Benzimidazolines convert sulphur dioxide to bisulfate at room temperature and atmospheric pressure utilizing aerial oxygen

Sonam Mehrotra,^{†,#} Sakthi Raje^{†,#} Anant Kumar Jain[†] and Raja Angamuthu^{*†}

Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC), Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016 (India).

E-mail: raja@iitk.ac.in

Figure S 1. ¹ H NMR of MB1-H in CDCl _{3.} S11
Figure S 2. ¹³ C NMR of MB1-H in CDCl ₃ S12
Figure S 3. ESI-MS of MB1-H S13
Figure S 4. Isotopic distribution simulated for MB1 ⁺ cation
Figure S 5. ¹ H NMR of [MB1](HSO ₄) S15
Figure S 6. ¹³ C NMR of [MB1](HSO ₄) S16
Figure S 7. ESI-MS of [MB1](HSO ₄) (cation mode)
Figure S 8. ESI-MS of [MB1](HSO ₄) (anion mode)
Figure S 9. Isotopic distribution simulated for bisulphate anion
Figure S 10. ¹ H NMR of MB2-H in DMSO-d6 S20
Figure S 11. ¹³ C NMR of MB2-H in DMSO-d6 S21
Figure S 12. ESI-MS of MB2-H S22
Figure S 13. Isotopic distribution simulated for MB2 ⁺ cation
Figure S 14. ¹ H NMR of [MB2](HSO ₄) in DMSO-d6 S24
Figure S 15. ¹³ C NMR [MB2](HSO ₄) in DMSO-d6 S25
Figure S 16. ESI-MS of [MB2](HSO ₄) (cation mode) S26
Figure S 17. ESI-MS of [MB2](HSO ₄) (anion mode)
Figure S 18. Isotopic distribution simulated for $[HSO_4^- \cdots HSO_4^- + H^+]^-$
Figure S 19. Isotopic distribution simulated for [MB2 ⁺ …(HSO ₄ ⁻ …HSO ₄ ⁻)] ⁻ S29
Figure S 20. Isotopic distribution simulated for $[(MB2HSO_4)_2 - H^+]^-$
Figure S 21. Isotopic distribution simulated for [(MB2HSO ₄) ₂ + HSO ₄] ⁻
Figure S 22. Isotopic distribution simulated for $[(MB2HSO_4)_3 - H^+]^-$ S32
Figure S 23. ¹ H NMR of MB3-H in CDCl _{3.} S33
Figure S 24. ¹³ C NMR MB3-H in CDCl _{3.} S34
Figure S 25. ESI-MS of MB3-H S35
Figure S 26. Isotopic distribution simulated for MB3 ⁺ cation
Figure S 27. ¹ H NMR of [MB3](HSO ₄) in DMSO-d6
Figure S 28. ¹³ C NMR of [MB3](HSO ₄) in DMSO-d6 S38

Figure S 29. ESI-MS of [MB3](HSO ₄) (cation mode)	\$39
Figure S 30. ESI-MS of [MB3](HSO ₄) (anion mode)	S40
Figure S 31. Solid state structure of [MB1](HSO ₄)	S41
Figure S 32. Packing diagram of [MB1](HSO ₄)	S42
Figure S 33. Solid state structure of [MB2](HSO ₄)	. S44
Figure S 34. Packing diagram of [MB2](HSO ₄)	S45
Figure S 35. Solid state structure of [MB3](HSO ₄)	S47
Figure S 36. Packing diagram of [MB3](HSO ₄)	S48

Table S 1. Crystal data for [MB1](HSO ₄)	S43
Table S 2. Crystal data for [MB2](HSO4)	S46
Table S 3. Crystal data for [MB3](HSO4)	S49
References	S51

Experimental Section

Materials.

