Weight Averaged Anharmonic Vibrational Analysis of Hydration Structures of Polyamide 6

Supporting Information

\dagger Theoretical Molecular Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
\ddagger Advanced Materials Research Laboratories, Toray Industries, Inc., 2-1 Sonoyama 3-chome, Otsu, Shiga 520-0842, Japan
〔 RIKEN iTHES, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
§ RIKEN Advanced Institute for Computational Science, 7-1-26 Minatojima-Minamimachi, Chuoku, Kobe, Hyogo 650-0047, Japan.
// RIKEN Quantitative Biology Center, 6-7-1 Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.
*kiyoshi.yagi@riken.jp

S1 Force field parameters for polyamide 6

The force field used to model polyamide 6 (PA6) in this study are parameterized using the form of the CHARMM force field, i.e. based on bond lengths, angles, dihedral angles and pairs of nonbonding interactions. The parameters are assigned based on the atom types involved in a given interaction. The atom types in the repeating unit and the two capping groups of the PA6 chains are given in Figure S1. These types and the corresponding parameters in Table S1-S5 were assigned by similarity to parameters in the CHARMM 36 lipid force field, ${ }^{1}$ the CHARMM 22 force field, ${ }^{2}$ and the sphingomyelin force field. ${ }^{3}$ Parameters from the various force fields were used primarily for the carbon chains, the capping groups and the amide group in the repeating unit respectively. Water was in this study modeled using the TIP3P model. ${ }^{4}$

Figure S1: The topology of (A) the repeating unit of PA6, (B) the left terminal group and (C) the right terminal group. The carbon atoms $\mathrm{C}, \mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{A}}$ and C_{CN} are all bound two hydrogen atoms, which are left out for clarity. These hydrogen atoms have the same subscript as the carbon atom they are bound to, i.e. C_{L} is bound to two hydrogen atoms with the label H_{L}.

In the following the CHARMM force field form will briefly be described, this is done for completeness and understanding of how the parameters in S1-5 is used in the model presented in Figure 5. The CHARMM force field is divided into a set of bonded and non-bonded interactions,

$$
\begin{equation*}
V=V_{\text {bonded }}+V_{\text {non-bonded }} \tag{S1}
\end{equation*}
$$

The non-bonded term contains two contributions,

$$
\begin{equation*}
V_{\text {non-bonded }}=V_{\text {elec }}+V_{L J} \tag{S2}
\end{equation*}
$$

Both of these terms are calculated as a set of pairwise interactions, with a given cutoff length and cutoff scaling function range as described in the main text. $V_{\text {elec }}$ is the electrostatic interactions given as the standard columbic charge interaction,

$$
\begin{equation*}
V_{\text {elec }}=\frac{q_{i} q_{j}}{\epsilon r_{i j}} \tag{S3}
\end{equation*}
$$

where q_{i} is the charge of the given atom type, $r_{i j}$ is the distance between the atoms and ϵ is the permittivity of vacuum. The charges for the individual atom types are given in Table S1.

Table S1: Non-bonding parameters used for PA6 in this study.

Atom type	$q_{i}(\mathrm{C})$	$\varepsilon_{i}(\mathrm{kcal} / \mathrm{mol})$	$R_{\min / 2}(\AA)$	$\varepsilon_{i}(1-4)(\mathrm{kcal} / \mathrm{mol})$	$R_{\min / 2}(1-4)(\AA)$
C	-0.18	-0.056	2.010	-0.01	1.90
H	0.09	-0.028	1.340	-	-
C_{L}	0.25	-0.056	2.010	-0.01	1.90
H_{L}	0.05	-0.028	1.340	-	-
N	-0.70	-0.200	1.850	-0.20	1.55
H_{N}	0.35	-0.046	0.2245	-	-
C_{0}	0.55	-0.110	2.000	-	-
0	-0.60	-0.120	1.700	-0.12	1.40
C_{R}	-0.07	-0.056	2.010	-0.01	1.90
H_{R}	0.06	-0.028	1.340	-	-
C_{CN}	0.13	-0.056	2.010	-0.01	1.90
H_{CN}	0.075	-0.028	1.340	-	-
N_{Z}	-0.96	-0.200	1.850	-	-
H_{Z}	0.34	-0.046	0.2245	-	-
H_{OL}	0.44	-0.046	0.2245	-	-
O_{HL}	-0.61	-0.1521	1.770	-	-
C_{CL}	0.75	-0.070	2.000	-	-
O_{BL}	-0.55	-0.120	1.700	-0.12	1.40
C_{A}	-0.21	-0.056	2.010	-0.01	1.90
H_{A}	0.09	-0.028	1.340	-	-

