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S1. PERTURBATION THEORY FOR PHOTOTHERMAL SELF-OSCILLATION

The governing equations of motion are:

z̈ + γż + ω2
0i(1 + CT )(z −DT ) = 0 (S1)

Ṫ +
1

τ
T = APg(z) (S2)

g(z) = α− β sin

(
4π(z + φ)

λ

)
(S3)

Eqs. S1 & S2 have the static solution z0 = τDAPg(z0) and T0 = z0/D. We can define a new coordinate system as
deviations from this equilibrium x = z − z0 and u = T − T0, which leads to:

ẍ+ γẋ+ ω2
0i(1 + CT0 + Cu)(x−Du) = 0 (S4)

u̇+
1

τ
u = −1

τ
T0 +APg(x+ z0) (S5)

g(x+ z0) = α− β sin

(
4π(x+ z0 + φ)

λ

)
(S6)

where we have introduced x0 = φ− z0. For convenience we now rescale our units of time and displacement such that
the resonant frequency ω0i = 1 and laser wavelength λ = 1:

ẍ+
1

Q
ẋ+ (1 + CT0 + Cu)(x−D′u) = 0 (S7)

u̇+
1

τ ′
u = − 1

τ ′
T0 +A′Pg(x+ z0) (S8)

g(x+ z0) = α− β sin (4π(x+ z0 + φ)) . (S9)

Here the quantities x, z0, φ are now expressed in units of λ and we have introduced the quality factor Q = ω0i/γ.
Furthermore, we have defined D′ = D/λ, τ ′ = τω0i, and A′ = A/ω0i. Hereafter we will work exclusively with these
rescaled parameters, and for brevity we will not write the primes.

In performing the perturbation theory, we will be required to approximate g(x + z0) by a polynomial. We choose
to expand g(x + z0) in a Taylor series about x + z0 = −φ so that the coefficients of our series are independent of φ.
We will truncate this series at N + 1 terms, and refer to the truncated series as h(x) ≈ g(x+ z0):

h(x) =

N∑
n=0

g(n)(−φ)

n!
(x+ z0 + φ)n =

N∑
n=0

kn(x+ z0 + φ)n (S10)

where g(n)(−φ) denotes the nth derivative of g(x + z0) evaluated at x + z0 = −φ. Note that if N → ∞ we have
h(x) = g(x+ z0). The first few coefficients kn are given by:

k0 = α

k1 = −4πβ

k3 =
32

3
π3β

k5 = −128

15
π5β

k7 =
1024

315
π7β

kn = 0, evenn > 0

(S11)

Thus, finally, we will seek a solution to the coupled differential equations:

ẍ+
1

Q
ẋ+ (1 + CT0 + Cu)(x−Du) = 0 (S12)

u̇+
1

τ
u = −1

τ
T0 +APh(x) (S13)
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We will solve Eqs. S12 & S13 via the Poincaré-Lindstedt perturbation method. To do this, we must scale 1/Q,Cu,
and Du by a small dimensionless parameter ε � 1. This will yield solutions for x(t) and u(t) that are power series
in ε: x = x1 + x2ε + x3ε

2 + · · · and u = u1 + u2ε + u3ε
2 + · · · . In order to perturbatively solve for the oscillation

frequency ω = ω1 + ω2ε+ ω3ε
2 + · · · we once more scale the time dimension by ω. This leads to the coupled system:

ω2ẍ+
εω

Q
ẋ+ (1 + CT0 + εCu)(x− εDu) = 0 (S14)

ωu̇+
1

τ
u = −1

τ
T0 +APh(x) (S15)

Setting ε = 0 gives us the lowest order of the perturbation:

ω2
1 ẍ1 + (1 + CT0)x1 = 0 (S16)

ω1u̇1 +
1

τ
u1 = −1

τ
T0 +APh(x1) (S17)

Choosing ω2
1 = 1 + CT0 in Eq. S16 results in the solution x1 = R cos t. This solution is now substituted into Eq. S17

to solve for u1. Because h(x1) is a polynomial in x1, this leads to:

ω1u̇1 +
1

τ
u1 = V0 +

N∑
n=1

Vn cosnt (S18)

where V0 and Vn are constant coefficients that depend on T0, R, and the details of h(x1). We will derive these
coefficients on the next page, but for now we proceed assuming they are known.

Solving Eq. S18, the steady-state solution (i.e. neglecting transient components) for u1 is:

u1(t) = τV0 +

N∑
n=1

τVn
1 + n2ω2

1τ
2

(cosnt+ nω1τ sinnt) (S19)

Thus the time-averaged value of u (to order ε0 in perturbation theory) increases by an amount τV0 during oscillation.
We now proceed to order ε1 of perturbation theory by substituting x = x1 + εx2, u = u1 + εu2 and ω = ω1 + εω2

into Eq. S14 and neglecting terms of order ε2 and higher:

εω2
1 ẍ2 + εω2

1x2 + 2εω1ω2ẍ1 +
εω1

Q
ẋ1 − εω2

1Du1 + εCu1x1 = 0 (S20)

Rearranging terms, this equation can be written in the more familiar form:

ẍ2 + x2 = −2ω2

ω1
ẍ1 −

1

ω1Q
ẋ1 +Du1 −

C

ω2
1

u1x1 (S21)

Thus x2 represents a simple harmonic oscillator with forcing terms given by the right hand side of Eq. S21. In order
for x2 not to grow without bound, secular terms must be removed. In other words the forcing terms at frequency
ω = 1 must vanish. Thus we proceed by substituting x1 = R cos t and Eq. S19 for u1, collecting terms proportional
to cos t and sin t, and equating them to zero. Collecting sin t terms in Eq. S21 leads to

ω2
1DV1

1 + ω2
1τ

2
− CRV2

1 + 4ω2
1τ

2
+

R

τ2Q
= 0 (S22)

which can be solved for R, bearing in mind that the coefficients V1 and V2 are dependent on R. Collecting cos t terms
in Eq. S21 gives