1,2-Phenylenediamine (SDFCL), p-toluenesulfonyl chloride (SDFCL), pyridine (SDFCL), dimethylsulfate (SDFCL), NaOH flakes (Fisher), 6-bromopyridine-2-carboxaldehyde (TCI India), benzaldehyde (Rankem) and salicylaldehyde (SRL) were used as received from commercial sources. Solvents were distilled under dry nitrogen atmosphere using conventional methods. N,N'-(1,2-Phenylene)bis(N,4-dimethylbenzenesulfonamide),¹ N^{1},N^{2} -dimethylbenzene-1,2-diamine² and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole³ were synthesized by following literature methods.

Methods.

NMR spectra were recorded on JEOL 500 MHz and JEOL 400 MHz spectrometers. Temperature was kept constant using a variable temperature unit within the error limit of ±1 K. The software MestReNova⁴ was used for the processing of the NMR spectra. Tetramethylsilane (TMS) or the deuterated solvent residual peaks were used for calibration. Mass spectrometry experiments were performed on a Waters-Q-ToF-Premier-HAB213 equipped with an electrospray interface. Spectra were collected by constant infusion of the sample dissolved in methanol or acetonitrile with 0.1% formic acid. The freeware mMass was used to simulate the calculated isotopic distributions.⁵

Crystal Structure Determinations.

Single-crystal X-ray data were collected at 123 K on a Bruker SMART APEX CCD diffractometer using graphite-monochromated Mo K α radiation (λ = 0.71069 Å). The linear absorption coefficients, the scattering factors for the atoms, and the anomalous dispersion corrections were taken from International Tables for X-ray Crystallography. Data integration and reduction were conducted with SAINT. An empirical absorption correction was applied to the collected reflections with SADABS using XPREP. Structures were determined by direct method using SHELXTL and refined on F² by a full-matrix least-squares technique using the SHELXL-97 program package. The lattice parameters and structural data are listed somewhere else in this Supporting Information.

1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole:

MB1-H

In 50 ml Schlenk RB, N^1 , N^2 -dimethylbenzene-1,2-diamine (0.300 g, 2.202 mmol) was dissolved in 5 ml of dry dichloromethane with activated molecular sieves 3 Å. The solution of benzaldehyde (0.233 g, 2.202 mmol) in dry dichloromethane (5 ml) was slowly added to pre-stirred dichloromethane solution at 0 °C under nitrogen atmosphere. The resulting mixture was stirred at room temperature for 24 h and filtered through cannula under nitrogen atmosphere. The yellow filtrate was concentrated and crystallized in dichloromethane solution. The resulting white crystals was filtered off and dried under high vacuum. (0.050 g, 10%).

¹H NMR (400 MHz, CDCl₃):

 $\delta_{\rm H}$ = 7.58 (m, 2H, Ar), 7.41 (m, 3H, Ar), 6.72 (dd, 2H, Ar), 6.43 (dd, 2H, Ar), 4.88 (s, 1H, CH), 2.57(s 6H, CH₃).

¹³C NMR (100 MHz, CDCl₃):

δ_C = 142.23, 139.20, 129.46, 128.99, 128.60, 119.41, 105.85, 94.18, 33.30.

High Resolution ESI-MS:

m/z for C₁₅H₁₅N₂ = 223.1231 (calcd. 223.1235) = [MB1]⁺.

2-(1,3-dimethyl-2,3-dihydro-1H-benzo[d]imidazol-2-yl)phenol:

MB2-H

In 50 ml Schlenk RB, N^1,N^2 -dimethylbenzene-1,2-diamine (0.238 g, 1.747mmol) was dissolved in 5 ml of dry dichloromethane with activated molecular sieves 3 Å. The solution of salicylaldehyde (0.213 g, 1.747mmol) in dry dichloromethane (5 ml) was slowly added to pre-stirred dichloromethane solution at 0 °C under nitrogen atmosphere. The resulting mixture was stirred at room temperature for 20 h and filtered through cannula under nitrogen atmosphere. The yellow filtrate was concentrated and added dry ethanol (5ml). The resulting pale yellow powder was filtered off and dried under high vacuum. (0.060 g, 14%).

