapx(R, t), becomes

εapx(R, t) =
〈

ΦR(t)
∣∣∣ĤBO

∣∣∣ΦR(t)
〉
r
− i~

〈
ΦR(t) | Φ̇R(t)

〉
r
−

Nn∑
ν=1

Pν

Mν

·Aν(R, t). (S8)

Eq. (S8) is obtained by replacing the partial time derivative in Eq. (S6) with the total time

derivative of ΦR(r, t). The additional term from the chain rule used above contains ∇ν ,

which leads to the appearance of the time-dependent vector potential when averaged over

the electronic wavefunction.

The Born-Huang expansion

The CT-MQC scheme is based on the Born-Huang expansion of the electronic wavefunction

ΦR(r, t),

ΦR(r, t) =
∑
l

Cl (R, t)ϕ
(l)
R (r), (S9)

where the adiabatic states ϕ(l)
R (r) are the eigenstates of the Hamiltonian ĤBO with eigen-

values ε(l)BO(R). This expansion is inserted in the electronic evolution equation of the exact

factorization, i.e.,

(
ĤBO + Û coup

en [ΦR, χ]− ε(R, t)
)

ΦR(r, t) = i~∂tΦR(r, t). (S10)

Furthermore, the partial time derivative of the electronic wavefunction is replaced by the

total time derivative, according to ∂tΦR(r, t)
∣∣
R(I)(t)

= Φ̇R(r, t)−
∑Nn

ν=1
Pν(t)
Mν
·∇νΦR(r, t)

∣∣
R(I)(t)

(when evaluated along the trajectory). These two operations allow us, starting from Eq. (S10),

S4



to derive a set of coupled partial differential equations for the coefficients Cl (R, t),

Ċ
(I)
l (t) =

−i
~

[
ε
(l)(I)
BO − εapx(I)(t)−

Nn∑
ν=1

P
(I)
ν (t) + iQ(I)

ν (t)

Mν

·Aν(t)

]
C

(I)
l (t)

−
Nn∑
ν=1

iQ(I)
ν (t)

Mν

∇νC
(I)
l (t)−

Nn∑
ν=1

P
(I)
ν (t) + iQ(I)

ν (t)

Mν

∑
k

C
(I)
k (t)d

(I)
ν,lk. (S11)

All quantities labeled by a superscript (I) are evaluated at the position R(I)(t) of the tra-

jectory at time t, as they depend on nuclear positions. The nonadiabatic coupling vectors

have been introduced in the above expression, i.e., d(I)
ν,lk = 〈ϕ(l)

R(I)(t)
|∇νϕ

(k)

R(I)(t)
〉r. In deriving

Eq. (S11), we have employed the polar representation of the nuclear wavefunction in the

electron-nuclear coupling operator Û coup
en of Eq. (S7), i.e.,

−i~∇νχ
(I)(t)

χ(I)(t)
+ A(I)

ν (t) =
[
∇νS

(I)(t) + A(I)
ν (t)

]
+ i
−~∇ν

∣∣χ(I)(t)
∣∣

|χ(I)(t)|

= P(I)
ν (t) + iQ(I)

ν (t). (S12)

This equation contains the quantities P(I)
ν (t), the classical nuclear momentum, and Q(I)

ν (t),

the signature quantity of the exact factorization that we have dubbed “quantum momentum”.

The gauge condition (S5) is introduced in Eq. (S11) to obtain

Ċ
(I)
l (t) =

−i
~

[
ε
(l)(I)
BO −

Nn∑
ν=1

iQ(I)
ν (t)

Mν

·Aν(t)

]
C

(I)
l (t)

−
Nn∑
ν=1

iQ(I)
ν (t)

Mν

∇νC
(I)
l (t)−

Nn∑
ν=1

Pν(t) + iQ(I)
ν (t)

Mν

∑
k

C
(I)
k (t)d

(I)
ν,lk. (S13)

On the right-hand side of Eq. (S13), the terms that do not contain the quantum momentum

Q(I)
ν (t) are exactly the same as in the Ehrenfest and surface hopping schemes. An addi-

tional approximation is considered at this point, that is, neglecting all terms in the above

equation that contain products of the quantum momentum, inducing decoherence, with the

nonadiabatic coupling vectors, driving the nonadiabatic population exchange between elec-
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tronic states. Such an approximation, easy to relax if not accurate enough, is based on the

hypothesis that the nonadiabatic coupling vectors are localized in space such that the two

effects, decoherence and population exchange, can be clearly separated in time.