2τω2
1DV1

1 + ω2
1τ

2
− τCRV2

1 + 4ω2
1τ

2
+ 4Rω1ω2 − 2τCRV0 = 0 (S23)

which can be solved for ω2 once R is known.
According to Eq. S22, the oscillation amplitude R is determined by the coefficients V1 and V2, which are the forcing

terms for u at frequency ω and 2ω in Eq. S18. Moreover, the average temperature change is determined by V0. We
will now proceed to calculate these terms based on h(x) in Eq. S17.
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Deriving V0, V1, and V2 is most easily done if we first rewrite h(x) as a series in x rather than x+ z0 + φ. Thus we
have

h(x) =

N∑
n=0

h
(n)
0

n!
xn (S24)

where h
(n)
0 is the nth derivative of h(x) evaluated at x = 0. Note that this Taylor series terminates at order xN

because h(x) is by definition an N th order polynomial (see Eq. S10). If we take h(x) to be 7th order, as is done in

the main text, then the derivatives h
(n)
0 are related to the factors kn in Eq. S10 by:

h
(0)
0 = k0 + k1x0 + k3x

3
0 + k5x

5
0 + k7x

7
0

h
(1)
0 = k1 + 3k3x

2
0 + 5k5x

4
0 + 7k7x

6
0

h
(2)
0 = 6k3x0 + 20k5x

3
0 + 42k7x

5
0

h
(3)
0 = 6k3 + 60k5x

2
0 + 210k7x

4
0

h
(4)
0 = 120k5x0 + 840k7x

3
0

h
(5)
0 = 120k5 + 2520k7x

2
0

h
(6)
0 = 5040k7x0

h
(7)
0 = 5040k7

(S25)

where we have defined x0 = z0 + φ. Equating the right hand sides of Eqs. S17 & S18 then gives:

V0 +

N∑
m=1

Vm cosmt = −1

τ
T0 +AP

N∑
n=0

h
(n)
0

n!
xn1 (S26)

In order to calculate V0, V1, and V2 we now substitute x1 = R cos t and invoke the power formulas for cosines

even n : cosn t =
1

2n

(
n

n/2

)
+

1

2n−1

(n/2)−1∑
k=0

(
n

k

)
cos[(n− 2k)t] (S27)

odd n : cosn t =
1

2n−1

(n−1)/2∑
k=0

(
n

k

)
cos[(n− 2k)t] (S28)

where
(
a
b

)
= a!/(b!(a − b)!) is a binomial coefficient. For even n, the constant term arising from cosn t is simply

(1/2n)
(
n
n/2

)
. Furthermore, because only cosn t with even n will lead to cosmt with even m, the V0 in Eq. S26 is

V0 = −1

τ
T0 +AP

N∑
n=0,2,4,...

h
(n)
0

n!

(
R

2

)n
n!

(n/2)!(n/2)!

= −1

τ
T0 +AP

M0∑
m=0

h
(2m)
0

(m!)2

(
R

2

)2m
(S29)

where M0 = floor(N/2). The value of V0 can similarly be found by substituting Eq. S28 into Eq. S26 with n−2k = 1.
Only odd n ≥ 1 contribute to this sum. This gives

V1 = AP

N∑
n=1,3,5,...

h
(n)
0

n!

(
Rn

2n−1

)
n!

(n−1
2 )!(n+1

2 )!

= 2AP

M1∑
m=0

h
(2m+1)
0

m!(m+ 1)!

(
R

2

)2m+1
(S30)

4



SUPPLEMENTARY INFORMATION De Alba et al. 2017

where M1 = floor((N − 1)/2). Lastly, V2 is found by substituting n − 2k = 2 into Eq. S27 and Eq. S26. Only even
n ≥ 2 contribute to this sum:

V2 = AP

N∑
n=2,4,6,...

h
(n)
0

n!

(
Rn

2n−1

)
n!

(n2 − 1)!(n2 + 1)!

= 2AP

M2∑
m=0

h
(2m+2)
0

m!(m+ 2)!

(
R

2

)2m+2
(S31)

where M2 = floor((N − 2)/2). Interestingly, if we take N →∞ these sums bear remarkable resemblance to modified
Bessel functions of the first kind:

Iα(x) =

∞∑
m=0

1

m!(m+ α)!

(x
2

)2m+α

(S32)

Thus for the case of N →∞ we may write V0 . . . V2 as:

V0 = −1

τ
T0 +API0

(
R
d

dx

)
· h(x)

∣∣∣∣
x=0

(S33)

V1 = 2API1

(
R
d

dx

)
· h(x)

∣∣∣∣
x=0

(S34)

V2 = 2API2

(
R
d

dx

)
· h(x)

∣∣∣∣
x=0

(S35)

In fact, it can be shown that for all n > 0 the temperature variation at frequency nω is given by:

Vn = 2APIn

(
R
d

dx

)
· h(x)

∣∣∣∣
x=0

(S36)

Of course, in the N →∞ limit we also have h(x) = g(x+ z0).
If we truncate h(x) at N = 7, then we have M0 = 3 in Eq. S29. Therefore by Eq. S18, the time-averaged change

in temperature is given by:

τV0 = −T0 + τAP

3∑
m=0

h
(2m)
0

(m!)2

(
R

2

)2m

(S37)

Furthermore, when N = 7 we have M1 = 3 and M2 = 2 in Eqs. S30 & S31. Thus V1 contains all odd powers of R
from R1 to R7, and V2 contains all even powers from R2 to R6. Upon substituting V1 and V2 into Eq. S22, we then
finally arrive at our equation for R:

0 = c0 + c1R
2 + c2R

4 + c3R
6 (S38)

where

c0 =
ω2

1D

1 + ω2
1τ

2
h

(1)
0 +

1

τ2APQ

c1 =
ω2

1D

1 + ω2
1τ

2

h
(3)
0

221!2!
− C

1 + 4ω2
1τ

2

h
(2)
0

210!2!

c2 =
ω2

1D

1 + ω2
1τ

2

h
(5)
0

242!3!
− C

1 + 4ω2
1τ

2

h
(4)
0

231!3!

c3 =
ω2

1D

1 + ω2
1τ

2

h
(7)
0

263!4!
− C

1 + 4ω2
1τ

2

h
(6)
0

252!4!

