Supporting Information

One-pot Synthesis of Zeolitic Imidazolate Framework 67-Derived Hollow Co₃S₄@MoS₂ Heterostructures as Efficient Bifunctional Catalysts

Yanna Guo,^[a,b] Jing Tang,^[a]* Huayu Qian,^[c] Zhongli Wang,^[a] and Yusuke Yamauchi^[a,b,d]*

[a] International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; E-mail: <u>TANG.Jing@nims.go.jp</u>

[b] Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan

[c] Key Laboratory for Soft Chemistry and Functional Materials of Ministry Education, Nanjing University of Science and Technology, Nanjing 210094, P. R. China

[d] Australian Institute for Innovative Materials (AIIM), University of Wollongong, North Wollongong, NSW 2500, Australia; E-mail: <u>yusuke@uow.edu.au</u>

Figure S1. (a) XRD patterns, (b, c) SEM images, and (d) TEM image of ZIF-67 precursors.

Figure S2. (a) STEM, and (b–d) TEM-EDXS elemental mapping images of hollow $Co_3S_4@MoS_2$ heterostructures.

Figure S3

Figure S3. (a) XPS spectrum of $Co_3S_4@MoS_2$ heterostructures. High-resolution XPS spectrum of (b) Co 2p, and (c) Mo 3d.

Figure S4. (a) XRD pattern, and (b) SEM image of the intermediate product obtained after hydrothermal reaction at $120 \degree$ C for 4 h.

Figure S5. (a,b) XRD patterns, and (c,d) SEM images of individual hollow Co_3S_4 polyhedrons (a,c) and MoS_2 nanosheets (b,d).

Figure S6. XRD patterns of synthesized $Co_3S_4@MoS_2$ -low and $Co_3S_4@MoS_2$ -high. Blue vertical lines indicate the reference pattern of Co_3S_4 (JCPDS card no. 47-1738), and green vertical lines indicate the reference pattern of MoS_2 (JCPDS card no. 75-1539).

Note for Figure S6: As shown in Figure S6, $Co_3S_4@MoS_2$ -low and $Co_3S_4@MoS_2$ -high both exhibit XRD patterns similar to those of hollow $Co_3S_4@MoS_2$ heterostructures (Figure 3a), which proves the existence of hexagonal MoS_2 and cubic Co_3S_4 . $Co_3S_4@MoS_2$ -high shows stronger intensity at diffraction peaks of 14.1°, 32.9°, and 58.8° (indicated by green triangles in Figure S6) that are indexed, respectively, to the (002), (100), and (110) planes of hexagonal MoS_2, as compared with $Co_3S_4@MoS_2$ -low. In contrast, $Co_3S_4@MoS_2$ -low shows more obvious diffraction peaks located at 26.7°, 31.5°, and 55.1° (indicated by blue stars in Figure S6) that belong, respectively, to the (220), (311), and (440) planes of cubic Co_3S_4 phase, as compared with $Co_3S_4@MoS_2$ -high. These results imply that the relative ratio of MoS_2 to Co_3S_4 increases from the $Co_3S_4@MoS_2$ -low sample to the $Co_3S_4@MoS_2$ -high sample.

Figure S7. SEM images of (a,b) Co₃S₄@MoS₂-low and (c,d) Co₃S₄@MoS₂-high.

Note for Figure S7: It is clear that $Co_3S_4@MoS_2$ -high (Figure S7c) consists of many more MoS_2 nanosheets as compared with $Co_3S_4@MoS_2$ -low (Figure S7a).

Figure S8. Polarization curves of $Co_3S_4@MoS_2$ -low, $Co_3S_4@MoS_2$, and $Co_3S_4@MoS_2$ -high electrodes in (a) 0.5 M H₂SO₄ and (b) 1 M KOH. All results shown are corrected by iR compensation. LSV scan rate: 5 mV·s⁻¹.