The approximate form of the spatial derivative of the coefficients of the Born-Huang

expansion used in the CT-MQC algorithm is ∇νC
(I)
l (t) = (i/~)f

(I)
l,ν (t)C

(I)
l (t). The quantity

f
(I)
l,ν (t) is the time-integrated adiabatic force

f
(I)
l,ν (t) = −

∫ t

dt′∇νε
(l),(I)
BO . (S14)

With this approximation, the electronic evolution equation (S13) is no longer a partial dif-

ferential equation, but an ordinary differential equation.

From the definition of the time-dependent vector potential

Aν(R, t) = 〈ΦR(t) | − i~∇νΦR(t)〉r , (S15)

it is easy to see that when the Born-Huang expansion is used for the electronic wavefunction,

such spatial derivatives appear. Therefore, related to the discussion just presented, we can

now provide the explicit expression of the time-dependent vector potential evaluated along

the trajectory I, namely

A(I)
ν (t) =

∑
l

∣∣∣C(I)
l (t)

∣∣∣2 f (I)l,ν (t) + ~ Im
∑
l,k

C
(I)∗
l (t)C

(I)
k (t)d

(I)
ν,lk. (S16)

It depends on the adiabatic potential energy, via its dependence on f
(I)
l,ν (t), and on the non-

adiabatic coupling vectors.
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SI.2 – Evaluation of the quantum momentum

The quantum momentum has been introduced in Eq. (S12), and defined as

Q(I)
ν (t) =

−~∇ν

∣∣χ(I)(t)
∣∣

|χ(I)(t)|
=
−~∇ν

∣∣χ(I)(t)
∣∣2

2 |χ(I)(t)|2
. (S17)

It appears as a purely imaginary correction to the (real) classical momentum in the expression

of the electron-nuclear coupling operator Û coup
en [ΦR, χ]. Here, |χ(I)(t)|2 stands for the value

of the nuclear density evaluated at the position of the I−th trajectory. Due to the presence

of the spatial derivative of the nuclear density in Eq. (S17), the quantum momentum clearly

encloses information about the “dispersion” of the trajectories in configuration space.

In the derivation of the CT-MQC algorithm, we have adopted a trajectory-based rep-

resentation of the nuclear evolution. It follows that information about the nuclear density

has to be somehow recovered in order to evaluate the quantum momentum. In Ref.,2 we

have proposed a procedure for determining numerically the quantum momentum, based on

the representation of the nuclear density as a sum of Gaussian-shaped wavepackets, one

for each electronic state considered in the simulation. In order to make the calculation of

the quantum momentum more flexible and adaptable to general situations, we propose in

the following a new procedure for its calculation. Such procedure has been implemented in

CPMD.8

The most natural way of reconstructing the nuclear density |χ(R, t)|2 from a distribution

of classical trajectories is to express it as a sum of Gaussians, each centered at the position

of the trajectories. Therefore, we introduce the quantity

g
σ
(J)
ν (t)

(
Rν −R(J)

ν (t)
)

=

(
1

2πσ
(J)
ν

2
(t)

) 3
2

exp

−
[
Rν −R(J)

ν (t)
]2

2σ
(J)
ν

2
(t)

, (S18)

which is a normalized Gaussian centered at R(J)
ν (t) with variance σ(J)

ν (t), with Rν repre-
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senting the three-dimensional position vector corresponding to the nucleus ν. The nuclear

density in configuration space can thus be expressed as a (normalized) sum of such Gaussian

functions,

|χ(R, t)|2 =
1

Ntr

Ntr∑
J=1

Nn∏
ν=1

g
σ
(J)
ν (t)

