Evolution of rGO-SnS2 Hybrid Nanoparticle

Electrodes in Li-ion Batteries

Mohammad H. Modarres[†], Jonathan Hua-Wei Lim^{\circ}, Chandramohan George, *[†]

and Michael De Volder* $^{*^{\dagger}}$

[†]Institute for Manufacturing, Department of Engineering, 17 Charles Babbage Road, Cambridge, CB3 0FS, United Kingdom.

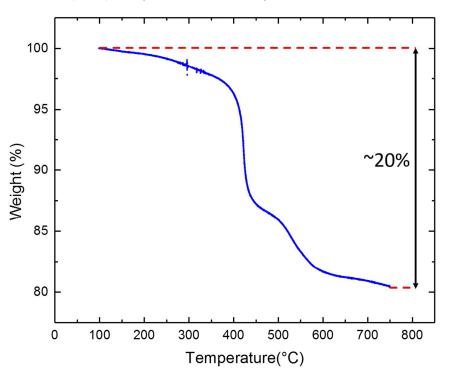
^oCavendish Laboratory, Department of Physics, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom

gc495@cam.ac.uk; mfld2@cam.ac.uk

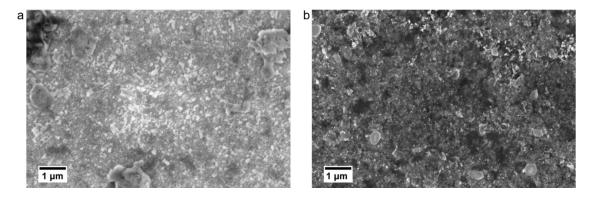
Supporting Information

Materials

Graphite was obtained from Asbury Carbons and was used without any pre-treatment. Electrochemical grade propylene carbonate, ethylene carbonate, diethyl carbonate, N-methyl-2-pyrrolidone, polyvinylidene fluoride, and Li metal foils were purchased from Sigma-Aldrich. Carbon powder (carbon super P) were purchased from Alfa Aesar. Polypropylene layers were purchased from Cell Guard.

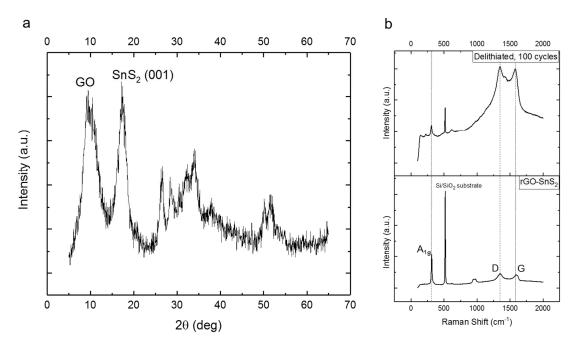

GITT measurement and Li-ion diffusion (D) calculation:

GITT measurements with high diffusion sensitivity were performed on the rGO-SnS₂ cells applying current pulses (~100 mA/g) for 1 minute, followed by a relaxation time for 2 min. The apparent diffusion coefficient \tilde{D}_{Li} was calculated by adopting the formula reported by Wen et al¹. The change of the electrode potential was due to stoichiometric change $\frac{dE}{dx}$. The slopes of the *E* vs. \sqrt{t} , $\frac{dE}{d\sqrt{t}}$ were derived for every pulse. From these, the diffusion coefficient was calculated at potentials, *E* (at the end of the relaxation time).


$$\widetilde{D}_{\rm Li} = \frac{4}{\pi} \left(\frac{iV_{\rm m}}{z_{\rm A}FS} \right)^2 \left(\frac{\frac{dE}{dx}}{\frac{dE}{d\sqrt{t}}} \right)^2$$

where, z_A is the charge number (=1 for lithium); S is the effective surface area; V_m is the molar volume.

Thermogravimetric (TGA) analysis of rGO-SnS₂ hybrid


Figure S1 TGA analysis of rGO-SnS₂ hybrid material performed in air at a heating rate of 5 °C/min. The initial weight loss (up to ~200 °C) is due to removal of physisorbed and chemisorbed water. Subsequent weight loss is due to oxidation of SnS₂ to SnO₂ and the removal of rGO. The overall weight loss was found to be ~20%. The proportion of rGO in the hybrid is estimated to be ~5 wt%.