The second term in Eq. (2) is the Lenard-Jones potential, given as

$$
\begin{equation*}
V_{L J}=\sqrt{\varepsilon_{i} \varepsilon_{j}}\left(\left(\frac{R_{\min _{i}}+R_{\min _{j}}}{2 r_{i j}}\right)^{12}-2\left(\frac{R_{\min _{i}}+R_{\min _{j}}}{2 r_{i j}}\right)^{6}\right) . \tag{S4}
\end{equation*}
$$

$r_{i j}$ is the distance between the two atoms, the two parameters ε_{i} and $R_{\min _{i}}$ are determined by the Van der Walls radius and the interaction strengths of a given atom. The fixed parameters for each atom type are given in Table S 1 . The non-bonding interactions are not calculated for bond neighbors or bond neighbors' neighbors. For interactions between atoms which are separated by three bonds the parameters are for some atoms changes slightly as seen for the atoms which has entries in the $1-4$ column of Table $S 1$.

Table S 2 : The Bond force constants, $K_{i j}^{b}$, and equilibrium distances, $b_{i j}^{0}$, for the PA6 force field. The $\mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{A}}$ and C_{CN} atom types can here be substituted in place of C , as the bond parameters are similar for these five types of carbon. The same applies to the attached hydrogen H_{L}, H_{R}, H_{A} and H_{CN}, which can be substituted in place for H .

Bond type	$K_{i j}^{b}(\mathrm{kcal} / \mathrm{mol})$	$b_{i j}^{0}(\AA)$
$\mathrm{C}-\mathrm{C}$	222.50	1.530
$\mathrm{C}-\mathrm{H}$	309.00	1.111
$\mathrm{C}_{\mathrm{L}}-\mathrm{N}$	320.00	1.430
$\mathrm{~N}-\mathrm{H}_{\mathrm{N}}$	440.00	0.997
$\mathrm{~N}-\mathrm{C}_{0}$	370.00	1.345
$\mathrm{C}_{-}-\mathrm{O}$	620.00	1.230
$\mathrm{C}_{0}-\mathrm{C}_{\mathrm{R}}$	250.00	1.490
$\mathrm{~N}_{\mathrm{Z}}-\mathrm{H}_{\mathrm{Z}}$	460.0	1.000
$\mathrm{C}_{\mathrm{CN}}-\mathrm{N}_{\mathrm{Z}}$	240.0	1.430
$\mathrm{C}_{-}-\mathrm{C}_{\mathrm{CL}}$	200.0	1.522
$\mathrm{C}_{\mathrm{CL}}-\mathrm{O}_{\mathrm{BL}}$	750.0	1.220
$\mathrm{C}_{\mathrm{CL}}-\mathrm{O}_{\mathrm{HL}}$	230.0	1.400
$\mathrm{O}_{\mathrm{HL}}-\mathrm{H}_{\mathrm{OL}}$	545.0	0.960

The bonded interactions are composed of the following in terms in this study

$$
\begin{equation*}
V_{b o n d e d}=V_{b o n d}+V_{a n g}+V_{U B}+V_{d i h}+V_{i m p} \tag{S5}
\end{equation*}
$$

The contribution from the bonds between atom i and j are calculated as follows,

$$
\begin{equation*}
V_{\text {bond }}\left(b_{i j}\right)=K_{i j}^{b}\left(b_{i j}-b_{i j}^{0}\right)^{2} \tag{S6}
\end{equation*}
$$

Where $b_{i j}$ is the distance between the two bonded atoms, $b_{i j}^{0}$ is the equilibrium distance and $K_{i j}^{b}$ is the bonds force constant. The equilibrium distances and force constants used in this study are given in Table S2.

Table S3: Angle and Urey-Bradley parameters for the PA6 force field. The substitutions C to C, C C_{L}, $\mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{A}}$ or C_{CN}; and H to $\mathrm{H}, \mathrm{H}_{\mathrm{L}}, \mathrm{H}_{\mathrm{R}}, \mathrm{H}_{\mathrm{A}}$ or H_{CN} applies here as described in Table S 2 .