Note for Figure S8: The electrochemical activities of $Co_3S_4@MoS_2$ would be influenced by the thickness of MoS_2 nanosheets. As described in Figure S8, $Co_3S_4@MoS_2$ -low displays the worst performances for both HER and OER. When the ratio of MoS_2 to Co_3S_4 is increased to a mediate ratio, $Co_3S_4@MoS_2$ exhibits increased catalytic activities for both HER and OER, as compared with $Co_3S_4@MoS_2$ -low. However, the excessive MoS_2 do not favor the catalysis of HER and OER. The $Co_3S_4@MoS_2$ -high sample possesses a similar catalytic activity for HER but worse catalytic activity for OER, as compared with $Co_3S_4@MoS_2$. The results demonstrate that the electrocatalytic performance of $Co_3S_4@MoS_2$ heterostructures for HER and OER can be adjusted and optimized by tuning the thickness of MoS_2 nanosheets.

According to the previous reports and discussion, MoS_2 and Co_3S_4 are active for catalyzing HER and OER, respectively. The worst HER and OER performance of $Co_3S_4@MoS_2$ -low may be ascribed to its thin MoS_2 nanosheets or less active sites on the interfaces of Co_3S_4 and MoS_2 . When excessive MoS_2 is coated on the surface of Co_3S_4 , the inferior OER activity of $Co_3S_4@MoS_2$ -high may be due to the fact that thicker MoS_2 nanosheets impede the activity of the inner Co_3S_4 layer. This result proves that the electrocatalytic performance of $Co_3S_4@MoS_2$ heterostructures for HER and OER can be modulated by tuning the thickness of MoS_2 nanosheets.

Figure S9. Nyquist plots of $Co_3S_4@MoS_2$, MoS_2 , and Co_3S_4 collected at (a) -0.15 V vs. RHE in 0.5 M H₂SO₄ and (b) at 1.5 V vs. RHE in 1 M KOH.

Note for Figure S9: As shown in Figure S9, the Nyquist plot of $Co_3S_4@MoS_2$ has a much smaller semicircle in the high frequency region than do Co_3S_4 and MoS_2 , indicating the lower intrinsic ohmic resistance of the $Co_3S_4@MoS_2$ electrode and electrolyte. This mainly contributes to the increased electrical conductivity of $Co_3S_4@MoS_2$ heterostructures, as compared with pure Co_3S_4 and MoS_2 . The possible electronic interaction between cobalt sulfide and molybdenum disulfide has been investigated by other researchers. Ramos *et al.*^[S1] proposed a model for Co_9S_8/MoS_2 interface based on density functional theory analysis and showed the creation of open latent vacancy sites on Mo atoms interacting with cobalt and the formation of Co-Mo bonds. The strong electron donation from Co to Mo also occurred through the intermediate sulfur atom's bonding to both metals; thus, an enhanced metallic character is observed. The intrinsic electrical conductivity of the Co_9S_8/MoS_2 heterostructure is, therefore, increased. Furthermore, some reports^[S2,S3] have proved that the doping of transition metal atoms (*e.g.*, Co, Ni) could modulate and optimize the electronic structure of molybdenum disulfide and lead to increased electrical conductivity.

Figure S10. Cyclic voltammograms of (a) $Co_3S_4@MoS_2$, (b) MoS_2 , (c) Co_3S_4 with various scan rates in 0.5 M H₂SO₄, and (d) $Co_3S_4@MoS_2$, (e) Co_3S_4 , and (f) MoS_2 with various scan rates in 1 M KOH.

Figure S11. Linear slopes were plotted from the cyclic voltammograms (Figure S10) of $Co_3S_4@MoS_2$, MoS_2 , and Co_3S_4 in (a) 0.5 M H₂SO₄ and (b) 1 M KOH. The linear slopes are equivalent to twice the double-layer capacitance (C_{dl}).

Figure S12. (a, b) SEM images of powder $Co_3S_4@MoS_2$ after long-term grinding and ultrasonication, and polarization curves of powder $Co_3S_4@MoS_2$ in (c) 0.5 M H₂SO₄ and (d) 1 M KOH. All results shown are corrected by iR compensation. LSV scan rate: 5 mV·s⁻¹.

Figure S13. LSV curves of (a) $Co_3S_4@MoS_2$ and (b) MoS_2 obtained from the first and the 500th cycles, (c) Co_3S_4 obtained from the first and tenth cycles in 0.5 M H₂SO₄; LSV curves of (d) $Co_3S_4@MoS_2$ and (e) Co_3S_4 from the first and 500th cycles in 1 M KOH.