(
Rν −R(J)

ν (t)
)
, (S19)

which becomes

∣∣χ(I)(t)
∣∣2 =

1

Ntr

Ntr∑
J=1

Nn∏
ν=1

g
σ
(J)
ν (t)

(
R(I)
ν (t)−R(J)

ν (t)
)

(S20)

when evaluated at time t at the position R(I)
ν (t) of the I−th classical trajectory. This is the

expression needed to evaluate the quantum momentum. In fact, according to its definition

given in Eq. (S17), we can easily derive

Q(I)
ν (t) =

Ntr∑
J=1

W IJ
ν (t)

[
R(I)
ν (t)−R(J)

ν (t)
]

(S21)

where

W IJ
ν (t) =

~
∏

ν′ gσ(J)

ν′ (t)

(
R

(I)
ν′ (t)−R

(J)
ν′ (t)

)
2σ

(J)
ν

2
(t)
∑

K

∏
ν′ gσ(K)

ν′ (t)

(
R

(I)
ν′ (t)−R

(K)
ν′ (t)

) . (S22)

Performing the sum over the index J , thus over the trajectories, in Eq. (S21), the quantum

momentum results

Q(I)
ν (t) = α(I)

ν (t)R(I)
ν (t)−R

(I)
0,ν(t). (S23)

From this derivation, it is clear that evaluatingQ(I)
ν (t) for the trajectory I requires knowledge

of the positions of all trajectories, necessary to perform the summation in Eq. (S21). The

trajectories become thus coupled through the quantum momentum.
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The quantity α
(I)
ν (t) is evaluated as α(I)

ν (t) =
∑

JW
IJ
ν (t), whereas the expression of

R
(I)
0,ν(t) =

∑
JW

IJ
ν (t)R(J)

ν (t) will be simplified below. To this end, let us recall Eq. (4) of the

main text, namely the term containing the quantum momentum in the evolution equation

for C(I)
l (t). Introducing Eq. (S23), we obtain

Ċ
(I)
qm l(t) = −

Nn∑
ν=1

α
(I)
ν R(I)

ν (t)−R
(I)
0,ν

~Mν

·

[∑
k

∣∣∣C(I)
k (t)

∣∣∣2 f (I)k,ν (t)− f
(I)
l,ν (t)

]
C

(I)
l (t). (S24)

As it appears in Eq. (S23), the quantity R
(I)
0,ν is independent of the state index l. However,

due to the approximations introduced in the framework of the exact factorization to derive

Eqs. (1) of the main text, this form of the quantum momentum (Eq. (S23)) does not sat-

isfy the physical condition that no population transfer among electronic states should be

observed if the nonadiabatic coupling vectors are zero. Therefore, we enforce this condition

for each pair of electronic states by introducing a different value R
(I)
0,ν → R0

lk,ν for each pair

of states (l, k). Additionally, we simplify the evaluation of this quantity by imposing that

it is independent of the trajectory index I. In fact, based on previous analysis of exact

calculations,1,2,9 we write the quantum momentum as a sum of linear functions having the

main contributions in the overlap regions of splitting nuclear wavepackets. Eq. (S24) thus

becomes

Ċ
(I)
qm l(t) ' −

Nn∑
ν=1

∑
k

α
(I)
ν R(I)

ν (t)−R0
lk,ν

~Mν

·
[
f
(I)
k,ν (t)− f

(I)
l,ν (t)

] ∣∣∣C(I)
k (t)

∣∣∣2C(I)
l (t), (S25)

where we used the partial normalization condition3,4 of the electronic wavefunction
∑

k |C
(I)
k (t)|2 =

1. At this point, R0
lk,ν can be determined for each pair of states l, k. Notice that the proce-

dure just presented has allowed us to separate the effect of the quantum momentum on the

evolution of C(I)
l (t) in a sum of contributions from each state k 6= l. This effect is similar to

the effect of the nonadiabatic coupling vectors, as the term d
(I)
ν,lk in fact couples the states

l and k inducing population transfer between them. The overall effect of the nonadiabatic
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coupling vectors on C(I)
l (t) can be summed up over the states k 6= l.