Angle type	$K_{i j k}^{\theta}\left((\mathrm{kcal} / \mathrm{mol}) / \mathrm{Rad}^{2}\right)$	$\theta_{i j k}^{0}($ Degrees $)$	$K_{i k}^{U B}\left((\mathrm{kcal} / \mathrm{mol}) / \AA^{2}\right)$	$S_{i k}^{0}(\AA ̊)$
$\mathrm{C}-\mathrm{C}-\mathrm{C}$	58.350	113.60	11.16	2.561
$\mathrm{H}-\mathrm{C}-\mathrm{C}$	26.500	110.10	22.53	2.179
$\mathrm{H}-\mathrm{C}-\mathrm{H}$	35.500	109.00	5.40	1.8020
$\mathrm{C}_{0}-\mathrm{C}-\mathrm{C}$	52.000	108.00	-	-
$\mathrm{O}-\mathrm{C}_{0}-\mathrm{C}$	80.000	121.00	-	-
$\mathrm{H}-\mathrm{C}-\mathrm{C}_{0}$	33.000	109.50	30.00	1.630
O-C-N	80.000	122.50	-	-
$\mathrm{N}-\mathrm{C}_{\mathrm{O}}-\mathrm{C}$	80.000	116.50	-	-
$\mathrm{H}_{\mathrm{N}}-\mathrm{N}-\mathrm{C}$	34.000	123.00	-	-
$\mathrm{CO}-\mathrm{N}-\mathrm{C}$	50.000	120.00	-	-
$\mathrm{HN}-\mathrm{N}-\mathrm{C}$	35.000	117.00	-	-
$\mathrm{N}-\mathrm{C}-\mathrm{C}$	70.000	113.50	-	-
$\mathrm{N}-\mathrm{C}-\mathrm{H}$	35.000	117.00	-	-
$\mathrm{H}_{\mathrm{Z}}-\mathrm{N}_{\mathrm{Z}}-\mathrm{H}_{\mathrm{Z}}$	39.000	106.5	-	-
$\mathrm{H}_{\mathrm{Z}}-\mathrm{N}_{\mathrm{Z}}-\mathrm{C}$	50.000	111.0	-	-
$\mathrm{C}-\mathrm{C}-\mathrm{N}_{\mathrm{Z}}$	67.700	110.0	-	-
$\mathrm{N}_{\mathrm{Z}}-\mathrm{C}-\mathrm{H}$	38.000	109.5	50.00	2.1400
$\mathrm{O}_{\mathrm{BL}}-\mathrm{C}_{\mathrm{CL}}-\mathrm{C}$	70.0	125.0	20.0	2.442
$\mathrm{O}_{\mathrm{HL}}-\mathrm{C}_{\mathrm{CL}}-\mathrm{C}$	55.0	110.5	-	-
$\mathrm{H}_{\mathrm{oL}}-\mathrm{O}_{\mathrm{HL}}-\mathrm{C}_{\mathrm{CL}}$	55.0	115.0	-	-
$\mathrm{O}_{\mathrm{HL}}-\mathrm{C}_{\mathrm{CL}}-\mathrm{O}_{\mathrm{BL}}$	50.0	123.0	210.0	2.262

The bond angle is defined as another harmonic potential,

$$
\begin{equation*}
V_{a n g}\left(\theta_{i j k}\right)=K_{i j k}^{\theta}\left(\theta_{i j k}-\theta_{i j k}^{0}\right)^{2} . \tag{S7}
\end{equation*}
$$

Here K_{θ} is the force parameter and $\theta_{i j k}^{0}$ is the equilibrium angle. The Urey-Bradley (UB) terms further alter the interactions defined over two bonds. Their argument is the distance, $S_{i k}$, between the first and third atom in the angle definition.

$$
\begin{equation*}
V_{U B}\left(S_{i k}\right)=K_{i k}^{U B}\left(S_{i k}-S_{i k}^{0}\right)^{2}, \tag{S8}
\end{equation*}
$$

where $K_{i k}^{U B}$ is the force constant and $S_{i k}^{0}$ is the equilibrium distance. The parameters for PA6 angle and UB terms are given in Table S3, where it should be noted that only a select number of interactions through two bonds have UB terms.