Post-mortem SEM characterisation of rGO-SnS₂ battery electrode

Figure S2 SEM images of cycled electrodes a) 50 cycles at 1000 mAg⁻¹; b) 100 cycles at 100 mAg⁻¹. Agglomerates were observed on these cycled electrodes in de-lithiated state, indicating a rapid growth of amorphous phases originating from the electrode reactions, with larger agglomerates forming on electrodes that were cycled at a faster rate.

XRD and Raman data of rGO-SnS₂ from the initial cycles.

Figure S3 rGO-SnS₂ electrodes after 100 cycles at 100 mAh/g. a) XRD data from the battery electrode shows a peak associated with GO and a broadened and shifted SnS₂ peak b) Raman spectra shows the presence of the SnS₂ A_{1g} peak as well as the D and G peaks of graphene oxide.

No	Electrode	1 st cycle	2 nd cycle	Cycling capacity	Current max	Reference
1	SnS ₂ nanosheets in 100-200 nm agglomerates	~1600 mAh/g at 100 mA/g	~600 mAh/g at 100 mA/g	>~ 10 mAh/g after 40 cycle at 100mA/g	N/A	Chuanxin Zhai et al; ACS Appl. Mater. Interfaces 2011, 3, 4067-4074
2	SnS ₂ nanoparticle ~80nm	~1580 mAh/g at 50 mA/g	~620 mAh/g at 50 mA/g	~ 293 mAh/g after 50 cycles at 50 mA/g	~100 mAh/g at 1C	Hyun Sik Kim et al; Electrochimica Acta 54 2009, 3606-3610
3	SnS_2 nanoparticles \ge ~0.5 µm	1104.5 mAh/g	~400 mAh/g at 100 mA/g	~290 mAh/g after 50 cycles at 100 mA/g	~100 mAh/g at 800 mA/g	Dongsheng Guan et al; <i>Journal</i> of Alloys and Compounds 658 (2016) 190-197
4	SnS_2 powder	~1300 mAh/g at 200 mA/g	~600 mAh/g at 200 mA/g	~600 mAh/g at 200 mA/g after 5 cycles	~200 mAh/g at 1000 mA/g	Zhi Xiang Huang et al; 2D Mater. 2 (2015) 024010
5	SnS₂ flower-like (≥ ~0.5 μm)	1540 mAh/g at 100mA/g	560 mAh/g at 100 mA/g	~417 mAh/ g after 50 cycles at 100 mA/g	N/A	Manoj K. Jana et al; <i>CrystEngComm</i> , 2014, 16, 3994-4000
6	SnS ₂ nanoplates of a lateral size of 100-150 nm	1438 mA h/ g at 100 mA/g	579 mA h/ g at 100 mA/g	521 mA h/g at 100 mA/g after 50 cycles	136-340 mAh/g at 3000 mA/g	Lingyan Wang et al; Electrochimica Acta 112 (2013) 439- 447
7	SnS ₂ NPS	1600 mAh/g at 50 mA/g	~550 mAh/g at 50mA/g	~310 mAh/g at 50 mA/g after 30 cycles	~1.9 mAh/g at 1000 mA/g	Xin Jiang et al; <i>Journal of</i> <i>Power Sources</i> 237 (2013) 178- 186
8	SnS ₂ (1 micron) interconnected agglomerates	1602.9 mAh /g at 100 mA/g	850 mAh/g at 100 mA/g	282.2 mAh/ g at 100 mA/g after 50 cycles	~0 mAh/g at 1000 mA/g	Jianping Li et al; <i>Electrochimica Acta</i> 111 (2013) 862- 868
9	SnS ₂ powder	600 mAh/g at 0.2 mA/cm ²	500mAh/g at 0.2 mA/cm ²	~120-160 mAh/g at 3.2 mA /cm ² after 20 cycles	>~50-70 mAh/g at 25.6 mA/cm ²	Shuangyu Liu et al; ACS Appl. Mater. Interfaces 2013, 5, 1588-15
10	SnS2 nanorods	~1050 mAh/g at 160 mA/g	~850 mAh/g at 160 mA/g	~400 mAh/g at 160 mA/g after 50 cycle	-	Alok M. Tripathi et al; <i>RSC</i> <i>Adv.</i> , 2015, 5, 23671-23682

The performance of the pure SnS₂ electrodes reported in the literature.

Table S1: Some pure SnS₂ battery electrodes performance reported in literature.

Reference:

(1) Wen, C. J.; Boukamp, B. A.; Huggins, R. A.; Weppner, W. Thermodynamic and Mass Transport Properties of "LiAl." *J. Electrochem. Soc.* **1979**, *126*, 2258.