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A) EQUATION OF MOTION FOR AN OSCILLATING DROP (OR BUBBLE). 

Following Brenn (Brenn, G. Analytical Solutions for Transport Processes; Springer: New York, 

2016), the equation of motion stemming from the Navier-Stokes equation (8) of the main text reads:  
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where ν≡ 
/� is the kinematic viscosity. In spherical polar coordinates the axisymmetric ��� 

operator  reads: 

��� ≡ ��

��� + ����
��

�
�� � �

����
�
���               ( 2A ) 

and ��� = ������. The stream function �� is related to the fluid velocity components by the 

relationships: 
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Solution to eq.(1A) can be expressed as a function of the displacement of the bubble (drop) 

deformation from the equilibrium spherical shape ∑=
n

nn Ptt )()(),( θθ ll  through the boundary 

condition (11) of the main text: 
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l
. Combining these latter equations with 

eqs.(1A)-(3A) we found a linear relationship between the surface velocity of the fluid and the 

deformation of the bubble (drop). Solving the resulting partial differential equation by the method 

of separation of variables, we get an ordinary differential equation for the time-dependent part: 

�ℓ����
�� + ��ℓ�� � = 		0               ( 4A ) 

The still unknown complex coefficients �� appearing in the above linear differential equation can 

be calculated by applying the proper boundary conditions. These are given by eqs.(14a,b) of the 

main text. After some algebra they lead to a transcendental equation as reported by eq.(15). It can 

be easily seen that generally �� is a complex quantity (purely imaginary in the zero-viscosity limit 

and real at very high viscosities). Equation (4A) with complex-valued �� coefficients is equivalent 

to eq.(12) of the main text, provided the normal frequency 
o

nω  and the damping coefficient nγ are 

both real numbers related to the real and imaginary part of �� through eq.(13).  

The main advantages of the notation reported by eq.(15) of the main text are twofold: a) all the 

quantities contained in eq.(15) are real numbers; b) the restoring force and the damping effects 

appear explicitly, enabling us to systematically improve the equation of motion of the oscillating 

interface, as we did through eqs.(23) and (24). 

 

 

B) ASYMPTOTIC EQUATIONS FOR CALCULATING THE COMPLEX FREQUENCIES 

OF AN OSCILLATING DROP (BUBBLE).  

Here we report two relevant asymptotic formulas for the calculation of the frequencies and 

dissipation of oscillating drops and bubbles. The starting point is  the non-linear equation (15) of the 

main text. In the high viscosity limit (#$ → 0� the term &��#$� of eq.(15) takes the simple form: 

&��#$� ≈ (�)�

��*+ + ,�#�$�). Inserting this result into eq.(15) and expanding the resulting expression 

in power series of #$ ≡ #����$, we get a cubic equation in ��: 
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Where we set: 1� ≡ �6
�6*��3��6′

���*���
��*� − 1 and: 2� ≡ �6

�6*��3��6′
2�9 − 1��9 + 1��9 + 2� :

6)� . 

Perturbation solution to eq.(1B) yields the two results given by eqs.(19a) and (19b) of the main text.  

Analogously, in the opposite low-viscosity limit (#$ → ∞� we get: &��#$� ≈ −;#$ + ,�#3�$3��. 
Inserting this result into eq.(15) and expanding the resulting expression in power series of #����$ 

we obtain to the leading terms:  
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where <� ≡ �6
�6*��3��6′

2�29 + 1��9 + 2� :
6)�. Perturbation solution to eq.(2B) yields eqs.(20a,b) of 

the main text. 

 

C) NON-LINEAR DIFFERENTIAL EQUATION WITH AMPLITUDE-DEPENDING 

FRICTION. 

Here we derive the constitutive eqs.(25a,b) which describe the non-linear relationship between the 

squared oscillator amplitude 2/1>=< ∗

nn AAL  and the intensity B of the applied field. We start from 

the inhomogeneous differential equation (22) and substitute the friction coefficient nγ  by its 

analytical expression given by eqs.(24a,b). A particular solution to eq.(22) is: 
ti

nn eA ω=l , 

ti

nn eA ω−∗∗ =l . Inserting this result into eq.(22) we obtain: 
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where ),( ∗

nnn AAγ  is given by eq.(24) of the main text:  
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critn AA > . Notice that non-linear term in ∗⋅ nn AA  arises 

from the relationship between nγ  and nA  assumed to hold in our amplitude-related friction model.  
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In the limit 1<<
−
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 (i.e., small variation of the friction coefficient nγ  with viscoelasticity), 

we may easily solve the coupled non-linear algebraic equations (1Ca,b) by a standard perturbation 

procedure. Separating the real and imaginary parts of nA  we found that: < >� >�∗ >
5
�= < >�� >

5
�, as 

it should be. Neglecting higher order terms in the small dimensionless quantity 
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eventually we recover eqs.(25a,b).  