For each term of the sum over the state index k in Eq. (S25), we impose that

∑
I

d
∣∣∣C(I)

l (t)
∣∣∣2

dt
=
∑
I

∑
ν

2
Q(I)

lk,ν

~Mν

·
(
f
(I)
k,ν (t)− f

(I)
l,ν (t)

) ∣∣∣C(I)
k (t)

∣∣∣2 ∣∣∣C(I)
l (t)

∣∣∣2 = 0 ∀l, k, (S26)

where we introduced the symbolQ(I)
lk,ν = α

(I)
ν R(I)

ν −R0
lk,ν to indicate the quantum momentum

between states l and k. Eq. (S26) guarantees that no population transfer among electronic

states should be observed if the nonadiabatic coupling vectors are zero. Indeed, we only

require that this condition holds valid for all trajectories, not for each trajectories (notice, in

fact, that we introduced the sum over the trajectories). We recall that, as described above,

the slope α(I)
ν (t) of each linear function is determined by summing over J the first term on

the right-hand side of Eq. (S21). Eq. (S26) is clearly non-zero if the quantum momentum is

different from zero itself. Additionally, it is zero (i) if |C(I)
l (t)|2 = 1, while |C(I)

k (t)|2 = 0 for

k 6= l since the term in parenthesis vanishes, and (ii) if |C(I)
l (t)|2 = 0. When all electronic

populations are different from either 0 or 1, suitably choosing R0
lk,ν(t) in Q(I)

lk,ν allows us to

eliminate spurious population transfer between states k and l if the nonadiabatic coupling

vectors between those states are zero.

We further simplify the above expression by imposing that it holds valid for each term of

the scalar product (over ν and over the Cartesian components of the vectors), thus obtaining

∑
I

Q(I)
lk,ν(t)

(
f
(I)
k,ν (t)− f (I)

l,ν (t)
) ∣∣∣C(I)

k (t)
∣∣∣2 ∣∣∣C(I)

l (t)
∣∣∣2 = 0 ∀l, k, ν. (S27)

Rather than explicitly indicating the dependence on Cartesian indices, we have abandoned

the bold-symbol notation, to imply that this is now a scalar condition for the components

of the quantum momentum and of the time-integrated adiabatic forces. Thus, the above
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condition yields the expression used to determine R0
lk,ν(t), namely

R0
lk,ν(t) =

∑
I

R(I)
ν (t)α(I)

ν (t)

∣∣∣C(I)
k (t)

∣∣∣2 ∣∣∣C(I)
l (t)

∣∣∣2 (f (I)
k,ν (t)− f (I)

l,ν (t)
)

∑
J

∣∣∣C(J)
k (t)

∣∣∣2 ∣∣∣C(J)
l (t)

∣∣∣2 (f (J)
k,ν (t)− f (J)

l,ν (t)
)

=
∑
I

R(I)
ν (t)α(I)

ν (t)ω
(I)
lk,ν(t) ∀l, k, ν. (S28)

Here, ω(I)
lk,ν(t) appears as a weight factor. Also, notice from the above expression that R0

lk,ν =

R0
kl,ν , and thus Q(I)

lk,ν = Q(I)
kl,ν

SI.3 – Linear-response TDDFT

The nonadiabatic schemes presented in the previous sections depend in their implemen-

tation on a number of electronic properties like the electronic energies (potential energy

surfaces, PES), forces, nonadiabatic couplings and others. The efficient and reliable calcula-

tion of these terms is key to the development of on-the-fly nonadiabatic molecular dynamics

schemes. Matrix elements between electronic states are straightforwardly obtained by means

of electronic wavefunction-based methods like, for example, configuration interaction singles

(CIS), multireference configuration interaction (MR-CI), and equation-of-motion excitation

energy coupled-cluster singles and doubles (EOMEE-CCSD). However, the evaluation of

any matrix element within linear-response time-dependent density functional theory (LR-

TDDFT) requires a reformulation of these quantities as a functional of the electronic density

or, equivalently, of the Kohn-Sham (KS) orbitals. This is necessary since DFT and TDDFT

are wavefucntion-free theories based exclusively on the electronic density and its representa-

tions.