Figure S14. SEM images and XRD patterns of $Co_3S_4@MoS_2$ after 500 cycles of continuous CV measurements in (a,c) 0.5 M H₂SO₄, and (b,d) 1 M KOH.

Note for Figure S14: As observed in Figure S14a–b, although some cracked particles can be observed, $Co_3S_4@MoS_2$ almost maintains its original morphology after stability tests for both HER and OER, demonstrating its structural stability in both acid and alkaline electrolytes. However, after the OER process, some nanoplates are also observed on the polyhedrons. XRD measurement was also carried out to further determine the composition of the catalysts after stability tests in both acid and alkaline environments. Figure S14c shows that $Co_3S_4@MoS_2$ keeps the identical phase structure after 500 cycles of continuous CV measurements in 0.5 M H₂SO₄. As seen in Figure S14d, Co_3S_4 and MoS_2 phases are still visible, and they are the main components in the composite after the OER stability test. Some new peaks indexed to the $Co(OH)_2$ (JCPDS card no. 30-0443) and CoOOH (JCPDS card no. 07-0619) phases are also observed, which probably can be attributed to the new nanoplates on the $Co_3S_4@MoS_2$ polyhedrons (Figure S14b, d).

Figure S15. Chronoamperometric responses (*i*–*t*) recorded on the $Co_3S_4@MoS_2$ electrode (a) at a constant applied potential of -0.21 V *vs*. RHE over 10 h in 0.5 M H₂SO₄ and (b) at a constant applied potential of 1.59 V *vs*. RHE in 1 M KOH

Catalysts	Current density	<i>ŋ</i> at corresponding	Tafel slope	Electrolytes
	$(j, mA cm^{-2})$	<i>j</i> (mV)	$(mV \cdot dec^{-1})$	
Co ₃ S ₄ @MoS ₂ (this work)	10	210	88	0.5 M H ₂ SO ₄
MoO ₃ -MoS ₂ ^[S4]	10	~310	50-60	0.5 M H ₂ SO ₄
MoS ₂ microboxes ^[S5]	10	475	134	0.5 M H ₂ SO ₄
MoN/C ^[S6]	2	290	54.5	0.1 M HClO ₄
Nanoporous Mo ₂ C nanowire ^[S7]	60	200	53	0.5 M H ₂ SO ₄
Double-gyroid MoS ₂ /FTO ^[S8]	2	190	50	0.5 M H ₂ SO ₄
Defect-rich MoS ₂ ^[S9]	13	200	50	0.5 M H ₂ SO ₄
MoS _{2.7} @NPG ^[S10]	10	210	41	$0.5 \mathrm{~M~H_2SO_4}$
Co ₉ S ₈ @MoS ₂ /CNFs ^[S11]	10	190	110	0.5 M H ₂ SO ₄
CoMoS ₃ hollow prism ^[S12]	10	171	56.9	0.5 M H ₂ SO ₄
Co-NRCNTs ^[S13]	10	260	69	0.5 M H ₂ SO ₄
FeCo@NCNTs-NH ^[S14]	10	320	72	0.1 M H ₂ SO ₄
CoNi@NC ^[S15]	10	140	104	0.1 M H ₂ SO ₄

Table S1. Comparison of HER performance of $Co_3S_4@MoS_2$ with other electrocatalysts