Table S4: Dihedral parameters for the PA6 force field. The X symbols are used to denote that any atom type can be at this position. The substitutions C to $\mathrm{C}, \mathrm{C}_{\mathrm{L}}, \mathrm{C}_{\mathrm{R}}, \mathrm{C}_{\mathrm{A}}$ or C_{CN}; and H to $\mathrm{H}, \mathrm{H}_{\mathrm{L}}, \mathrm{H}_{\mathrm{R}}$, H_{A} or H_{CN} applies here as described in Table S2.

Dihedral type	$K_{i j k l}^{\chi}(\mathrm{kcal} / \mathrm{mole})$	n	$\chi_{i j k l}^{0}$ (Degrees)
X-C-C-X	0.190	3	0.000
C-C-C-C	0.101	2	0.000
C-C-C-C	0.142	3	180.0
C-C-C-C	0.074	4	0.000
C-C-C-C	0.097	5	0.000
$\mathrm{O}-\mathrm{Co}_{0}-\mathrm{C}-\mathrm{C}$	1.400	1	0.000
O-Co-C-H	0.000	3	180.0
$\mathrm{N}-\mathrm{Co}_{0}-\mathrm{C}-\mathrm{H}$	0.000	3	0.000
$\mathrm{H}_{\mathrm{N}}-\mathrm{N}-\mathrm{C}_{0}-\mathrm{O}$	0.530	1	0.000
$\mathrm{H}_{\mathrm{N}}-\mathrm{N}-\mathrm{C}_{0}-\mathrm{O}$	1.270	2	180.0
$\mathrm{H}_{\mathrm{N}}-\mathrm{N}-\mathrm{C}_{0}-\mathrm{O}$	0.140	3	0.000
$\mathrm{H}_{\mathrm{N}}-\mathrm{N}-\mathrm{C}_{0}-\mathrm{O}$	0.780	4	0.000
$\mathrm{H}_{\mathrm{N}}-\mathrm{N}-\mathrm{C}_{0}-\mathrm{C}$	2.500	2	180.0
$\mathrm{C}-\mathrm{C}-\mathrm{Co}_{0}-\mathrm{N}$	1.990	1	0.000
$\mathrm{C}-\mathrm{C}-\mathrm{Co}_{0}-\mathrm{N}$	0.640	2	180.0
C-C-Co-N	0.280	3	180.0
$\mathrm{C}-\mathrm{N}-\mathrm{Co}_{0} \mathrm{C}$	0.000	1	0.000
$\mathrm{Co}_{0}-\mathrm{N}-\mathrm{C}-\mathrm{H}$	0.000	3	0.000
$\mathrm{C}_{0}-\mathrm{N}-\mathrm{C}-\mathrm{C}$	1.800	1	0.000
$\mathrm{O}-\mathrm{Co}_{0}-\mathrm{N}-\mathrm{C}$	2.500	2	180.0
$\mathrm{H}_{\mathrm{N}}-\mathrm{N}-\mathrm{C}-\mathrm{H}$	0.000	3	0.000
H_{N}-N-C-C	0.000	1	0.000
$\mathrm{H}_{\mathrm{z}}-\mathrm{N}_{\mathrm{z}}-\mathrm{C}-\mathrm{H}$	0.11000	3	0.0000
$\mathrm{C}-\mathrm{C}-\mathrm{N}_{\mathrm{z}}-\mathrm{H}_{\mathrm{z}}$	0.11000	3	0.0000
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}_{\mathrm{CL}}$	0.000	5	180.0
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}_{\mathrm{CL}}$	0.317	3	180.0
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}_{\mathrm{CL}}$	0.557	2	0.000
$\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}_{\mathrm{CL}}$	0.753	1	0.000
$\mathrm{O}_{\text {BL }}-\mathrm{C}_{\text {CL }}-\mathrm{C}_{\text {A }}-\mathrm{H}_{\mathrm{A}}$	0.000	6	180.0
$\mathrm{H}_{\mathrm{A}}-\mathrm{C}_{\mathrm{A}}-\mathrm{C}_{\mathrm{CL}}-\mathrm{O}_{\mathrm{HL}}$	0.000	6	180.0
X-C $\mathrm{CLL}^{-} \mathrm{OH}_{\mathrm{HL}}-\mathrm{X}$	2.050	2	180.0