The results shown above are expressed in dimensionless units. When re-dimensionalized, they reproduce Eq. 5 of the
main text. The ε1-order correction to the resonant frequency is (upon rearranging Eq. S23)

ω2 =
τC

2ω1
V0 −

ω1τD

1 + ω2
1τ

2

V1

2R
+

τC

1 + 4ω2
1τ

2

V2

4ω1
(S39)
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When h(x) is truncated at N = 7 this becomes

ω2 = d0 + d1R
2 + d2R

4 + d3R
6 (S40)

where (again in dimensionless units)

d0 = − ω1τD

1 + ω2
1τ

2

APh
(1)
0

210!1!
+
τC

2ω1

(
−1

τ
T0 +APh

(0)
0

)
d1 = − ω1τD

1 + ω2
1τ

2

APh
(3)
0

231!2!
+

τC

1 + 4ω2
1τ

2

APh
(2)
0

230!2!ω1

d2 = − ω1τD

1 + ω2
1τ

2

APh
(5)
0

252!3!
+

τC

1 + 4ω2
1τ

2

APh
(4)
0

251!3!ω1

d3 = − ω1τD

1 + ω2
1τ

2

APh
(7)
0

273!4!
+

τC

1 + 4ω2
1τ

2

APh
(6)
0

272!4!ω1

6
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S2. STATIC NANOWIRE BEHAVIOR

From Eqs. S1 & S2 the static nanowire must satisfy

z0 = DT0 (S41)

1

τ
T0 = APg(z0) (S42)

Rearranging these shows that the nanowire equilibrium is determined by the roots of the following equation:

0 = APg(z0)− z0

τD
(S43)

Near P = 0 this equation has only one root, but as P increases more roots develop. This function is plotted for
multiple P values in Fig. S1 (a) for φ = 0. The upper panel displays the lowest valid solution of Eq. S43, which has a
discontinuous jump in z0 from one crest of g(z) to the next as P increases quasi-statically. These results suggest that
for high enough P values, z0 will reside only in regions of g(z) with negative slope dg/dz – i.e. in regions conducive
to self-oscillation. It should be noted that in this experiment (and in the function plotted in Fig. S1), a positive D
value is assumed. If we were to invert our spatial coordinates, we would have D < 0, and the equilibrium z0 would
shift towards negative values for increasing P ; the tendency of z0 to reside only in regions conducive to self-oscillation
(regions of positive dg/dz in this case) would still be observed.

Fig. S1 (b-d) show the expected equilibrium position for our nanowire based on Eq. S43 for varying φ and P values.
Fig. S1 (b) displays the equilibrium shift relative to the P = 0 position (i.e. z0), which is periodic in λ/2 as expected.
Fig. S1 (c) displays the absolute nanowire position within the standing wave (i.e. z0 +φ), and the slope dg/dz at this
absolute position is shown in Fig. S1 (d).

Labeling Eq. S43 by f(z0) = APg(z0)− z0
τD , we prove in Section S4 that equilibrium points (z0, T0) at which the the

local slope df/dz0 > 0 are unstable. Therefore when P is large enough such that f(z0) has multiple roots, only those
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roots with negative local slope df/dz0 < 0 represent viable equilibrium points (z0, T0). This further suggests that at
high enough laser powers only equilibrium points conducive to self-oscillation (i.e. with dg/dz < 0) are allowed.
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S3. CRITICAL POWER AND HYSTERESIS

Reproducing a result from Section S1, the amplitude R of self-oscillation is (in dimensionful units):

0 = c0 + c1R
2 + c2R

4 + c3R
6 (S44)

where

c0 =
ω2

1D

1 + ω2
1τ

2
g(1)
z0 +

γ

τ2AP

c1 =
ω2

1D

1 + ω2
1τ

2

g
(3)
z0

221!2!
− ω2

0iC

1 + 4ω2
1τ

2

g
(2)
z0

210!2!

c2 =
ω2

1D

1 + ω2
1τ

2

g
(5)
z0

242!3!
− ω2

0iC

1 + 4ω2
1τ

2

g
(4)
z0

231!3!

c3 =
ω2

1D

1 + ω2
1τ

2

g
(7)
z0

263!4!
− ω2

0iC

1 + 4ω2
1τ

2

g
(6)
z0

252!4!

Here we have made the approximation h(x) = g(x+ z0). This can be rearranged to express P as a function of R:

P =
−γ/(τ2A)

b+ c1R2 + c2R4 + c3R6
(S45)

where b = (ω2
1Dg

(1)
z0 )/(1 + ω2

1τ
2). The critical laser power Pcrit is simply the R = 0 value of this function:

Pcrit = −
γ
(
1 + ω2

1τ
2
)

ω2
1τ

2DAg
(1)
z0

(S46)

Whether the transition to self-oscillation will be hysteretic or non-hysteretic (i.e. whether the Hopf bifurcation will
be subcritical or supercritical) is determined by the curvature d2P/dR2 at R = 0. Upon differentiating Eq. S45 twice,
one finds that this curvature is given by

d2P

dR2

∣∣∣∣
R=0

=
2γc1
τ2Ab2

(S47)

Because physical values of γ and A must be positive, this result suggests that c1 < 0 is the necessary condition for a
hysteretic transition. Such a transition is depicted in Fig. S2. The parameters used to produce this figure are identical

to the experimental values of our nanowire, except C has been increased by a factor of 100; φ is near λ/8, where |g(2)
z0 |
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0.05
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0.2

0.25
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�
/�

(�min,�min)
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FIG. S2. A subcritical Hopf bifurcation. A dashed line indicates unstable behavior.
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is maximal. In this figure z0 (the time-averaged position) has been held fixed over the entire P range to simplify the
results.