In the next sections, we will briefly present the main LR-TDDFT equations and introduce

the concept of auxiliary many-electron wavefunctions, which is used to describe all matrix

elements required in the nonadiabatic dynamics.
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The linear-response equation for TDDFT

The linear response TDDFT equations (using Casida’s formulations) can be described as

fkτ−flτ 6=0∑
klτ

[
[χs]−1ijσ,klτ −Kijσ,klτ (ω)

]
δPklτ (ω) = δvappijσ (ω) (S29)

where, formally, χ−1 = ([χs]−1 −K), and

δρσ(r, ω) =
∑
ij

δPijσ(ω)φiσ(r)φ∗jσ(r)

[χs]−1ijσ,klτ = δσ,τδi,kδj,l
ω − (εkσ − εlσ)

flσ − fkσ

Kijσ,klτ (ω) =

∫
drdr′

φ∗iσ(r)φjσ(r)φkτ (r
′)φ∗lτ (r

′)

|r − r′|

+

∫
d(t− t′) eiω(t−t′)

∫
drdr′ φ∗iσ(r)φjσ(r)

δ2Axc[ρ]

δρσ(r, t) δρτ (r′, t′)
φkτ (r

′)φ∗lτ (r
′).

By ordering the KS orbital basis according to the occupation, we can split Eq. (S29) into

particle-hole (ph) and hole-particle (hp) sectors and rewrite Eq. (S29) in the following form

(in the following i, j, k, . . . label occupied- and a, b, c, . . . virtual orbitals)

ω
I 0

0 −I

−
A(ω) B(ω)

B∗(ω) A∗(ω)



 δP (ω)

δP ∗(ω)

 =

 δv(ω)

δv∗(ω)

 (S30)

where

Aiaσ,jbτ (ω) = δσ,τδi,jδa,b(εaτ − εiτ ) +Kiaσ,jbτ (ω) , (S31)

Biaσ,jbτ (ω) = Kiaσ,bjτ (ω) . (S32)

The matrix on the left-hand side of Eq. (S30) is the inverse of the susceptibility and therefore

the excitation energies ωn can be obtained from the solution of the generalized eigenvalue

S12



equation A B

B∗ A∗


Xn

Y n

 = ωn

I 0

0 −I


Xn

Y n

 (S33)

where we now assume that the matrices A and B are frequency independent (adiabatic

approximation for the TDDFT kernel, fxc). This equation has paired excitation (ωn > 0)

and de-excitation (ωn < 0).10 The usual normalization is

X†
nXn − Y †nY n =


+1, ωn > 0

−1, ωn < 0 .

(S34)

Nuclear forces from LR-TDDFT

LR-TDDFT can become the method of choice for the calculation of excited state PESs

to be used in different nonadiabatic molecular dynamics (MD) schemes. In this case, the

calculation of nuclear forces within the LR-TDDFT formalism becomes an essential step.

Among the different approaches developed for the calculation of analytic derivatives, the

Lagrangian method11 is of particular interest because of its numerical efficiency. However, the

derivation of LR-TDDFT is technically involved and since it does not bring any new physical

insights, we simply refer the interested reader to the rich literature on the subject.12–16

The LR-TDDFT sum-over-states (SOS) formula

In this section we derive a SOS representation of the density-density response function within

LR-TDDFT. The starting point is the matrix form of the TDDFT linear response equations

in frequency space, Eq. (S30). For a real perturbation of the type δv′(ω) = 1/2(δv(ω) +

δv∗(ω)) Eq. (S30) leads to17

<(δP )(ω) = (A− B)1/2(ω2I− Ω(ω))−1(A− B)1/2δv′(ω) (S35)
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where