¹H NMR (400 MHz, DMSO-d6):

 δ_{H} = 9.59 (s, 1H, OH), 7.48 (dd, 1H, Ar), 7.16 (dt, 1H, Ar), 6.85-6.56 (m, 4H, Ar), 6.40 (dd, 2H, Ar), 5.32 (s, 1H, CH), 2.46 (s, 6H, CH₃).

¹³C NMR (100 MHz, DMSO-d6):

 δ_{C} = 157.97, 143.15, 130.60, 130.11, 124.62, 120.18, 119.97, 116.50, 106.86, 100.44, 34.20.

High Resolution ESI-MS:

m/z for C₁₅H₁₅N₂O = 239.1186 (calcd. 239.1184) = [MB2]⁺.

2-(6-bromopyridin-2-yl)-1,3-dimethyl-2,3-dihydro-1H-benzo[d]imidazole:

MB3-H

In a oven dried 50 mL Schlenk flask added 2 g of activated 4 Å molecular sieves and 10 mL toluene. It was stirred for 30 minutes at room temperature in N₂ atmosphere, added N^1 , N^2 -dimethylenzene-1,2-diamine (0.108 g, 0.73 mmol) and the brown solution was heated at 100 °C for 2 hours in N₂ atmosphere. It was cooled to room temperature and 6-bromopyridine-2-carboxaldehyde (0.136 g) was added as solid, immediately colour of the solution turned from brown to yellow. The yellow solution was heated at 100 °C for 12 hours and refluxed at 130 °C for 3 hours in N₂ atmosphere. The yellow solution cannulated to 50 mL round bottom flask and the solvent was removed under reduced pressure gave orange yellow oil. It was dried under high vacuum for 1 hour gave orange yellow solid, which was dissolved in diethyl ether and left in -35 °C forms orange crystals suitable for single crystal X-ray diffraction. (0.208 g, 94%).

¹H NMR (400MHz, CDCl₃):

 δ_{H} = 7.83 (d, 1H, Py), 7.66 (t, 1H, Py), 7.52 (d, 1H, Py), 6.74 (dd, 2H, Ph), 6.45 (dd, 2H, Ph), 5.13 (s, 1H), 2.67 (s, 6H).

¹³C NMR (100MHz, CDCl₃):

 δ_{C} = 161.68, 141.98, 141.03, 139.60, 128.26, 121.54, 119.69, 106.10, 93.50, 33.96.

High Resolution ESI-MS:

m/z for C₁₄H₁₃BrN₃ = 302.0284 (calcd. 302.0293) = [MB3]⁺.

Yellow crystalline powder of HL (0.028 g, 0.124 mmol) was dissolved in dry acetonitrile (5 ml) and purged SO₂ at room temperature for 20 min. While purging SO₂, the color of the solution turned to bright red. The resulting solution was stored at -30 °C for one day and evaporated the solvent to get brick red precipitate. Crystals were grown in mixture of methanol and acetonitrile at -30 °C (0.020 g, 51%).

¹H NMR (400 MHz, DMSO-d6):

δ_H = 8.15 (dt, 2H, Ar), 7.91 (m, 2H, Ar), 7.83 (m, 5H, Ar), 3.89 (s, 6H, CH₃).

¹³C NMR (100 MHz, DMSO-d6):

 δ_{C} = 151.32, 133.92, 132.70, 131.73, 130.44, 127.62, 121.99, 114.39, 33.79.

High Resolution ESI-MS (cation mode):

m/z for C₁₅H₁₅N₂ = 223.1236 (calcd. 223.1235) = MB1⁺ cation.