The final two bonded interactions of Eq. (S5) are the dihedral and improper terms. These are defined by the dihedral, $\chi_{i j k l}$, and improper angles, $\psi_{i j k l}$, between atoms connected over three bonds. The dihedral term is given as

$$
\begin{equation*}
V_{d i n}\left(\chi_{i j k l}\right)=K_{i j k l}^{\chi}\left(1+\cos \left(n \chi_{i j k l}-\chi_{i j k l}^{0}\right)\right), \tag{S9}
\end{equation*}
$$

with the force parameter $K_{i j k l}^{\chi}$ and equilibrium angle $\chi_{i j k l}^{0}$. The parameter n is an integer, which modulates the number of minima and maxima in the potential term. There can be several different terms with different n 's determining the total dihedral potential of a given angle. The improper angle terms are defined as a simple harmonic term

$$
\begin{equation*}
V_{i m p}\left(\psi_{i j k l}\right)=K_{i j k l}^{\psi}\left(\psi_{i j k l}-\psi_{i j k l}^{0}\right)^{2} \tag{S10}
\end{equation*}
$$

with the force constant K_{ψ} and equilibrium angle ψ_{0}. The dihedral parameters for PA6 are given in Table S4 and the improper parameters in Table S5.

Table S5: Improper parameters for the PA6 force field. The X symbols denote that any atom type can be placed in the given position.

Improper type	$K_{i j k l}^{\psi}\left((\mathrm{kcal} / \mathrm{mol}) / \mathrm{rad}^{2}\right)$	$\psi_{i j k l}^{0}$ (Degrees)
$\mathrm{N}-\mathrm{X}-\mathrm{X}-\mathrm{H}_{\mathrm{N}}$	20.00	0.000
O-X-X-C	120.0	0.000

S2 Molecular Dynamics Movies

The movie of water dynamics, SIMovie.mov, in the PA6 membrane were created using VMD. ${ }^{5}$ The first 400 ns of the trajectories of the PA6 membrane containing $2.3 \mathrm{wt} \%, 4.5 \mathrm{wt} \%, 8.6 \mathrm{wt} \%$, and 15.9 wt $\%$ water were used to generate the movie. Every $50^{\text {th }}$ frame from the molecular dynamics (MD) production run were rendered and used in the encoding of the final movie, corresponding to 0.5 ns of MD simulation time between each frame used.

S3 H-Bond Strength in the NMA Clusters

The H-bond strength of bonds formed by water and amide can be described based on fragmentation energies. The H -bond strength is calculated by considering the electronic ground state energy of the cluster and those of the fragments created upon breaking the H -bond in question. For example, the H -bond energy of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ H-bond in the $1 \mathrm{~A}-\mathrm{A}-1 \mathrm{~A}$ cluster is calculated as

$$
E_{H B}(1 \mathrm{~A}-\mathrm{A}-1 \mathrm{~A})=E_{0}(1 \mathrm{~A}-\mathrm{A}-)-E_{0}(-\mathrm{A}-)-E_{0}(1 \mathrm{~A}-\mathrm{A}-1 \mathrm{~A})
$$

The resulting H -bond strengths are given in Figures S 2 and S 3 for the $\mathrm{N}-\mathrm{H} \cdots \mathrm{X}$ and $\mathrm{C}=\mathrm{O} \cdots \mathrm{H} \mathrm{H}-$ bonds, respectively.

Figure S2: The H-bond strength of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{X}$ bonds in the amide clusters. The cluster types are sorted according to energy, i.e. the left most cluster has the strongest $\mathrm{N}-\mathrm{H} \cdots \mathrm{X}$ H-bond.

We find that the H -bond strength of the $\mathrm{N}-\mathrm{H}-\mathrm{-X}$ and $\mathrm{C}=\mathrm{O}-\mathrm{-H}$ follows the trends in red shifts seen in amide A and I, respectively, whereas the blue shift of amide II follows the strength of the N-H--

X H-bond. This is because a stronger H -bond indicates a weakening of the $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds participating in the H -bond. In the case of amide II, the bending motion of $\mathrm{N}-\mathrm{H}$ becomes stiffer with a stronger H -bond acceptor, leading to a blue shift of the vibrational band.