Ω = (A− B)1/2(A + B)(A− B)1/2 (S36)

and

Ωijσ,klτ (ω) =δσ,τδi,kδj,l(εlτ − εkτ )2

+ 2
√

(fiσ − fjσ)(εjσ − εiσ)Kijσ,klτ (ω)
√

(fkτ − flτ )(εlτ − εkτ ) . (S37)

We can therefore define the susceptibility χ(ω) as

χ(ω) = −2(A− B)1/2(Ω(ω)− ω2I)−1(A− B)1/2 . (S38)

Using the spectral representation of the (Ω(ω)− ω2I)−1, we can write

(Ω(ω)− ω2I)−1 =
∑
n

ZnZ
†
n

ω2
n − ω2

(S39)

where Zn are the eigenvectors of Ω(ω)

Ω(ω)Zn = ω2
nZn (S40)

and are related to the eigenvectors of Eq. (S33) according to10

Zn = (A− B)−1/2(Xn + Y n). (S41)

Note that in case of a frequency dependent Ω(ω), the eigenvectors Zn requires the normal-

ization17

Z†n

(
I−

[
∂Ω(ω)

∂ω2

])
Zn = 1 (S42)
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in order to enforce the residues in the spectral representation (Eq. (S39)) to be equal to one.

Finally, we obtain for the susceptibility χ the following SOS representation

χ(ω) = −2
∑
n

(A− B)1/2ZnZ
†
n(A− B)1/2

ω2
n − ω2

. (S43)

Using Eq. (S43), we can now compute the response δ〈Ô〉(ω) of any one-body operator Ô due

to the action of a generic time-dependent perturbation v̂(r, t) = v̂′(r)E(t). Taking the usual

representation of one-body operators in terms of the (Kohn-Sham) creation and annihilation

operators

Ô =
∑
ijσ

oijσâ
†
iσâjσ (S44)

v̂′ =
∑
ijσ

v′ijσâ
†
iσâjσ (S45)

with oijσ =
∫
dr Ô(r)φ∗iσ(r)φjσ(r) and v′ijσ =

∫
dr v̂′(r)φ∗iσ(r)φjσ(r), we first get for δO(ω) =

δ〈Ô〉(ω) =
∫
dr Ô(r)δρ(r, ω),

δO(ω) =
∑
ijσ

oijσδPijσ(ω), (S46)

where, according to δρ(r, ω) =
∫
dr v′(r′)E(ω)χ(r, r′, ω),

δPijσ(ω) =
∑
klτ

χijσ,klτ (ω)v′klτE(ω). (S47)

Therefore, from Eq. (S43) the final LR-TDDFT SOS equation reads

δO(ω) = −2
∑
n

o†
(A− B)1/2ZnZ

†
n(A− B)1/2

ω2
n − ω2

v′E(ω) . (S48)

As an example, the polarizability defined as αε1,ε2(ω) =
δµε1
Eε2 (t)

where ε1 and ε2 are two

cartesian directions in space, is measuring the change in dipole δµε1 = −ε1 · r induced by a

S15



perturbation of the form v′(r, ω) = ε2 ·rE(ω). From Eq. (S48) we get (for ε1 = x̂ and ε2 = ẑ)

αxz(ω) = 2
∑
n

x†
(A− B)1/2ZnZ

†
n(A− B)1/2

ω2
n − ω2

z , (S49)

where the factor 2 comes from the fact that (for symmetry reasons) the summation over ij

can be restricted to the terms with (fiσ − fjσ) > 0.

Matrix elements in LR-TDDFT

The derivation of a general formula for the evaluation of matrix elements of one-particle

operators in linear-response theory

〈Φ0|Ô|Φn〉 (S50)

is based on a direct comparison with the same quantity derived using many-body perturba-

tion theory (MBPT). In Eq. (S50), the states |Φ0〉 and |Φn〉 describe the ground state and

nth electronic excited state wavefunctions, respectively.

We start therefore with a short outline of the main linear-response equations in MBPT.