High Resolution ESI-MS (anion mode):

m/z for HSO₄ = 96.9582 (calcd. 96.9596) = bisulfate anion

Yellow crystalline powder of HL (0.060 g, 0.249 mmol) was dissolved in dry acetonitrile (4 ml) and purged SO₂ at room temperature for 20 min. While purging SO₂, the color of the solution turned to brown. The resulting solution was stored at - 30 °C for one day and crystals were grown in one week at room temperature (0.076 g, 91%).

¹H NMR (400 MHz, DMSO-d6):

 δ = 11.04 (s, 1H, OH), 8.12 (dd, 2H, Ar), 7.76 (dd, 2H, Ar), 7.67 (m, 2H, Ar), 7.22 (m, 2H, Ar), 3.87 (s, 6H, CH₃).

¹³C NMR (100 MHz, DMSO-d6):

 $\delta 157.58,\ 149.98,\ 135.96,\ 132.72,\ 132.63,\ 127.56,\ 120.87,\ 117.84,\ 114.34,\ 108.47,\ 33.54.$

High Resolution ESI-MS (cation mode):

m/z = 239.1167 (calcd. 239.1184) = MB2⁺ cation.

High Resolution ESI-MS (anion mode):

m/z for HSO₄ = 96.9572 (calcd. 96.9596) = bisulfate anion

Yellow powder of HL (37 mg, 0.121 mmol) was dissolved in dry acetonitrile (4 ml) and purged SO₂ at room temperature for 20 min. While purging SO₂, the color of the solution turned to brown. The resulting solution was stored at -30 °C for one day and crystals were formed immediately at -30 °C (0.041 mg, 85%).

¹H NMR (400 MHz, DMSO d6):

 δ_{H} = 8.19 (d, 2H, Ph), 8.13-8.10 (m, 3H, py), 7.78 (dd, 2H, Ph), 4.06 (s, 6H, CH₃).

¹³C NMR (100 MHz, DMSO-d6):

 δ_{C} = 146.80, 142.93, 142.18, 142.14, 132.98, 132.62, 128.94, 128.25, 114.69, 34.18.

High Resolution ESI-MS (cation mode):

m/z = 302.0290 (calcd. 302.0293) = MB3⁺ cation.

High Resolution ESI-MS (anion mode):

m/z for HSO₄ = 96.9590 (calcd. 96.9596) = bisulfate anion

Figure S 1. ¹H NMR of MB1-H in CDCl_{3.}

Figure S 3. ESI-MS of MB1-H.

 $[M-H]^+ = C_{15}H_{15}N_2 = 223.1231 \text{ (obs)}; 223.1235 \text{ (calcd.)}.$

MB1-H

Figure S 4. Isotopic distribution simulated for MB1⁺ cation.

Figure S 5. ¹H NMR of [MB1](HSO₄).

Figure S 6. ¹³C NMR of [MB1](HSO₄).

Figure S 7. ESI-MS of [MB1](HSO₄) (cation mode).

Spectrum - (SM423-S02)	- 8 x
$\textcircled{\begin{tabular}{cccccccccccccccccccccccccccccccccccc$	
Electrospray ionisation -MS WATERS Q-TOF Premier-HAB213	
Electrospray ionisation -MS WATERS 0.TOF Premier-HAB213 SM423-S02 27 (0.572) AM (Cen.4, 100.00, Ar,8500.0,556.28,0.80,LS 10); Sm (SG, 2x5.00); Sb (10,1.00) 223.1236	15-Dec-2016 111:42:03 1: TOP MS ES- 8:20e3
224.1262 00.0780 208.1086 205.0786 288.9277 362.9231 668.3015 628.6532 656.5915 684.6096 7,40.6732 876.7965902.9185 930.8363 1012.9286.1041.9590 1,100	9510
0 160 250 250 300 350 400 450 500 550 600 550 700 750 800 850 900 950 1000 1050 1100	9510 1150 m/z
100 100 200 200 000 400 400 000 000 000 000 100 100 000 0	
Spectrum - [SM423-502]	
File Edit Display Process Tools Window Help 	- 8 ×
Electrospray Ionisation -MS WATERS Q.TOF Premier-HAB213	15-Dec-2016 11:42:03
SM225-S02 27 (0.372) AM (Cen.4, 100.00, Ar.8300.0,556.28,0.80,LS 10); Sm (SG, 2x5.00); Sb (10,1.00) 223.1236 w	1: TOF MS ES+ 8.20e3
226.9559 252,1235 279.1557 288.9277 301.1288 229.1579 245.9592 362.9231 377.1342 391.2954 417.2755 424.9952 440.3734 457.4078 454 0	3925 492.8742 111111111111111111111111111111111111