Catalysts	Current density	<i>ŋ</i> at corresponding	Tafel slope	Electrolytes
	(j, mAcm^{-2})	<i>j</i> (mV)	(mV·dec ⁻¹)	
Co ₃ S ₄ @MoS ₂ (this work)	10	310	59	1 М КОН
CoO@N/S-CNF ^[S16]	10	251	95	0.1 M KOH
$Co_3O_4/NiCo_2O_4^{[S17]}$	10	340	88	1 M KOH
NiCo-NS ^[S18]	10	334	41	1 M KOH
Co-P Film ^[S19]	10	345	47	1 М КОН
Co ₉ S ₈ @MoS ₂ /CNFs ^[S11]	10	361	61	1 M KOH
$MoS_2/Ni_3S_2^{[S20]}$	10	218	88	1 M KOH
Ni ₃ S ₂ /Ni foam ^[S21]	10	187	159	0.1 M KOH
n-NiFe LDH/NGF ^[S22]	10	337	45	0.1 M KOH
Co ₃ O ₄ /grapheme ^[S23]	10	~310	67	0.1 M KOH
Carbon Paper/Carbon Tubes/Cobalt-	10	306	72	1 M KOH
Sulfide ^[S24]				
Nanoporous hollow Co ₃ S ₄	10	363	90	0.1 M KOH
Nanosheets ^[S25]				
NiCo LDHs ^[S26]	10	367	40	1 M KOH
PNG-NiCo ₂ O ₄ ^[S27]	10	~349	156	0.1 M KOH
Co-P/NC ^[S28]	10	354	52	1 M KOH
Co-CNT/PC ^[S29]	10	315	74	0.1 M KOH
Co ₃ ZnC/Co@CN ^[S30]	10	366	81	1 М КОН
CoSe ₂ ^[S31]	10	430	50	1 M KOH
NNCNTAs ^[S32]	10	460	65	0.1 M KOH
Zn-Co-LDH nanosheets ^[S33]	10	~480	101	0.1 M KOH

Table S2. Comparison of OER performance for $Co_3S_4@MoS_2$ with other electrocatalysts

Supporting References

- [S1] M. Ramos, G. Berhault, D. A. Ferrer, B. Torres, R. R. Chianelli, HRTEM and Molecular Modeling of the MoS₂–Co₉S₈ Interface: Understanding the Promotion Effect in Bulk HDS Catalysts. *Catal. Sci. Technol.* 2012, *2*, 164-178.
- [s2] Yu, X. Y.; Feng, Y.; Jeon, Y.; Guan, B.; Lou, X. W.; Paik, U. Formation of Ni–Co–MoS₂
 Nanoboxes with Enhanced Electrocatalytic Activity for Hydrogen Evolution. *Adv. Mater.* 2016, 28, 9006-9011.
- Wang, H. T.; Tsai, C.; Kong, D. S.; Chan, K. R.; Pedersen, F. A.; Nørskov, J. K.; Cui, Y.
 Transition-metal Doped Edge Sites in Vertically Aligned MoS₂ Catalysts for Enhanced
 Hydrogen Evolution. *Nano Res.* 2015, *8*, 566-575.
- [S4] Chen, Z. B.; Cummins, D.; Reinecke, B. N.; Clark, E.; Sunkara, M. K.; Jaramillo, T. F. Coreshell MoO₃–MoS₂ Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials. *Nano lett.* 2011, *11*, 4168-4175.
- [S5] Zhang, L.; Wu, H. B.; Yan, Y.; Wang, X.; Lou, X. W. Hierarchical MoS₂ Microboxes Constructed by Nanosheets with Enhanced Electrochemical Properties for Lithium Storage and Water Splitting. *Energy Environ. Sci.* 2014, *7*, 3302-3306.
- [S6] Chen, W. F.; Sasaki, K.; Ma, C.; Frenkel, A. I.; Marinkovic, N.; Muckerman, J. T.; Zhu, Y.
 M.; Adzic, R. R. Hydrogen-Evolution Catalysts Based on Non-Noble Metal Nickel–
 Molybdenum Nitride Nanosheets. *Angew. Chem. Int. Ed.* 2012, *51*, 6131-6135.
- [S7] Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang,
 Y.; Liu, B. H.; Girault, H. H. A Nanoporous Molybdenum Carbide Nanowire as an
 Electrocatalyst for Hydrogen Evolution Reaction. *Energy Environ. Sci.* 2014, 7, 387-392.
- [58] Kibsgaard, J.; Chen, Z. B.; Reinecke, B. N.; Jaramillo, T. F. Engineering the Surface

Structure of MoS₂ to Preferentially Expose Active Edge Sites for Electrocatalysis. *Nat. Mater.* **2012**, *11*, 963-969