Figure S3: The H -bond strength of the $\mathrm{C}=\mathrm{O} \cdots \mathrm{H}$ bonds in the amide clusters in blue. For the clusters $1 \mathrm{~A} 1 \mathrm{~W}-\mathrm{A}-1 \mathrm{~A}, 1 \mathrm{~A} 1 \mathrm{~W}-\mathrm{A}-1 \mathrm{~W}$ and $1 \mathrm{~A} 1 \mathrm{~W}-\mathrm{A}-$ the strength of the H -bond involving amide and $\mathrm{C}=\mathrm{O}$ are given in red. The cluster types are sorted according to energy, i.e. the left most cluster has the strongest $\mathrm{N}-\mathrm{H} \cdots \mathrm{X}$ H-bond.

S4 Anharmonic Vibrational Data

In the current study we use forty clusters to model the anharmonic vibrational spectrum of PA6. These clusters and their IR vibrational properties, as well as their concentrations in each MD simulation, are given in Table S6-12. The frequencies are given in cm^{-1}, the intensity is given in $\mathrm{km} / \mathrm{mol}$, and the concentrations in $\mathrm{mol} / \mathrm{L}$.

Table S6: Structures, concentrations and anharmonic vibrational data, see section C for details.

Table S7: Structures, concentrations and anharmonic vibrational data, see section C for details.

1W-A-1A						1W-A-1W						
Motion		Frequency		Intensity		Frequency		Intensity				
Amide III				75		1296		73				
Amide II				244		1553		230				
Amide I				448		1695		406				
Amide A		3345		624		3413		311				
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9		
Conc.	0	1.00	1.57	1.32	0.797	0	0.186	0.386	1.07	1.18		
Motion		Frequency		Intensity		Frequency			Intensity			
Amide III				57		1324			68			
Amide II				270		1577			309			
Amide I				370		1653			511			
Amide A		3507		28		3338			702			
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9		
Conc.	0	0.460	0.952	1.07	1.02	0.243	0.283	0.200	0.068	0.083		
$2 \mathrm{~A}-\mathrm{A}-1 \mathrm{~W}$												
Motion		Frequency		Intensity		Frequency			Intensity			
Amide III		1309		59		1271			47			
Amide II		1564		258		1530			264			
Amide I		3386		512		1678			485			
		414	3501			39						
wt \%	0			2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.059	0.061	0.072	0.075	0.110	0.067	0.072	0.047	0.043		

Table S8: Structures, concentrations and anharmonic vibrational data, see section C for details.

Table S9: Structures, concentrations and anharmonic vibrational data, see section C for details.

						$\begin{gathered} 1 W-W-1 W \\ \vdots \\ 0 \end{gathered}$						
Motion		Freq	ency	Inte	nsity		Frequency					
Bend							1569					
H-Stretch							3356					
H-Stretch		3431		564		3703			80			
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9		
Conc.	0	0.003	0.015	0.054	0.517	0	0.005	0.015	0.090	0.403		
		1W-	$\begin{gathered} \hline \mathbf{N - 2 A} \\ 8-0 \\ 8 \\ 8 \\ 8 \\ 8 \end{gathered}$					$\overline{\mathbf{W}-\mathbf{W}-2}$				
Motion		Freq	ency	Intensity		Frequency			Intensity			
Bend				88		1595			42			
H-Stretch				659		3351			148			
H-Stretch				581		3382			846			
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9		
Conc.	0	0.166	0.296	0.800	1.21	0	0.000	0.000	0.009	0.203		
						$\sum_{0}^{8}-8-8$						
Motion		Frequency		Intensity		Frequency			Intensity			
Bend		1596		54		1581			43			
$\begin{aligned} & \text { H-Stretch } \\ & \hline \text { H-Stretch } \end{aligned}$		3708		621		3319			721			
		81	3484			667						
wt \%	0			2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.021	0.059	0.233	0.369	0	0.036	0.124	0.561	1.77		

Table S10: Structures, concentrations and anharmonic vibrational data, see section C for details.

