Desymmetrization of *meso-*1,2-Diols by a Chiral *N*,*N*-4-Dimethylaminopyridine Derivative Containing a 1,1'-Binaphthyl Unit: Importance of Two Hydroxy Groups

Hiroki Mandai,* Hiroshi Yasuhara, Kazuki Fujii, Yukihito Shimomura, Koichi Mitsudo and Seiji Suga*

Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-

1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan

E-mail: mandai@cc.okayama-u.ac.jp, suga@cc.okayama-u.ac.jp

SUPPORTING INFORMATION

Table of Contents

	Page
The details of optimization of reaction conditions	S 1
HPLC data of products 3b–p (Figure 2)	S 3
HPLC data of product 3n (Scheme 2)	S 8
HPLC data of 3n (before and after, eq. 1)	S 9
HPLC data of 3a (before and after, eq. 2)	S 9
HPLC data of product 3a (Table 4)	S10
¹ H NMR data and ¹³ C NMR data of 1m , 1h''' , 1h'''' , 2f , 2g , 2h , 2o , 3b–p , and 4b–p	S11

The details of optimization of reaction conditions

Table S1. Base screening for the desymmetrization of meso-2a^{a)}

OH Ph	_ОН _	5.0 mo 1.1 equiv (1.1 equ	I % 1h <i>i</i> -PrCO) ₂ C iv base) (→ Ph		D <i>i</i> -Pr +	OCO <i>i</i> -Pr Ph	
Ý	h	0 °C	(0.1 M) ,3 h		Ρh		Ph	
meso-	2a			mo	noacylate	3a	diacylate 4a	
	Entry	Base	3a [%] ^{b)}	4a [%] ^{b)}	2a [%] ^{b)}	3a/4a	Er of 3a ^{c)}	
	1	Et_3N	86	10	8	8.6	94:6	
	2	<i>i</i> -Pr ₂ EtN	84	5	13	16.8	94:6	
	3	pyridine	85	15	2	5.7	95:5	
	4	DBU	45	17	35	2.6	50:50	
	5	NMI	68	16	13	4.3	86:14	
	6	TMEDA	83	9	7	9.2	89:11	
	7	proton- sponge	85	8	7	10.6	94.5:5.5	
	8	Cs_2CO_3	34	3	43	11.3	50:50	
	9	K_2CO_3	74	8	19	9.3	50:50	
	10	K_3PO_4	86	9	7	9.6	55:45	
	11	KOt-Bu	55	13	27	4.2	69:31	
	12	KOAc	84	8	8	11	92:8	
	13	none	84	6	12	14	95:5	

^{a)} Reactions were performed on a 0.1 mmol scale in solvent (0.1 M) under an argon atmosphere. ^{b)} NMR yield were determined by ¹H NMR analysis using 2-methoxynaphthalene as an internal standard. ^{c)} Enantiomer ratio was determined by HPLC analysis using CHIRALCEL OJ-H.

Table S2. The effects of reaction temperature screening of the desymmetrization of meso-2a^{a)}

OH Ph F meso-	_ОН _ ^р h 2а	5.0 mo 1.1 equiv 1.1 equ TBME temp	ol % 1h (<i>i</i> -PrCO) ₂ (uiv Et ₃ N (0.1 M) (0., 3 h	⊃ → Ph´ mc		⊃ <i>i</i> -Pr ₊ ∋ 3a	Ph Ph diacylate 4a	•
	Entry	temp. [°C]	$\begin{matrix} \textbf{3a} \\ [\%]^{b)} \end{matrix}$	4a [%] ^{b)}	$\begin{array}{c} 2a \\ [\%]^{b)} \end{array}$	3a/4a	Er of 3a ^{c)}	
	1	0	86	10	8	8.6	94:6	
	2	-20	85	6	9	14.2	98:2	
	3	-40	85	5	7	17	98:2	
	4	-60	78	4	21	19.5	98:2	

^{a)} Reactions were performed on a 0.1 mmol scale in solvent (0.1 M) under an argon atmosphere. ^{b)} NMR yield were determined by ¹H NMR analysis using 2-methoxynaphthalene as an internal standard. ^{c)} Enantiomer ratio was determined by HPLC analysis using CHIRALCEL OJ-H.

Table S3. The effects of substrate concentration screening of the desymmetrization of meso-2a^{a)}

	ОН	5.0 mc 1.1 equiv (1.1 equ	ol % 1h (<i>i</i> -PrCO) ₂ 0 uiv Et ₃ N	D	он Сосо	D <i>i</i> -Pr	OCO <i>i</i> -Pr
Pin P meso-	'h 2a	TBME 20 °	conc. C, 3 h	mo	 Ph noacylate	3a	Ph Ph diacylate 4a
	Entry	conc. [M]	3a [%] ^{b)}	4a [%] ^{b)}	2a [%] ^{b)}	3a/4a	Er of 3a ^{c)}
	1	0.05	81	13	7	6.2	97:3
	2	0.1	84	6	12	14	97:3
	3	0.2	89	10	2	8.9	96:4

^{a)} Reactions were performed on a 0.1 mmol scale in solvent (0.1 M) under an argon atmosphere. ^{b)} NMR yield were determined by ¹H NMR analysis using 2-methoxynaphthalene as an internal standard. ^{c)} Enantiomer ratio was determined by HPLC analysis using CHIRALCEL OJ-H.

Racemic s	sample of 3e			Figure 2,	3e		
Intensity				Intensity			
	50	60	min				min
Peak	Ret. Time	Area	Conc. %	Peak	Ret. Time	Area	Conc. %
1	53.334	55657	49.905	1	46.735	350018	97.348
2	55.833	55868	50.095	2	51.389	9537	2.652

Racemic sa	ample of 3h			Figure 2, 3	3h		
mV 40 30 20 10 10	12.5 15.0 17.5	20.0 22.5 25.0	Det A Ch1 27.5 min	mV 30 20 -10 -10 10.0	12.5 15.0 17.5	20.0 22.5 25.0	1Det A Ch1 27.5 min
Peak	Ret. Time	Area	Area %	Peak	Ret. Time	Area	Area %
1	18.558	680693	50.111	1	17.587	128958	90.866
2	19.876	677688	49.889	2	18.924	12963	9.134

Investigation of intramolecular acyl migration (Scheme 2)

Investigation of intramolecular acyl migration with ent-1h (eq.1)

Investigation of second acylation step (eq.2)

Racemic sa	mple of 3a (bef	ore)		Recovered	1 3a (after)		
uV 10000 7500 5000- 2500- 25	30 35	2015 18	" IDeLA Ch1 > 2DeLB Ch1 45 min	uV 1000 750- 250 0 25		8197££ 40	1Det.A Ch1 45 min
Peak	Ret. Time	Area	Area %	Peak	Ret. Time	Area	Area %
1	29.319	405052	50.262	1	31.906	9497	40.971
2	38.592	400827	49.738	2	37.618	13683	59.029

Effects of the tert-alcohol unit(s) of the catalyst in the desymmetrization of meso-2a (Table 4)

The crude product of **3a** was subjected to HPLC with DAICEL CHIRALPAK® OJ-H (For entries 2 and 3, hexane/i-PrOH = 98/2, v/v, flow rate = 1.0 mL/min, $30 \degree$ C, UV = 254 nm; For entries 4 and 5, hexane/i-PrOH = 98.5/1.5, v/v, flow rate = 1.0 mL/min, $30 \degree$ C, UV = 254 nm).

X : parts per Million : Carbon13

S20

S42