- [S9] Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y.
 Defect-Rich MoS₂ Ultrathin Nanosheets with Additional Active Edge Sites for Enhanced Electrocatalytic Hydrogen Evolution. *Adv. Mater.* 2013, 25, 5807-5813.
- [S10] Ge, X. B.; Chen, L. Y.; Zhang, L.; Wen, Y. R.; Hirata, A.; Chen, M. W. Nanoporous Metal Enhanced Catalytic Activities of Amorphous Molybdenum Sulfide for High-Efficiency Hydrogen Production. *Adv. Mater.* 2014, *26*, 3100-3104.
- [S11] Zhu, H.; Zhang, J.F.; Yanzhang, R. P.; Du, M. L.; Wang, Q. F.; Gao, G. H.; Wu, J. D.; Wu, G. M.; Zhang, M.; Liu, B.; Yao, J. M.; Zhang, X. W. When Cubic Cobalt Sulfide Meets Layered Molybdenum Disulfide: a Core–shell System toward Synergetic Electrocatalytic Water Splitting. *Adv. Mater.* 2015, 27, 4752-4759.
- [S12] Le, L.; Xia, B. Y.; Wang, X.; Lou, X. W. General Formation of M–MoS₃ (M = Co, Ni)
 Hollow Structures with Enhanced Electrocatalytic Activity for Hydrogen Evolution. *Adv. Mater.* 2016, 28, 92-97.
- [S13] Zou, X. X.; Huang, X. X.; Goswami, A.; Silva, R.; Sathe, B. R.; Mikmekova, E.; Asefa, T.
 Cobalt-Embedded Nitrogen-Rich Carbon Nanotubes Efficiently Catalyze Hydrogen
 Evolution Reaction at All pH Values. *Angew. Chem. Int. Ed.* 2014, *53*, 4372-4376.
- [S14] Deng, J.; Ren, P. J.; Deng, D. H.; Yu, L.; Yang, F.; Bao, X. H. Highly Active and Durable Non-precious-metal Catalysts Encapsulated in Carbon Nanotubes for Hydrogen Evolution Reaction. *Energy Environ. Sci.* 2014, 7, 1919-1923.
- [S15] Deng, J.; Ren, P. J.; Deng, D. H.; Bao, X. H. Enhanced Electron Penetration through an Ultrathin Graphene Layer for Highly Efficient Catalysis of the Hydrogen Evolution Reaction.

Angew. Chem. Int. Ed. 2015, 54, 2100-2104.

- [S16] Liu, T.; Guo, Y. F.; Yan, Y. M.; Wang, F.; Deng, C.; Rooney, D.; Sun, K. N. CoO Nanoparticles Embedded in Three-dimensional Nitrogen/sulfur Co-doped Carbon Nanofiber Networks as a Bifunctional Catalyst for Oxygen Reduction/Evolution Reactions. *Carbon* 2016, *106*, 84-92.
- [S17] Hu, H.; Guan, B. Y.; Xia, B. Y.; Lou, X. W. Designed Formation of Co₃O₄/NiCo₂O₄ Double-Shelled Nanocages with Enhanced Pseudocapacitive and Electrocatalytic Properties. *J. Am. Chem. Soc.* 2015, *137*, 5590-5595.
- [S18] Song, F.; Hu, X. L. Exfoliation of Layered Double Hydroxides for Enhanced Oxygen Evolution Catalysis. *Nat. Commun.* 2014, *5*, 4477.
- [S19] Jiang, N.; You, B.; Sheng, M. L. Electrodeposited Cobalt-Phosphorous-Derived Films as Competent Bifunctional Catalysts for Overall Water Splitting. *Angew. Chem. Int. Ed.* 2015, 54, 6251-6254.
- [S20] Zhang, J.; Wang, T.; Pohl, D.; Rellinghaus, B.; Dong, R. H.; Liu, S. H.; Zhuang, X. D.; Feng, X. L. Interface Engineering of MoS₂/Ni₃S₂ Heterostructures for Highly Enhanced Electrochemical Overall-water-splitting Activity. *Angew. Chem. Int. Ed.* 2016, *55*, 6702-6707.
- [S21] Zhou, W. J.; Wu, X. J.; Cao, X. H.; Huang, X.; Tan, C. L.; Tian, J.; Liu, H.; Wang, J. Y.; Zhang, H. Ni₃S₂ Nanorods/Ni Foam Composite Electrode with Low Overpotential for Electrocatalytic Oxygen Evolution. *Energy Environ. Sci.* 2013, 6, 2921-2924.
- [S22] Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially Confined Hybridization of Nanometer-Sized NiFe Hydroxides into Nitrogen-Doped Graphene Frameworks Leading to Superior Oxygen Evolution Reactivity. *Adv. Mater.* 2015,

27, 4516-4522.