						$\begin{gathered} \text { 1A1W-W-2A } \\ 0 \\ 00 \\ 0 \% \\ 80 \end{gathered}$				
Motion		Fre	ency	Intensity		Frequency		Intensity		
Bend			87	62		1623		37		
H-Stretch			938	642		3263		1202		
H-Stretch			03	83		3308		677		
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.042	0.108	0.093	0.080	0	0.047	0.075	0.160	0.204
								$\begin{gathered} \text { W-1A1 } \\ \sigma_{0}^{\circ} \end{gathered}$		
Motion		Fre	ency	Intensity			Frequency		Intensity	
			96	48			1613		82	
H-Stretch			60	410			3471		364	
H-Stretch		3414		734		3565			442	
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.000	0.000	0.029	0.141	0	0.040	0.117	0.249	0.320
$\begin{gathered} \text { 1A1W-W-1A1W } \\ 08 \\ 08 \end{gathered}$								$\overline{W-W-2}$		
Motion		Frequency		Intensity		Frequency			Intensity	
Bend		1596		37		1573			55	
H-Stretch		3233		875		3248			825	
H-Stretch		3405		613		3382			1139	
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.005	0.041	0.144	0.358	0	0.011	0.025	0.103	0.334

Table S11: Structures, concentrations and anharmonic vibrational data, see section C for details.

$-\mathbf{W}-1 W$										
Motion		Frequency		Intensity		Frequency		- Intensity		
Bend		1565		59		1583		64		
H-Stretch		3485		363		3418		565		
H-Stretch		3697		89		3707			98	
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.010	0.017	0.056	0.095	0	0.025	0.025	0.086	0.149
Motion		Frequency		Intensity		Frequency			Intensity	
Bend		1588		40		1603			54	
H-Stretch		3465		257		3294			796	
H-Stretch		3507		775		3707			91	
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.028	0.023	0.132	0.350	0	0.058	0.135	0.156	0.122
Motion		Frequency		Intensity		Frequency			Intensity	
Bend		1599		36		1612			25	
H-Stretch		3392		661		3357			258	
H-Stretch		3505		714		3372			1676	
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.086	0.268	0.614	0.764	0	0.506	0.710	0.791	0.444

Table S12: Structures, concentrations and anharmonic vibrational data, see section C for details.

						-W-2W				
Motion		Fre	ency		nsity		Frequency		Inte	
Bend			84				1573			
H-Stretch							3509			
H-Stretch		3513		968		3562			597	
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.223	0.467	0.263	0.206	0	0.014	0.006	0.042	0.154
Motion		Frequency		Intensity		Frequency			Intensity	
Bend		1595		66		1620			20	
H-Stretch		3499		120		3263			1860	
H-Stretch		3560		265		3282			271	
wt \%	0	2.3	4.5	8.6	15.9	0	2.3	4.5	8.6	15.9
Conc.	0	0.014	0.003	0.097	0.751	0	0.039	0.051	0.057	0.097

S5 Comparison of the amide vibrations

To compare the amide structures and vibrations of the amide chromophores of the clusters used to model the difference IR spectrum we measure the difference between them using a simple scheme. For the structure we first align the central amide groups by translation of the entire cluster by the

Figure S4: (A) The RMSD of aligned amide chromophores of the clusters used in this study. (BE) $\sigma_{j k}^{i}$ measure for the amide A, I, II and III of the clusters used in this study. In both cases a lower value signifies better agreement between the structures or vibrations, note the \log scales on (B)-(E). centroid of the amide chromophore and then apply a fixed rotation for all coordinates of one cluster to minimize the difference between the chromophore coordinates of the two clusters.

The root mean squared deviation (RSMD) between the amide chromophores of the 18 investigated clusters is shown in a heat map representation in Figure S4A. The largest RSMD for the amide groups are 0.018 , found between the clusters $2 \mathrm{~W}-\mathrm{A}-1 \mathrm{~A}$ and $1 \mathrm{~W}-\mathrm{A}-$. As can be seen in the figure the rotated structures are almost identical and we do therefore not expect any major contributions from the changes in internal geometry of the central amide in the vibrations of the cluster.

The rotation used to calculate the RSMD of the amide chromophore is also applied to the vibrational vectors to align the coordinate systems. We can then define the following measure,

$$
\begin{equation*}
\sigma_{j k}^{i}=1-v_{j}^{i} \cdot \tilde{v}_{k} \tag{S11}
\end{equation*}
$$

Where v_{j} and \tilde{v}_{k} are the coordinate vector of the i th vibration of the j th cluster and k th rotated cluster respectively. A $\sigma_{j k}^{i}=0$ means that the two vibrations are parallel and therefore equal, while $\sigma_{j k}^{i}=1$ means that the vibrations are orthogonal.