See Figure S 4 for simulated isotopic distribution.

Figure S 8. ESI-MS of [MB1](HSO₄) (anion mode).

Figure S 10. ¹H NMR of MB2-H in DMSO-d6.

MB2-H

Figure S 12. ESI-MS of MB2-H.

 $[M-H]^+ = C_{15}H_{15}N_2O = 239.1186$ (obs); 239.1184 (calcd.).

Figure S 13. Isotopic distribution simulated for MB2⁺ cation.

Figure S 14. ¹H NMR of [MB2](HSO₄) in DMSO-d6.

Figure S 15. ¹³C NMR [MB2](HSO₄) in DMSO-d6.

Figure S 16. ESI-MS of [MB2](HSO₄) (cation mode).

	$HO_{S}^{I}=0$	
Spectrum - [SM 411] File Edit Display Process Tools Window Help		
「「「人」」という。 Electrospray ionisation -MS	ে থ* # ♦ ♦ ⊠ ি এ এ । 🖬 WATERS 0-TOF Premier-HAB213	09-Nov-2016
SM 411 30 (0.622) AM (Cen,4, 100.00, Ar,8600.0,666.28,1.0		12:55:01 1: TOF MS E8+ 1.23e4
100 239 116/		1.2064
0 0 0 0 0 0 0 0 0 0 0 0 0 0	177 417.2984 462.3134 573.2383 645.2747.663.4761 746.5095.76	8.6583.817.4521 916.7361 1016.5547 800 850 900 950 1000 1050 m/z
🖼 Spectrum - [SM 411]	. 🛛 🜉 Spectrum - [SM 411] 👘 Q-Tof Premier - c:\ 🏟 Formic Acid 100.wa	Calculator 💿 Oct 17 2016 (E:) 📀 💐 🌯 3:30 PM
File Edit Display Process Tools Window Help		Calculator 🔹 Oct 17 2016 (E.)
File Edu Display Process Tools Window Help 応 原 協 国 総 階 間 上 ロ ● A 名 訳での へ Electrospray ionisation -MS		_ @ X _ # × 09-Nov-2016
NB Catc Display Process Tools A H B L Co A H A H Co Co	40.1225	(9) X (9) X (9) X (9) X (9) X (12) X
NB Catc Display Process Tools A H B L Co A H A H Co Co	40.1225	(9) X (9) X (9) X (9) X (9) X (12) X

See Figure S 13 for simulated isotopic distribution.

Figure S 17. ESI-MS of [MB2](HSO₄) (anion mode).

See Figure S 9, Figure S 18, Figure S 19, Figure S 20, Figure S 21, Figure S 22 for simulated isotopic distribution.

Figure S 18. Isotopic distribution simulated for $[HSO_4^{-}...HSO_4^{-} + H^+]^{-}$.

Observed at 194.9240 (calculated *m*/*z* = 194.9269). See **Figure S 17**.

Figure S 19. Isotopic distribution simulated for [MB2⁺...(HSO₄⁻...HSO₄⁻)]⁻.

Observed at 433.0370 (calculated *m*/*z* = 433.075). See **Figure S 17**.

Figure S 20. Isotopic distribution simulated for $[(MB2HSO_4)_2 - H^+]^-$.

Observed at 671.1506 (calculated *m*/*z* = 671.1482). Figure S 17.