The width of the hysteresis region can be found by analyzing the first derivative of P :

dP

dR
=

γ

τ2A

2c1R+ 4c2R
3 + 6c3R

5

(b+ c1R2 + c2R4 + c3R6)
2 (S48)

As seen in Fig. S2, the minimum P value at which self-oscillation is sustainable coincides with a turning point in P (R)
– i.e. it occurs when dP/dR = 0. Note that dP/dR = 0 also occurs at R = 0 – i.e. at the critical power P = Pcrit. The
lower edge of the self-oscillation region is thus found by solving the following equation for the minimum amplitude
Rmin

0 = 2c1 + 4c2R
2 + 6c3R

4 (S49)

and substituting the resulting value back into Eq. S45 for P to give Pmin = P (Rmin). This calculation seems
straightforward if c1, c2, and c3 are taken as constants, but in actuality these quantities are dependent on z0, which
generally depends on P ; this makes calculation of Pmin much more difficult. Therefore one approach to calculating
Pmin would be to iteratively solve Eqs. S49, S45 & S43 for R, P , and z0 until they converge on fixed values.

10
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S4. NOTE ABOUT LYAPUNOV STABILITY

In Section S1, we found a solution for the position and temperature of our resonator by assuming a displacement of
the form x(t) = R cosωt and applying perturbation theory to Eqs. S3 & S4. In the end, we determined the oscillation
amplitude R as a function of laser power P (Eq. S38). We also determined the critical power Pcrit required for
self-oscillation (Eq. S46). However, knowing that one effect of the Cu term in Eq. S3 is to modulate the resonant
frequency of the system at a rate of 2ω, or twice the oscillation frequency (as demonstrated by the V2 term in Eq. S22),
we might reasonably wonder whether this parametric modulation by C can in its own right produce self-oscillation.
After all, setting D = 0 leads to Pcrit →∞ (suggesting that the system will never self-oscillate), but also leads Eq. S3
to resemble the damped Mathieu equation, given by

ẍ+ γẋ+ ω2
0 (1 + δ cos 2ω0t)x = 0 (S50)

in which the equilibrium state x = ẋ = 0 is known to become unstable once the modulation strength δ is large enough1

(δ > 2γ
ω0

). Despite this resemblance, our system in fact will not oscillate if D = 0, and only laser powers P > Pcrit

(with Pcrit given by Eq. S46) will result in self-oscillation. Moreover, if P > Pcrit the system has no choice but to
oscillate. In this section, we will prove these assertions by examining the Lyapunov stability of Eqs. S3 & S4 at the
equilibrium point x = ẋ = u = 0.

Restating Eqs. S3 & S4 with h(x) = g(x+ z0):

ẍ+ γẋ+ ω2
0i(1 + CT0 + Cu)(x−Du) = 0 (S51)

u̇+
1

τ
u = −1

τ
T0 +APh(x)

= AP

[
h

(1)
0 x+

1

2!
h

(2)
0 x2 +

1

3!
h

(3)
0 x3 + . . .

] (S52)

In the second of these equations we have expanded h(x) in a Taylor series and made use of the fact that APh(0) = T0

τ .

Defining ω2
1 = ω2

0i(1 + CT0), we can rewrite this as a system of first order differential equations:

ẋ = y (S53)

ẏ = −ω2
1x− γy + ω2

1Du− ω2
0iCux+ ω2

0iCDu
2 (S54)

u̇ = −1

τ
u+AP

[
h

(1)
0 x+

1

2!
h

(2)
0 x2 +

1

3!
h

(3)
0 x3 + . . .

]
(S55)

or, in matrix form:

d

dt

xy
u

 =

 0 1 0
−ω2

1 −γ ω2
1D

APh
(1)
0 0 − 1

τ

xy
u

+G

xy
u

 (S56)

G above is a matrix of strictly nonlinear (i.e. quadratic and higher order) terms. Referring to the preceding matrix
of linear terms as F , we know that x = y = u = 0 is asymptotically Lyapunov stable if all the eigenvalues of F
have negative real parts, and it is Lyapunov unstable if at least one eigenvalue has a positive real part.1,2 In these
cases, no matter what nonlinear terms are contained in G, they will not affect the stability of the system. Only if
the eigenvalues of F are purely imaginary would the nonlinear terms determine the stability. So we now proceed to
determine the eigenvalues of F . This leads to:∣∣∣∣∣∣

−λ 1 0
−ω2

1 −γ − λ ω2
1D

APh
(1)
0 0 − 1

τ − λ

∣∣∣∣∣∣ = 0 (S57)

which gives us

λ3 + aλ2 + bλ+ c = 0 (S58)

where

a = γ +
1

τ
(S59)

b =
γ

τ
+ ω2

1 (S60)

c = ω2
1

(
1

τ
−APh(1)

0 D

)
(S61)
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Note that a, b > 0 because the physical quantities γ, τ , ω1 are all positive. The sign of c, however, depends on the

product APh
(1)
0 D. If we now break λ into real and imaginary components λ = η + iθ, we can similarly separate

Eq. S58:

Real part of Eq. S58: η3 − 3ηθ2 + a(η2 − θ2) + bη + c = 0 (S62)

Imaginary part of Eq. S58: 3η2θ − θ3 + 2aηθ + bθ = 0 (S63)

Solving Eq. S63 for θ gives:

θ = 0 (S64)

θ = ±
√

3η2 + 2aη + b (S65)

Upon substitution into Eq. S62, these lead to:

η3 + aη2 + bη + c = 0 (S66)

8η3 + 8aη2 + 2(a2 + b)η + ab− c = 0 (S67)

Because a, b > 0, the first of these can only result in η > 0 if c < 0. Similarly, the second equation above will only
lead to η > 0 if ab− c < 0. Substituting in the definitions of a, b, c, the equilibrium point x = y = u = 0 is therefore
Lyapunov unstable if either of the following is satisfied:

APh
(1)
0 D − 1

τ
> 0 (S68)(

γ +
1

τ

)(γ
τ

+ ω2
1

)
− ω2

1

(
1

τ
−APh(1)

0 D

)
< 0 (S69)

or, upon rearranging:

APh
(1)
0 D >

1

τ
(S70)

−APh(1)
0 D >

γ(1 + ω2
1τ

2) + γ2τ

ω2
1τ

2
(S71)

We recognize Eq. S70 as being closely related to Eq. S43, which defines the equilibrium point (z0, T0). In fact, Eq. S70

represents the first derivative of Eq. S43 with respect to z0 (bearing in mind that h
(1)
0 = g

(1)
z0 ). This proves that any

equilibrium point (z0, T0) satisfying Eq. S70 is unstable. Note that this only affects equilibrium points (z0, T0) with

h
(1)
0 > 0 – i.e. regions of g(z) that do not support self-oscillation. Furthermore, because the eigenvalue is purely real

(θ = 0) in this case, this instability is not accompanied by oscillations in x, ẋ, u.