From the definition of the retarded density-density response function1,

χ(r, t, r′, t′) = ΠR(r, t, r′, t′) = −iθ(t− t′)〈Φ0|[ρ̂(r, t), ρ̂(r′, t′)]|Φ0〉
〈Φ0|Φ0〉

, (S52)

the change of an observable O, under the influence of a perturbation vext(r′, t′) in the linear-

response regime is given by

δO(t) =

∫ ∞
0

dt′
∫
dr

∫
dr′ o(r)vext(r

′, t′)χ(r, t, r′, t′) (S53)

1For the special case of o(r) = 1, we get the density linear-response:

δρ(r)(t) =

∫ ∞
0

dt′
∫
dr vext(r′, t′)χR(rt, r′t′) . (S51)
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(here we consider an interaction of the form δvext(r′, t′) = v′(r′)E(t′)). If χ depends only on

the difference (t− t′), the Fourier transform in time gives

δO(ω) =

∫
dr

∫
dr′ o(r)v′(r′)E(ω)χ(r, r′, ω) . (S54)

For finite size systems for which we can construct a discrete set of "quasiparticle" one-electron

orbitals to be used in Slate-type many-electron wavefunctions (Hartree-Fock or Kohn-Sham

orbitals in most cases), we can introduce the matrix representation

δO(ω) =
∑
ijσ,klτ

oijσχijσ,klτ (ω)v′klτE(ω) , (S55)

where2

χijσ,klτ (ω) =
∑
n

[
〈Φ0|â†jσâiσ|Φn〉〈Φn|â†kτ âlτ |Φ0〉

ω − ωn + iη
−
〈Φ0|â†kτ âlτ |Φn〉〈Φn|â†jσâiσ|Φ0〉

ω + ωn + iη

]
(S56)

and Ô =
∑

ijσ oijσâ
†
iσâjσ, v̂′ =

∑
ijσ v

′
ijσâ

†
iσâjσ. Using the symmetry property

〈Φ0|Ô|Φn〉〈Φn|v̂′E(ω)|Φ0〉 = 〈Φ0|v̂′E(ω)|Φn〉〈Φn|Ô|Φ0〉, (S57)

we finally obtain the sum-over-states (SOS) formula

δO(ω) = −2
∑
n

ωn〈Φ0|Ô|Φn〉〈Φn|v̂′E(ω)|Φ0〉
ω2
n − ω2

. (S58)

Comparing the residues of LR-TDDFT response function Eq. (S48) with the residues of the
2 ∫

dr o(r)ψ̂†(r)ψ̂(r) =

∫
dr
∑
ijσ

φiσ(r)φjσ(r)o(r)â
†
iσâjσ =

∑
ijσ

[∫
dr φiσ(r)φjσ(r)o(r)

]
â†iσâjσ

S17



MBPT response function Eq. (S58) at equal energy ωn, we obtain the following identity 3

〈Φ0|Ô|Φn〉 =

(fiσ−fjσ)>0∑
ijσ

oijσ〈Φ0|â†iσâjσ|Φn〉 (S59)

=

(fiσ−fjσ)>0∑
ijσ

1
√
ωn
oijσ

(
(A− B)1/2Zn

)
ijσ

. (S60)

This equation was derived by Casida17 and then applied by Tavernelli et al. and Hu et al.

for the calculation of the nonadiabatic coupling vectors between the ground state and an

excited state. A similar equation was also given in Ref.18

The auxiliary many-electron wavefunction

It may be useful at this point to investigate the possibility to further simplify the definition

and the calculation of matrix elements within LR-TDDFT by means of the definition of a set

of "auxiliary" multideterminantal many-electron wavefunctions based on KS orbitals. This

route was first explored by Casida17 to solve the assignment problem of the LR-TDDFT

excited state transitions and then further developed by Tavernelli et. al19 in relation to the

calculation of matrix elements in the linear and second-order response regimes.20–22

In Ref.,21 we showed that defining the ground state many-electron wavefunction as a

Slater determinant of all occupied KS orbitals {φi}Neli=1

〈r1, r2, r3, . . . , rNel |Φ̃0〉 =
1√
Nel!

det|φ1(r1)φ2(r2)φ3(r3), . . . , φNel(rNel)| (S61)