Figure S 21. Isotopic distribution simulated for [(MB2HSO₄)₂ + HSO₄]⁻.

Observed at 769.1174 (calculated *m*/*z* = 769.1155). Figure S 17.

Figure S 22. Isotopic distribution simulated for $[(MB2HSO_4)_3 - H^*]^-$

Observed at 1007.2303 (calculated *m*/*z* = 1007.2262). See **Figure S 17**.

Figure S 23. ¹H NMR of MB3-H in CDCl_{3.}

Figure S 24. ¹³C NMR MB3-H in CDCl_{3.}

Figure S 25. ESI-MS of MB3-H.

 $[M-H]^+ = C_{14}H_{13}BrN_3 = 302.0284$ (obs); 302.0293 (calcd.).

MB3-H

Figure S 26. Isotopic distribution simulated for MB3⁺ cation.

Figure S 27. ¹H NMR of [MB3](HSO₄) in DMSO-d6.

Figure S 28. ¹³C NMR of [MB3](HSO₄) in DMSO-d6.

Figure S 29. ESI-MS of [MB3](HSO₄) (cation mode).

See Figure S 26 for simulated isotopic distribution.

Figure S 30. ESI-MS of [MB3](HSO₄) (anion mode).

See Figure S 9 for simulated isotopic distribution.

Figure S 31. Solid state structure of [MB1](HSO₄)

Selected distances(Å) and angles(°): S(1)-O(2)#1, 1.408(4); S(1)-O(2), 1.408(4); S(1)-O(2), 1.477(18);S(1)-O(2A)#1, 1.477(18); S(1)-O(1), 1.495(4); S(1)-O(1)#1, 1.495(4); S(1)-O(1A), 1.528(16); S(1)-O(1A)#1, 1.528(16); O(2)#1-S(1)-O(2), 116.5(3); O(2)#1-S(1)-O(2A)#1, 50.4(8); O(2)-S(1)-O(2A)#1, 93.4(7); O(2)#1-S(1)-O(2), 116.5(2); O(2)-S(1)-O(1), 111.6(3); O(2)#1-S(1)-O(1)#1, 111.6(3); O(2)-S(1)-O(1)#1, 111.6(3); O(2)-S(1)-O(1)#1, 106.5(2); O(1)-S(1)-O(1)#1, 103.4(3); O(2A)-S(1)-O(1A), 106.1(9); O(2A)#1-S(1)-O(1A), 13.8(11); O(2)#1-S(1)-O(1A)#1, 73.5(9); O(2)-S(1)-O(1A)#1, 159.5(7); O(1)-S(1)-O(1A)#1, 80.1(8); O(1)#1-S(1)-O(1A)#1, 53.3(7).

Figure S 32. Packing diagram of [MB1](HSO₄)

Table S 1. Crystal data for [MB1](HSO₄)

Identification code	12janb	CCDC- 1541081
Empirical formula	C16 H20 N2 O5 S	
Formula weight	352.40	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pnna	
Unit cell dimensions	a = 6.7039(12) Å	α = 90°.
	b = 10.6697(18) Å	β = 90° .
	c = 22.602(4) Å	$\gamma = 90^{\circ}$.
Volume	1616.7(5) Å ³	
Z	4	
Density (calculated)	1.448 Mg/m ³	
Absorption coefficient	0.230 mm ⁻¹	
F(000)	744	
Theta range for data collection	3.170 to 25.249°.	
Index ranges	-7<=h<=8, -12<=k<=12, -27<=l<=23	
Reflections collected	11999	
Independent reflections	1466 [R(int) = 0.0789]	
Completeness to theta = 25.249°	99.9 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7457 and 0.6437	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	1466 / 13 / 130	
Goodness-of-fit on F ²	1.024	
Final R indices [I>2sigma(I)]	R1 = 0.0648, wR2 = 0.1552	
R indices (all data)	R1 = 0.1008, wR2 = 0.1754	
Largest diff. peak and hole	0.782 and -0.376 e.Å ⁻³	