In contrast to Eq. S70, Eq. S71 can only hold if h
(1)
0 < 0. In fact, this is a reproduction of the critical power Pcrit

defined by Eq. S46 (and Eq. 6 of the main text) with one small addition: the γ2τ term. This term is missing from
our previous derivations of Pcrit because in applying perturbation theory, we scaled γ by a small parameter ε (see
Eq. S14) and neglected terms of order ε2 and higher. This then proves our previous assertions that for P < Pcrit our
system will not oscillate, and for P > Pcrit it has no choice but to oscillate.

12
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S5. DEVICE FABRICATION

One of the goals during fabrication of these nanowire devices was to create a MEMS/NEMS structure which would
be useful over a wide range of temperatures. Stoichiometric Silicon Nitride (Si3N4) was chosen as the nanowire
material for its high stress and high quality factors.3 The Niobium coating was specified so that the superconducting
material can (in the future) be coupled to a SQUID (Superconducting QUantum Interference Device) detector for
ultralow temperature use.4,5 In such a configuration, feedback from the SQUID can be used to induce self-oscillation
in a manner equivalent to the photothermal feedback studied here at room temperature. A major advantage of these
devices for low-temperature studies is that the nanowire cross-sections (≈ 50 nm) are smaller than the superfluid 3He
pair size (70 nm at low pressure). The nanowires would thus be minimally invasive to the superfluid and enable new
studies of fundamental physics in this system.6

The nanowires and supporting cantilevers were patterned using a combination of electron-beam lithography and
optical lithography. Misalignment between these steps caused a slight difference in the cantilever lengths for a given
device (discussed in the next section). Combining these two lithography technologies allowed for definition of very
small features (the 50 nm-wide nanowires), but also allowed for definition of the larger features (the surrounding
trenches) in a short exposure time.

The process flow was as follows: Deposit 25 nm of Si3N4 on a Silicon wafer by Low Pressure Chemical Vapor
Deposition (LPCVD). Then, deposit 50 nm of Titanum/Gold and pattern via optical lithography and lift-off to define
contact pads on either end of the nanowire trench; these contact pads were not used in this work, but will be used
to make electrical contact to a SQUID detector in low-temperature experiments. Then, define the nanowires and
supporting paddles in resist using electron-beam lithography, followed by defining of the trench boundaries using
optical lithography. This is followed by etching of the Si3N4 using a CHF3/O2 plasma etch. The underlying Si was
then etched to a depth of 8µm using a wet KOH etch. The sample was then dried using a CO2 critical point dryer,
followed by deposition of the 20 nm Nb film. A scanning electron micrograph of two neighboring nanowires is shown
in Figure S3.

We note that although there is a thin coating of Nb on the trench floor as well as on the nanowire from sputter
deposition, the choice was made to model this surface optically as being pure Si. The reflectivities of bulk Si and Nb
in the visible range are roughly 35% and 55%, respectively, and the reflectivity of this composite surface is between
these values. For simplicity we have chosen to use the pure Si value to compute α and β in our model (see Eq. S3 and
Eqs. S82 & S83); this assumption may affect the measured value of A in our experiment slightly, but does not affect
the overall model any more than the uncertainty in α and β arising from the Gaussian nature of our laser beam, as
discussed in Section S8.

20µm
wire 1

wire 2

FIG. S3. Angled scanning electron microscopy image of two neighboring nanowires, one of 40µm length (top) and another of
50µm length (bottom).
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S6. ESTIMATION OF THERMAL PARAMETERS

The mechanical and thermal parameters of our system (ω0, τ, C,D) can be accurately estimated by knowledge of the
material composition of our nanowire and the cantilevers by which it is suspended. The optical parameters (A,α, β)
require also knowledge of our laser spot size and the refractive index of the reflective silicon back-plane.

The resonant frequency of a tensioned wire composed of a single material with Young’s modulus E and internal
strain ε is

ω0 =
π

L

√
Eε

ρ
(S72)

where L is the wire length and ρ is the mass per unit volume. This equation neglects terms due to bending of the
wire, and is valid only in the high tension limit. For a wire composed of two distinct materials, this becomes

ω0 =
π

L

√
σtot

µtot
=
π

L

√
E1A1ε1 + E2A2ε2

ρ1A1 + ρ2A2
(S73)

where σtot, µtot are the total tensile stress and mass per unit length of the wire. The subscripts 1, 2 have been used
to distinguish between the two materials and An is the cross-sectional area of either material.

The parameter C, which denotes the fractional stress change per unit temperature in Eq. S1 can be approximated
by

C =
1

σtot

(
dσtot

dT

)
≈ −E1A1α1 + E2A2α2

E1A1ε1 + E2A2ε2
(S74)

Here αn is the linear thermal expansion coefficient of material n, and this effect is entirely attributed to tension change
within the wire. We have assumed here that as the temperature changes both materials are free to expand and do not
influence one another. This is not entirely accurate because the two materials are coupled at their interface. A more
accurate calculation would incorporate the effective thermal expansion coefficient αeff of the joined materials, which
would have a value between α1 ≈ 3× 10−6K−1 and α2 ≈ 7× 10−6K−1. Hence this would not produce a substantially
different value for C.