- [S23] Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. Metal–Organic Framework Derived Hybrid Co₃O₄-Carbon Porous Nanowire Arrays as Reversible Oxygen Evolution Electrodes. J. Am. Chem. Soc. 2014, 136, 13925-13931.
- [S24] Wang, J.; Zhong, H. X.; Wang, Z. L.; Meng, F. L.; Zhang, X. B. Integrated Three-Dimensional Carbon Paper/Carbon Tubes/Cobalt-sulfide Sheets as an Efficient Electrode for Overall Water Splitting. ACS Nano 2016, 10, 2342-2348.
- [S25] Zhao, W. W.; Zhang, C.; Geng, F. Y.; Zhuo, S. F.; Zhang, B. Nanoporous Hollow Transition Metal Chalcogenide Nanosheets Synthesized via the Anion-Exchange Reaction of Metal Hydroxides with Chalcogenide Ions. ACS Nano 2014, 8, 10909-10919.
- [S26] Liang, H. F.; Meng, F.; Cabán-Acevedo, M.; Li, L. S.; Forticaux, A.; Xiu, L. C.; Wang, Z. C.;
 Jin, S. Hydrothermal Continuous Flow Synthesis and Exfoliation of NiCo Layered Double
 Hydroxide Nanosheets for Enhanced Oxygen Evolution Catalysis. *Nano Lett.* 2015, *15*, 1421-1427.
- [S27] Chen, S.; Qiao, S. Z. Hierarchically Porous Nitrogen-Doped Graphene–NiCo2O4 Hybrid
 Paper as an Advanced Electrocatalytic Water-Splitting Material. ACS Nano 2013, 7, 10190 10196.
- You, B.; Jiang, N.; Sheng, M. L.; Gul, S.; Yano, J. K.; Sun, Y. J. High-Performance Overall
 Water Splitting Electrocatalysts Derived from Cobalt-Based Metal–Organic Frameworks.
 Chem. Mater. 2015, 27, 7636-7642
- [S29] Dou, S.; Li, X. Y.; Tao, L.; Huo, J.; Wang, S. Y. Cobalt Nanoparticle-embedded Carbon Nanotube/porous Carbon Hybrid Derived from MOF-encapsulated Co₃O₄ for Oxygen Electrocatalysis. *Chem. Commun.* 2016, *52*, 9727-9730.

- [S30] Su, J. W.; Xia, G. L.; Li, R.; Yang, Y.; Chen, J. T.; Shi, R. H.; Jiang, P.; Chen, Q. W. Co₃ZnC/Co Nano Heterojunctions Encapsulated in N-doped Graphene Layers Derived From PBAs as Highly Efficient Bi-functional OER and ORR Electrocatalysts. *J. Mater. Chem. A* 2016, *4*, 9204-9212.
- [S31] Kwak, I. H.; Im, H. S.; Jang, D. M.; Kim, Y. W.; Park, K. D.; Lim, Y. R.; Cha, E. H.; Park, J. CoSe₂ and NiSe₂ Nanocrystals as Superior Bifunctional Catalysts for Electrochemical and Photoelectrochemical Water Splitting. *ACS appl. Mater. Interfaces* **2016**, *8*, 5327-5334.
- [S32] Zhao, Z. L.; Wu, H. X.; He, H. L.; Xu, X. L.; Jin, Y. D. A High-Performance Binary Ni–Co Hydroxide-based Water Oxidation Electrode with Three-Dimensional Coaxial Nanotube Array Structure. *Adv. Funct. Mater.* 2014, 24, 4698-4705.
- [S33] Qiao, C.; Zhang, Y.; Zhu, Y. Q.; Cao, C. B.; Bao, X. H.; Xu, J. Q. One-step Synthesis of Zinc-cobalt Layered Double Hydroxide (Zn-Co-LDH) Nanosheets for High-efficiency Oxygen Evolution Reaction. J. Mater. Chem. A 2015, 3, 6878-6883.