Figure S 33. Solid state structure of [MB2](HSO₄)

Selected distances(Å) and $angles(^{\circ})$: S(2)-O(8) 1.4315(16); S(2)-O(5), 1.4385(16); S(2)-O(7), 1.4761(15); S(2)-O(6), 1.5574(16); S(3)-O(11), 1.4452(16); S(3)-O(10), 1.4502(16); S(3)-O(9), 1.4640(15); S(3)-O(12), 1.5521(15); O(1)-C(11), 1.352(3); O(2)-C(26), 1.348(2); N(4)-C(17), 1.338(3); N(4)-C(19), 1.390(3); N(4)-C(18), 1.460(3);N(3)-C(17), 1.341(3); N(3)-C(20), 1.396(3); N(3)-C(16), 1.468(3); N(2)-C(2), 1.341(3); N(2)-C(4), 1.388(3); N(2)-C(3), 1.467(3); N(1)-C(2), 1.336(3); N(1)-C(5), 1.395(3); N(1)-C(1), 1.469(3); O(8)-S(2)-O(5), 115.23(10); O(8)-S(2)-O(7), 111.48(10); O(5)-S(2)-O(7), 111.59(9); O(8)-S(2)-O(6), 107.90(10); O(5)-S(2)-O(6), 103.69(9); O(7)-S(2)-O(6), 106.17(9); O(11)-S(3)-O(10), 113.61(9); O(11)-S(3)-O(9), 111.64(9); O(10)-S(3)-O(9), 112.04(9); O(11)-S(3)-O(12), 104.15(9); O(10)-S(3)-O(12), 107.48(9); O(9)-S(3)-O(12), 107.33(9); C(17)-N(4)-C(19), 108.69(18); C(17)-N(4)-C(18), 126.17(18); C(19)-N(4)-C(18), 125.10(18); C(17)-N(3)-C(20), 108.57(17); C(17)-N(3)-C(16), 126.32(18); C(20)-N(3)-C(16), 125.06(18); C(2)-N(2)-C(4), 108.71(17); C(2)-N(2)-C(3), 125.82(18); C(4)-N(2)-C(3), 125.46(18); C(2)-N(1)-C(5), 108.90(17); C(2)-N(1)-C(1), 125.76(18); C(5)-N(1)-C(1), 125.33(18).

Figure S 34. Packing diagram of [MB2](HSO₄)

Table S 2. Crystal data for [MB2](HSO₄)

Identification code	6nova_0m	CCDC- 1541079
Empirical formula	C15 H16 N2 O5 S	
Formula weight	336.36	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 10.8743(8) Å	α = 64.0149(19)°.
	b = 12.9713(9) Å	β = 71.014(2)°.
	c = 13.3718(10) Å	γ = 70.772(2)°.
Volume	1564.1(2) Å ³	
Z	4	
Density (calculated)	1.428 Mg/m ³	
Absorption coefficient	0.234 mm ⁻¹	
F(000)	704	
Crystal size	0.22 x 0.20 x 0.18 mm ³	
Theta range for data collection	1.98 to 26.00°.	
Index ranges	-13<=h<=13, -15<=k<=15, -16<=l<=16	
Reflections collected	20542	
Independent reflections	6143 [R(int) = 0.0441]	
Completeness to theta = 26.00°	99.9 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	6143 / 0 / 423	
Goodness-of-fit on F ²	1.020	
Final R indices [I>2sigma(I)]	R1 = 0.0439, wR2 = 0.1279	
R indices (all data)	R1 = 0.0619, wR2 = 0.1427	
Largest diff. peak and hole	0.445 and -0.557 e.Å ⁻³	

Figure S 35. Solid state structure of [MB3](HSO₄)