The parameter D describes coupling between temperature and the vertical position of our nanowire. This coupling
is caused by the bimetalic cantilevers on either end of the nanowire, which at room temperature (≈ 300 K) curve
upward due to unbalanced stresses between the Nb film (top layer) and the underlying SiN. A detailed calculation of D
based on cantilever dimensions is presented in Section S7. Here we estimate D for a single nanowire based on angled-
SEM (Scanning Electron Microscopy) measurements of the cantilever length lc and equilibrium angle θ above the
horizontal. If θ is known, an estimate for D can be obtained by modeling the cantilever as acting under the influence
of an internal torque Tc which pulls it up and nanowire tension σtot which pulls it along the horizontal. Relative to a
rotation axis at the cantilever clamped edge, the torque exerted by the nanowire is σtotlc sin θ; in equilibrium we must
therefore have Tc = σtotlc sin θ. The vertical position of the cantilever free end is z = lc sin θ. If the two cantilevers
supporting the nanowire have differing lengths lc1, lc2 and equilibrium angles θc1, θc2, then the vertical position of the
nanowire center is:

z =
lc1 sin θc1 + lc2 sin θc2

2
=
Tc1 + Tc2

2σtot
(S75)

The change in vertical position of the nanowire per unit temperature change is then

D ≈ −
(
Tc1 + Tc2

2σ2
tot

)(
dσtot

dT

)
≈
(
Tc1 + Tc2

2

)
E1A1α1 + E2A2α2

(E1A1ε1 + E2A2ε2)
2 (S76)

This formula holds only for small deviations away from the equilibrium angles θc1, θc2. As with C, this parameter is
proportional to the change in wire stress per unit temperature.

For a heated mechanical resonator composed of a single material, the thermal time constant τ would simply be:

τ =
Leff

ΛAeff
ρcVeff (S77)

where Λ, c are the thermal conductivity and specific heat of the material, and Leff , Aeff are the effective length and
cross section of the conductive channel. Veff is the effective volume of heated material, and the combination ρcVeff is
the thermal mass. The combination Leff/(ΛAeff) is the thermal resistance.
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In our system, heat flows from the nanowire midpoint (where the laser is focused) out to the clamped edges
of the two cantilevers. It flows in parallel paths through the SiN (material 1) and Nb (material 2), along two
possible directions out from the midpoint. The thermal resistance of the nanowire (from midpoint to endpoint) is
Rw = (1/2)L/(Λ1A1 + Λ2A2). The resistance of either cantilever is Rc = lc/(Λ1Ac1 + Λ2Ac2). Because of the two
directions outward from the midpoint, the total resistance is Rtot = (Rw + Rc)/2. The total thermal mass µ of the
system (assuming cantilevers of equal length l) is given by µtot = c1ρ1(LA1 +2lcAc1)+ c2ρ2(LA2 +2lcAc2). Therefore
the thermal time is

τ = µtotRtot (S78)

The A parameter in Eq. S2 can be expressed as:

A =
a

µtot
=

[1− exp (−4πkNbtNb/λ)] erf
(√

2w/dL
)

µtot
(S79)

Here, a denotes the fraction of local laser light absorbed by the nanowire; kNb, tNb are the extinction coefficient and
thickness of the Nb film, and w is the width of the nanowire. The diameter of our Gaussian laser beam is denoted
by dL, and the error function erf(

√
2w/dL) represents the fraction of laser beam cross-sectional area that is covered

by the thin nanowire (assuming it lies along the center of the laser beam). The terms in square brackets denote the
fraction of light within that thin area that is absorbed by the Nb film.

The nanowire sits in an optical standing wave generated by interference between incident light from our laser and
light reflected from the silicon backplane. If we approximate the light as plane waves, it can be shown that in the
presence of such a reflector the optical intensity varies with distance as

P (z) = P0(1 +R0)− 2P0

√
R0 sin

(
4πz

λ

)
(S80)

where P0 corresponds to the incident laser power and R0 is the reflection coefficient. Note that P (z) here denotes the

total energy density P (z) = | ~E(z)|2 of the light in plane z, where ~E is the combined electric field of the incident and

reflected beams. Similarly, P0 = | ~E0|2 for the incident beam. Note also that in Eq. S3 and Eq. 3 of the main text, a
shift of φ is introduced to account for the resonator’s arbitrary initial (z = 0) position relative to the mirror.

This is related to the index of refraction of the silicon, nSi = 3.87 + 0.01i at 640 nm (Ref. 7), by

R0 =

∣∣∣∣nSi − 1

nSi + 1

∣∣∣∣2 ≈ 0.35 (S81)

Thus the two remaining parameters in Eq. S2 are given by

α = 1 +R0 (S82)

β = 2
√
R0 (S83)

Because the nanowire is much thinner than both the wavelength λ and spot size RL, we have assumed that it does
not greatly affect the optical standing wave in Eq. S80.

Table S1 lists the relevant material properties for SiN and Nb. Tables S2 & S3 list the resulting mechanical and
thermal parameters of our system. In Table S2, all values have been measured experimentally except for those marked
with asterisks (∗), which were calculated based on Eq. S73. In Table S3, A excludes the error function shown in Eq.
S79 since dL (the laser spot diameter) was used as a fit parameter during the experiment. The other fit parameters
were 1/τ (the cooling rate) and φ, the initial position of the nanowire within the optical field, as seen in Eq. S3.
Typical dL values arising from the fits were 2µm to 2.5µm.

15



SUPPLEMENTARY INFORMATION De Alba et al. 2017

SiN Nb Units Description References

ρ 3000 8600 kg m−3 mass density 8 & 9

Y 290 105 GPa Young’s modulus 8 & 9

α 3 7 10−6 K−1 thermal expansion coeff. 10 & 9

Λ 22 54 Wm−1K−1 thermal conductivity 8 & 9

c 700 265 Jkg−1K−1 specific heat 8 & 9

k 0 3.36 extinction coefficient 11

TABLE S1. Material parameters used for SiN & Nb

Value Units Description

ω0/2π 3.03 MHz resonant frequency

A1 875 nm2 wire SiN cross-section

A2 1420 nm2 wire Nb cross-section

εSiN 0.3 % ∗strain

εNb 0.02 % ∗strain

tNb 20 nm Nb thickness

w 51 nm wire width

L 40 µm wire length

lc1 2.4 µm cantilever length

lc2 4.1 µm cantilever length

θ1 16◦ cantilever angle

θ2 11◦ cantilever angle

Ac1 1.41 10−13 m2 cantilever SiN cross-section

Ac2 1.13 10−13 m2 cantilever Nb cross-section

TABLE S2. Mechanical parameters of our nanowire

Theoretical Value Units

Value From Fit

A 1.87 – 1011 K J−1

1/τ 2.49 7.46 kHz

C -2.21 – 10−3 K−1

D 1.64 – nm K−1

α 0.171 –

β 2.344 –

TABLE S3. Photo-thermal parameters of our nanowire
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S7. BEAM THEORY FOR SUPPORTING CANTILEVERS

The supporting cantilevers at either end of our nanowire are composed of a layer of stressed SiN coated with a
thin film (20 nm) of Nb. The Nb was deposited by sputter deposition. In this section we assume that the unbalanced
stresses which cause the cantilevers to curl upward are entirely thermally induced – i.e. arising due to differing thermal
expansion coefficients in the two layers and deposition of Nb atoms at a temperature � 300 K. Internal stresses in
the sputtered film can also contribute to the overall stress, but will not affect the scaling of our coupling constant D
with cantilever dimensions.