3With no Hartree-Fock exchange contribution in the functional, (A− B) is diagonal and becomes:10

(A− B)iaσ,jbτ = δi,jδa,bδσ,τ (εaτ − εiτ ) .
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and the excited state wavefunction corresponding to the excitation energy ωn as

〈r1, r2, r3, . . . , rNel |Φ̃n〉 =
∑
iaσ

√
εa − εi
ωn

(Zn)iaσâ
†
aσâiσ〈r1, r2, r3, . . . , rNel |Φ̃0〉

=
∑
iaσ

Cniaσâ†aσâiσ〈r1, r2, r3, . . . , rNel |Φ̃0〉

=
∑
iaσ

Cniaσ〈r1, r2, r3, . . . , rNel |Φ̃aσ
iσ 〉, (S62)

we obtain for any one-body operator of the form Ô =
∑

pqσ opqσâ
†
pσâqσ (where p, q are general

indices) the correct linear-response expression for the matrix element 〈Φ0|Ô|Φn〉. Eq. (S62)

is derived from Eq. (S60) where now the index i runs over all occupied and a over the unoc-

cupied (virtual) KS orbitals and |Φ̃aσ
iσ 〉 denotes a singly-excited Slater determinant defined

by the transition iσ → aσ. This theory was then successfully extended to the case of the

calculation of matrix elements between two excited state wavefunctions, 〈Φn|Ô|Φm〉 as will

be shown in the next section on the calculation of nonadiabatic coupling vectors.

It is important to further stress the fact that both auxiliary functions introduced in

Eqs. (S61) and (S62) have only a physical meaning when used within LR-TDDFT for the

calculation of matrix elements of the type 〈Φ̃0|Ô|Φ̃n〉 and eventually 〈Φ̃n|Ô|Φ̃m〉. The use of

this representations of the ground state and excited state KS many-electron wavefunctions

in other contexts is not justified.

The nonadiabatic coupling vectors in LR-TDDFT

Traditionally, the computation of the nonadiabatic coupling vectors (NACVs) is carried out

using wavefunction-based ab initio quantum chemistry approaches, which, however, are not

well suited for condensed phase applications and become computationally unaffordable when

the dynamics of large molecular systems is considered.

Using the auxiliary many-electron wavefunction approach outlined above we are now in

the position to derive an approach for the calculation of nonadiabatic vectors within LR-
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TDDFT.

The couplings with the ground state

We start from an alternative definition of the NACV23 (see also Ch. 5 of Ref.24 for a complete

discussion) between the ground (0) state and the nth excited state for a molecular system

characterized by nuclear coordinates R in the configuration space (R3Nn)

dγ0n =
〈Φ0(R)|∂γĤel|Φn(R)〉
Eel
n (R)− Eel

0 (R)
(S63)

where γ is an atomic label, Ĥel is the electronic Hamiltonian, and ∂γĤel = ∂Ĥel/∂Rγ.

Applying the results of the above sections on the evaluation of matrix elements of the

form 〈Φ0|Ô|Φn〉 in LR-TDDFT to the NACV gives directly the desired expression

dγ0n =

(fiσ−fjσ)>0∑
ijσ

1

(ωn)3/2
hγijσ

(
(A− B)1/2Zn

)
ijσ

(S64)

where hγijσ =
∫
dr ∂γĤel φ

∗
iσ(r)φjσ(r).

This formula for the NACVs within LR-TDDFT was derived several times in the literature

using slightly different formalisms. The first derivation was by Chernyak and Mukamel25

using a classical Liouville dynamics for the single-electron density matrix. Later, Tavernelli

et al.19,20 and Hu et al.26,27 arrived to the same result (Eq. (S64)) using the most widely

used formulation based on Casida’s LR-TDDFT equations.17

Concerning the numerical implementation of Eq. (S63) several approaches have also been

proposed that differ mainly in the choice of the basis set and in the way the implicit de-

pendence of the pseudopotentials on the nuclear positions is treated. Due to the technical

nature of this subject, we will not go through the numerical details but better refer to the

literature, which is very rich on this subject.20,26,28–30
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