Figure S2B-E display the $\sigma_{j k}^{i}$ measure for the amide I, II, III and A vibrational vectors. The vectors in all cases very close to being parallel, suggesting that the vibrations generally happen in the same directions for all atoms in the amide group. This, coupled with the fact that the structures of the central amides are highly similar, suggests that a visualization of the vibrations of any one of the clusters would be equally valid for all clusters. We have therefore chosen to show the amide I, II, III and A motion of the -A- cluster in Figure S5A-D to clearly display the motions of an amide chromophore used in this study.

It should here be noted, that while the anharmonic description has vastly different band centers from the harmonic description, the VQDPT2 anharmonic description does not contain any significant mode mixing in any of the clusters investigated in the current study. We therefore expect that the motions of Figure S 5 are a good representation of the anharmonic vibrations as well.

Figure S5: The normal coordinates of amide A, I, II and III of the -A- cluster, corresponding to N-methyl acetamide (NMA). Note that only the Hessian of the central amide group were diagonalized to obtain these coordinates, as described in the main text.

S6 Infrared spectra of the five PA6 systems

The anharmonic IR spectrum of the PA6 systems containing $0.0 \mathrm{wt} \%, 2.3 \mathrm{wt} \%, 4.5 \mathrm{wt} \%, 8.62$ wt \% and $15.9 \mathrm{wt} \%$ have been calculated using the data in section C in Eq. (13) and plotted in

Figure S4. As is the case for the difference IR spectra in the main text a broadening factor, γ, of 40 cm^{-1} and $80 \mathrm{~cm}^{-1}$ have been used in the regions $3000-3800 \mathrm{~cm}^{-1}$ and $1400-1800 \mathrm{~cm}^{-1}$ respectively. These spectra are vastly different from the experimental spectra of hydrated PA6. This is because the statistic and models used in this study only captures the IR spectrum of the amorphous parts of PA6, where water can enter.

Figure S6: The anharmonic IR spectra of the five PA6 systems used in this study. They are calculated using the data presented in section C in Eq. (13) of the main text.

S7 Vibrational Shifts of The Amide I, II and A Vibrations

To help in identifying the patterns in the peak positions with respect to the H -bond acceptors and donors of the central amide chromophore three figures showing the vibrational shift when donors
and acceptors are added to the bare amide. The figures, Figure S7-9, are generated using the anharmonic frequencies given in Table S6-8.

Figure S7: Shifts of the amide A vibrations categorized after H-bond acceptors and donors to the central amide chromophore. The first column corresponds to the bare amide chromophore, while the second adds a H-bond acceptor group. The third column adds the first H -bond donor to the chromophore and the fourth adds a second donor. The cluster names are given in descending order with respect to their amide A peak position.

Figure S8: Shifts of the amide I vibrations categorized after H-bond acceptors and donors to the central amide chromophore. The first column corresponds to the bare amide chromphore, while the second and third column adds one or two H -bond donors respectively. The fourth column adds a H bond acceptor to the central amide chromphore. The cluster names are given in descending order with respect to their amide I peak position.

Figure S9: Shifts of the amide II vibrations categorized after H-bond acceptors and donors to the central amide chromophore. The first column corresponds to the bare amide chromophore, while the second adds a H -bond acceptor group. The third column adds the first H -bond donor to the chromophore and the fourth adds a second donor. The cluster names are given in descending order with respect to their amide II peak position.

S8 References

1. Klauda, J. B.; Venable, R. M.; Freites, J. A.; O’Connor, J. W.; Tobias, D. J.; Mondragon-Ramirez, C.; Vorobyov, I.; MacKerell, A. D.; Pastor, R. W., Update of the CHARMM All-Atom Additive Force Field for Lipids: Validation on Six Lipid Types. J. Phys. Chem. B 2010, 114, 7830-7843.
2.

MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S., et al., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102, 3586-3616.

Venable, R. M.; Sodt, A. J.; Rogaski, B.; Rui, H.; Hatcher, E.; MacKerell Jr., A. D.; Pastor, R. W.; Klauda, J. B., CHARMM All-Atom Additive Force Field for Sphingomyelin: Elucidation of Hydrogen Bonding and of Positive Curvature. Biophys. J. 2014, 107, 134-145.
4.

Price, D. J.; Iii, C. L. B., A modified TIP3P water potential for simulation with Ewald summation. J. Chem. Phys. 2004, 121, 10096-10103.
5. Humphrey, W.; Dalke, A.; Schulten, K., VMD: Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33-38.