We begin by calculating the neutral axis of a two-material composite beam. It is located a distance ȳ above the
bottom surface of the lower material (material 2). During bending, the stresses above and below the neutral axis
must balance to zero. For two homogeneous materials (moduli E1, E2) of equal width and uniform thicknesses h1, h2,
this condition simplifies to 0 = E1h1y1 + E2h2y2. Here y1 = h2 + h1/2− ȳ and y2 = h2/2− ȳ are the distances from
the centers of materials 1 and 2 to the neutral axis. The neutral axis is therefore located at:

ȳ =

(
h2 + h1

2

)
E1

E2
h1 + 1

2h
2
2

E1

E2
h1 + h2

(S84)

This is depicted in Fig. S4. A simplification we can make in analyzing the composite beam is to use an equivalent
area to represent the increased stiffness of material 1 (the Nb). This is also depicted in Fig. S4. Both materials are
now assumed to have modulus E2, but the top material has an effective width bE1/E2 compared to the original b.
The area moment of inertia of the beam relative to this axis is:

I = Ī1 + Ā1y
2
1 + Ī2 + Ā2y

2
2 (S85)

where

Ī1 =
E1

E2

bh3
1

12
Ī2 =

bh3
2

12

Ā1 =
E1

E2
bh1 Ā2 = bh2

Above Ī1, Ī2 are the moments of inertial relative to the center axes of the two materials, and the parallel axis theorem
has been applied. Because we have used E2 as the reference modulus, the bending stiffness of the composite beam is

K = E2I. (S86)

In the absence of tensile force from the nanowire, either cantilever should have constant curvature κ due to its
internal/thermal stresses. Approximating this curvature by κ = d2z/dx2, where z(x) is the vertical position of the
cantilever a distance x from its clamping point, leads to a deflection profile of z(x) = (1/2)κx2. Therefore the height of
the cantilever end is zmax = (1/2)κl2c , where lc is the cantilever length. If the curvature is entirely thermally-induced,
it is given by:12

κ =
6E1E2(h1 + h2)h1h2(α1 − α2)∆T

E2
1h

4
1 + 4E1E2h3

1h2 + 6E1E2h2
1h

2
2 + 4E1E2h1h3

2 + E2
2h

4
2

(S87)
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FIG. S4. Equivalent views of the composite cantilever according to beam theory
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FIG. S5. Behavior of the composite beam under load

where α1, α2 are the thermal expansion coefficients of the two materials and ∆T is the temperature change relative to
a reference temperature (the Nb deposition temperature). Other internal stresses in the two materials may contribute
to κ, however, so the remaining equations will be presented for a general κ.

Shown in Fig. S5 is the effect of nanowire tension σ on the composite beam. Here we approximate the curved
cantilever as a straight beam at angle θ. This allows straightforward calculation of the cantilever deflection δ due to
loading by the nanowire tension. The angle θ is given by tan θ = zmax/lc = κlc/2, and the nanowire tension applies a
load perpendicular to the beam of σ sin θ. The deflection of the composite beam is therefore

δ =
l3cσ sin θ

3K
(S88)

The deflection of the cantilever end in the vertical direction is given by δ cos θ. Thus we arrive finally at the change
in vertical position per unit temperature change (i.e. stress change) of the nanowire:

D =
d(δ cos θ)

dT
=
l3c sin θ cos θ

3K

dσ

dT
(S89)

Because the bending stiffness (given by Eq. S86) K ∝ b, where b is the cantilever width, this derivation reveals
that the photothermal coupling D ∝ l3c/b. This suggests that D can be drastically enhanced simply by using longer
cantilevers. Moreover, the optimal cantilever angle is θ = 45◦.
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S8. NOTE ABOUT GAUSSIAN BEAMS

Throughout this work we have, for the sake of simplicity, assumed a sinusoidal optical intensity profile g(z) (see
Eq. S3). Such a functional form is only approximately correct, as it presupposes optical plane waves of infinite breadth.
In the more realistic case of an incident Gaussian laser beam, the functional form of g(z) can deviate greatly from
Eq. S3.

A Gaussian beam can be written as (Ref. 13)

U(x, y, z) = A0
w0

w(z)
exp

[
−x

2 + y2

w2(z)

]
exp

[
−ikz − ik x

2 + y2

2R(z)
+ iζ(z)

]
(S90)

where U(x, y, z) can denote either the electric or magnetic field; x, y, z are Cartesian coordinates with z lying along
the beam axis (i.e. the direction of propagation). A0 is the beam amplitude. Furthermore, we have

w(z) = w0

√
1 +

(
z

∆z

)2

(S91)

R(z) = z

[
1 +

(
∆z

z

)2
]

(S92)

ζ(z) = tan−1 z

∆z
(S93)

w0 =

√
λ∆z

π
(S94)

where 2∆z is the depth-of-focus of the beam and w0 = dL/2 is the beam waist radius (i.e. spot size). The intensity
at any point can be calculated from I(x, y, z) = |U(x, y, z)|2, and the peak intensity of the beam (which occurs at
x = y = z = 0) is I0 = |A0|2. In terms of the total beam power P , we have P = 1

2I0πw
2
0.