Selected distances(Å) and angles(°): Br(1)-C(14) 1.896(4); S(1)-O(4), 1.431(3); S(1)-O(1), 1.436(3); S(1)-O(3), 1.468(3); S(1)-O(2), 1.576(3); N(2)-C(2), 1.340(4); N(2)-C(4), 1.393(4); N(2)-C(1), 1.467(4); N(1)-C(2), 1.344(4); N(1)-C(9), 1.389(4); N(1)-C(3), 1.462(5); N(3)-C(14), 1.308(5); N(3)-C(10), 1.333(5); O(4)-S(1)-O(1), 114.54(17); O(4)-S(1)-O(3), 112.36(17); O(1)-S(1)-O(3), 110.75(17); O(4)-S(1)-O(2), 107.74(16); O(1)-S(1)-O(2), 105.14(14); O(3)-S(1)-O(2), 105.59(15); C(2)-N(2)-C(4), 108.7(3); C(2)-N(2)-C(1), 125.5(3); C(4)-N(2)-C(1), 125.8(3); C(2)-N(1)-C(9), 108.3(3); C(2)-N(1)-C(3), 125.9(3); C(9)-N(1)-C(3), 125.6(3); C(14)-N(3)-C(10), 116.4(3); C(4)-C(9)-N(1), 107.2(3); C(4)-C(9)-C(8), 122.2(3); N(1)-C(9)-C(8), 130.6(3); N(2)-C(2)-N(1), 109.4(3); N(2)-C(2)-C(10), 124.8(3); N(1)-C(2)-C(10), 125.7(3); N(3)-C(14)-Br(1), 117.4(3); C(13)-C(14)-Br(1), 117.4(3).

Figure S 36. Packing diagram of [MB3](HSO₄)

 Table S 3. Crystal data for [MB3](HSO4).

Identification code	20febc_0m	CCDC-1541080
Empirical formula	C14 H14 Br N3 O4 S	
Formula weight	400.25	
Temperature	293(2) K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P -1	
Unit cell dimensions	a = 7.907(5) Å	α = 83.119(5)°.
	b = 8.536(5) Å	β = 78.561(5)°.
	c = 11.911(5) Å	$\gamma = 83.567(5)^{\circ}$.
Volume	779.1(7) Å ³	
Z	2	
Density (calculated)	1.706 Mg/m ³	
Absorption coefficient	2.796 mm ⁻¹	
F(000)	404	
Crystal size	0.20 x 0.18 x 0.16 mm ³	
Theta range for data collection	2.64 to 25.06°.	
Index ranges	-9<=h<=9, -10<=k<=10, -14<=l<=14	
Reflections collected	9504	
Independent reflections	2754 [R(int) = 0.0343]	
Completeness to theta = 25.06°	99.6 %	
Absorption correction	None	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	2754 / 0 / 211	
Goodness-of-fit on F ²	1.249	
Final R indices [I>2sigma(I)]	R1 = 0.0428, wR2 = 0.1456	
R indices (all data)	R1 = 0.0495, wR2 = 0.1523	
Largest diff. peak and hole	2.029 and -1.349 e.Å ⁻³	

References:

- 1. X. Q. Zhu, M. T. Zhang, A. Yu, C. H. Wang and J. P. Cheng, *J. Am. Chem. Soc.*, 2008, 130, 2501.
- 2. T. Vlaar, R. C. Cioc, P. Mampuys, B. U. W. Maes, R. V. A. Orru and E. Ruijter, *Angew. Chem., Int. Ed.*, 2012, 51, 13058.
- 3. T. Igarashi, E. Tayama, H. Iwamoto and E. Hasegawa, *Tetrahedron Lett.*, 2013, 54, 6874.
- 4. MestReNova, Mestrelab Research S.L., Santiago de Compostela, Spain, www.mestrelab.com, 2014.
- 5. M. Strohalm, D. Kavan, P. Novak, M. Volny and V. Havlicek, *Analytical Chemistry*, 2010, 82, 4648.