Supporting information

ALD Al₂O₃ coated TiO₂ nanotube layers as anodes for lithium ion batteries

Hanna Sopha[†], Girish D. Salian[‡], Raul Zazpe[†], Jan Prikryl[†], Ludek Hromadko[†], Thierry Djenizian^{§,*}, Jan M. Macak^{†,*}

[†]Center of Materials and Nanotechnologies, Faculty of Chemical Technology, University of Pardubice, Nam. Cs. Legii 565, 53002 Pardubice, Czech Republic

^{*}Aix Marseille Université, CNRS, Electrochemistry of Materials Research Group, MADIREL UMR 7246, F-13397, Marseille Cedex 20, France

[§]Ecole Nationale Superieure des Mines de Saint-Etienne, Flexible Electronics Department, Center Microelectronics Provence, 13541, Gardanne, France

Figure S1. Post-cycling (100 charge/discharge cycles) SEM images of a) uncoated TiO₂ nanotube layer, b) 0.2 nm (2 ALD cycles), c) 1 nm (9 ALD cycles), d) 2 nm (18 ALD cycles), e) 5 nm (46 ALD cycles), and f) 10 nm (92 ALD cycles) Al₂O₃ coated TiO₂ nanotube layers.

Figure S2. Chronoamperometric plots of the a) uncoated, c) 1 nm Al_2O_3 coated, and e) 2 nm Al_2O_3 coated TiO_2 nanotube layers, and the linear fits of the Cottrell plots for the b) uncoated, d) 1 nm Al_2O_3 coated, and f) 2 nm Al_2O_3 coated TiO_2 nanotube layers.

The reversible insertion reaction of Li^+ in anatase TiO₂ is given by eqn (1).

$$TiO_2 + xLi^+ + xe^- \leftrightarrow Li_x TiO_2 \quad \text{for } 0 \le x \le 0.5 \tag{1}$$

The chronoamperometric plot was obtained by applying a constant potential of 1.7 V vs. Li/Li^+ , which is the potential of the insertion of Li^+ into the lattice (Figure S2, a, c, e). The current observed for the electrochemical reaction at the mass transport limited condition is described by the Cottrell equation:²

$$j = nFCD^{1/2} \pi^{-1/2} t^{-1/2}$$

where *n* is the number of moles of Li⁺ involved in the redox reaction of Ti³⁺/Ti⁴⁺ which is equal to 0.5 according to Equation (1), F is the Faraday constant, *C* is the maximum concentration of Li⁺ (or Ti³⁺) in the lattice (0.024 mol.cm⁻³ at x = 0.5)^{1, 2}, *D* is the Diffusion coefficient of Li⁺ and *t* is the time (s).

The Cottrell equation is valid only in the diffusion control region. The diffusion coefficient can be estimated by plotting the absolute current density (*j*) vs. $t^{-1/2}$. Ideally, the plot is a straight line when the kinetic is controlled by mass transport. The value of the slope which is equal to nFCD^{1/2} $\pi^{-1/2}$ can be determined by the linear fit of the Cottrell plots (Figure S2, b, d, f).

References

- Lindstrom, H.; Sodergren, S.; Solbrand, A.; Rensmo, H.; Hjelm, J.; Hagfeldt, A.; Lindquist, S. E. Li⁺ Ion Insertion in TiO₂ (Anatase).
 Chronamperometry on CVD Films and Nanoporous Films *J. Phys. Chem. B* 1997, 101, 7710–7716.
- Kavan, L.; Rathouský, J.; Grätzel, M.; Shklover, V.; Zuka, A. Surfactant-Templated TiO₂ (Anatase): Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures. *J. Phys. Chem. B* 2000, 104, 12012–12020.