Figure S6 shows the optical interference pattern generated (using Eq. S90) by a Gaussian beam normally incident
on a perfect mirror with 100% reflectivity. The mirror is located at z = 0, and the beam waist is focused at z/λ = 12
(consistent with the nanowire location in our experiment). A black dot at z/λ = 12 in (a-c) is roughly the size of our
nanowire cross-section. (a,b) show the incident and reflected beams, respectively, (real parts only) and (c) depicts the
standing intensity profile produced by their interference. Note that this intensity is normalized to the incident beam
intensity I0 (or equivalently, A0 has been set to 1 in Eq. S90). The intensity along the beam direction is plotted in (d)
for three different values of x. The beam waist w0/λ = 1.26 corresponds to a spot size of 1.6µm, roughly consistent
with our experiment.

The curves in Fig. S6 (d) correspond to the true intensity profiles g(z) for different x positions of our nanowire
(neglecting effects of the nanowire itself, which are studied extensively in Ref. 14). Clearly our simple expression in
Eq. S3 must therefore be updated to

g(z) = α(z) + β(z) sin2

(
2π(z + φ)

λ
− π

4
+ η(z)

)
(S95)

where α and β are now functions of z. Note that the added phase η(z) is intended to account for ζ(z) in Eq. S90, which
introduces a phase retardation of π as an unperturbed beam travels from z = −∞ to z =∞. Over typical experimental
length-scales of . ∆z, however, this term can be neglected. Similarly, over typical oscillation amplitudes of R . λ,
α(z) and β(z) can be taken as constants. However, because α(z) and β(z) depend strongly on the focused beam waist
w0, the distance of this focus from the mirror, and the nanowire’s position in x, numerical values for these parameters
are difficult to calculate and will likely vary slightly between successive measurements. As a rough approximation,
data fitting throughout our main text was performed using α = 0.171 and β = 2.344, values corresponding to a plane
wave reflecting off of a Si mirror. Residuals between data and fits in Fig. 2 (c) of the main text can likely be reduced
greatly by using linear expansions α(z) = α0 + α1z and β(z) = β0 + β1z, however doing so would add multiple fit
parameters, negating the simplicity of the model used.
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FIG. S6. Reflection of a Gaussian beam off of a perfect mirror.
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S9. NONLINEARITY OF THE OPTICAL READOUT TECHNIQUE

The motion of our nanowire is detected by measuring the intensity of laser light reflected from the sample. This
reflection comes from the underlying Si back-plane, and is modulated by the absorption of our nanowire. We assume
that the nanowire is sufficiently thin compared to the laser wavelength (λ = 660 nm) and spot size (Gaussian beam
diameter dL ≈ 2µm) that it does not cause significant reflections itself or trap any light between the nanowire and
mirror as in an optical cavity. Indeed, the ∼ 50 nm-wide nanowire acts as a single slit causing any reflected laser light
to diffract away from the optical axis quite rapidly.

The power measured by our high-speed photo-detector can be approximated by P −Ploss−Pabs(z), where P is the
incident laser power, Ploss is the power absorbed by the mirror, and Pabs(z) is the position-dependent power absorbed
by our nanowire. As shown in Eq. S79, the absorbed power is

Pabs(z) = aPg(z) (S96)

where a describes the absorptive properties of the Nb film on our nanowire. The dimensionless optical intensity profile
g(z) (reproduced form Eq. S3) is:

g(z) = α− β sin

(
4π(z + φ)

λ

)
(S97)

where α, β are constants, φ is the nanowire’s initial location within the optical field. The voltage generated by our
photo-detector is therefore

V (t) = bGP [1− ag(z(t))] (S98)

where b denotes any optical losses between the nanowire and the photo-detector (e.g. reflections at air-lens interfaces),
and G is the photo-detector gain.

The nonlinear relationship between z(t) and V (t) generates harmonics of the nanowire oscillation frequency ω in the
detected voltage. The strength of these harmonics can be calculated in an analogous fashion to the terms (V1, V2, · · · )
in Section S1. To do this, the nanowire motion is again modeled by z = x + z0, where x = R cosωt describes the
oscillation (with amplitude R and frequency ω) and z0 is the equilibrium position.

If the optical field g(x+ z0) is approximated by an N th order polynomial (see Eq. S10) h(x) ≈ g(x+ z0), then the
voltage detected at frequency nω (where n is a positive integer) has amplitude

Vnω = −2abGP

Mn∑
m=0

h
(2m+n)
0

m!(m+ n)!

(
R

2

)2m+n

(S99)

Here h
(n)
0 is the nth derivative of h(x) evaluated at x = 0 or, equivalently, the nth derivative of g(z) evaluated at

z = z0. The summation above terminates at Mn = floor((N − n)/2), where N is again the polynomial order or h(x).
See Eqs. S26 - S31 for details on the derivation.

If we take N = 7, the first three harmonics are given by:

V1ω = −2abGP

[
h

(1)
0

0!1!

(
R

2

)
+
h

(3)
0

1!2!

(
R

2

)3

+
h

(5)
0

2!3!

(
R

2

)5

+
h

(7)
0

3!4!

(
R

2

)7
]

(S100)

V2ω = −2abGP

[
h

(2)
0

0!2!

(
R

2

)2

+
h

(4)
0

1!3!

(
R

2

)4

+
h

(6)
0

2!4!

(
R

2

)6
]
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V3ω = −2abGP

[
h

(3)
0

0!3!

(
R

2

)3

+
h

(5)
0

1!4!

(
R

2

)5

+
h

(7)
0

2!5!

(
R

2

)7
]

(S102)

The derivatives h
(n)
0 are listed in Eq. S25. Note that the odd harmonics of V only contain odd derivatives of h(x)

while the even harmonics only contain even derivatives. This suggests that odd harmonics of V vanish when z0 is
located at an extremum in g(x+ z0), while even harmonics vanish when z0 is at an inflection point in g(x+ z0). Also
note that for low laser powers, when the nanowire is not undergoing self-oscillation, small-amplitude motion R � λ

results in the linear relationship V1ω ≈ −abGPh(1)
0 R and V2ω ≈ V3ω ≈ 0. This linear relation between the vibration

amplitude R and detected voltage V1ω allows us to measure Lorentzian lineshapes upon driving nanowire motion
inertially, as is shown in Fig. 1 (c) of the main text.
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