Supporting Information

Chiral-at-Metal Rh(III) Complex-Catalyzed Asymmetric Conjugate Addition of Unactivated Alkenes with α,β -Unsaturated 2-Acyl Imidazoles

Kuan Li, Qian Wan and Qiang Kang*

^a College of Chemistry, Fuzhou University, 350108, P. R. China.

^b Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter ,Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.

Table of Contents

Ι	General Information	3
II	Experimental Section	4
III	References	28
IV	Chiral HPLC analysis trace	29
V	NMR Spectra of Products	50
VI	Single Crystal X-Ray Diffraction of 3k	88
VII	CD Spectra of A-Rh3	90

I General Information

All reactions were performed in Schlenk tubes under an atmosphere of argon using oven-dried glassware. Commercially obtained reagents were used without further purification, unless otherwise noted. Chloroform was distilled over P2O5 and stored over 3Å type molecular sieves. THF and toluene were distilled freshly before use over sodium and benzophenone. Acetonitrile (MeCN), Dichloromethane (DCM) and 1,2-dichloroethane (DCE) were distilled from CaH₂. Reactions were checked for completion by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ¹H and ¹³C NMR spectra were obtained in CDCl₃ using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 400 and 100 MHz, respectively. Chemical shifts are reported in parts per million (& value) calibrated against the residual solvent peak. Signal patterns are indicated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. Coupling constants (J) are given in hertz (Hz). HPLC analyses of the compounds were done using chiralcel IA-IF columns using hexane and isopropanol as eluent. The infrared spectra were recorded on a Bruker VERTEX 70 IR spectrometer as KBr pellets, with absorption reported in cm⁻¹. High-resolution mass spectra were recorded on a Bruker Impact II UHR TOF LC/MS Mass Spectrometry. CD spectra were recorded on a MOS-450 circular dichroism spectrometer (600-200 nm, 1 nm bandwidth, 50 nm/min scanning speed, accumulation of 3 scans).

II Experimental Section

A-Rh was prepared according to reported procedure.¹ Alkenes 2^{2-3} and α,β -unsaturated 2-acyl imidazoles⁴ was prepared according to reported procedure.

1. Synthesis of chiral catalysts Λ -Rh3.

(i) Synthesis of Ligand L3.

А solution of 2-amino-4-*tert*-butylphenol (0.825)g, 5.0 mmol) and 3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (1.59 g, 5.0 mmol) in *m*-xylene (16.0 mL) was stirred at 120 °C for 30 min. 4-Methoxy-TEMPO (46.5 mg, 5 mol %) was added to the mixture and the reaction was stirred at this temperature for further 8 h under oxygen atmosphere. Then the mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc/Petroleum ether = 1:20) to obtain the product (1.97 g, 85% yield) as a white solid.

Ligand L3

White solid, mp = 158-160 °C, ¹H NMR (400 MHz, CDCl₃): δ = 8.30-8.28 (m, 1H), 7.91 (s, 1H), 7.82 (s, 2H), 7.68 (d, *J* = 1.2 Hz, 1H), 7.63-7.57 (m, 2H), 7.45-7.43 (m, 1H), 7.37-7.34 (m, 1H), 7.22 (d, *J* = 8.4 Hz, 1H), 1.35 (s, 9H). ¹³C NMR (CDCl₃, 100 MHz): δ = 162.2, 148.5, 148.3, 143.1, 141.4, 139.0, 131.3, 131.2, 131.1 (q, *J* = 33.2 Hz), 130.8, 129.6 (q, *J* = 2.7 Hz), 129.0, 126.2, 123.4 (q, *J* = 271.0 Hz), 123.3, 121.1 (q, *J* = 3.9 Hz), 116.7, 109.5, 34.9, 31.7. ¹⁹F NMR (376.4 MHz, CDCl₃): δ = -62.8. IR (KBr): *v* (cm⁻¹) 3026, 2962, 2870, 1581, 1549, 1481, 1463, 1394, 1380, 1366, 1334, 1275, 1179, 1162, 1131, 1115, 1045, 904, 774, 680. HRMS (ESI, *m/z*) calcd for C₂₅H₂₀F₆NO [M+H]⁺: 464.1444, found: 464.1442.

(ii) Synthesis of precursor rhodium complex (Dimer 3):

Ligand L3(1.9 g, 4.1 mmol) was added to RhCl₃•3H₂O (418.5 mg, 2.0 mmol) in a mixture of 2-ethoxyethanol and water (3:1, 92 mL). The reaction mixture was heated at 120 °C for 24 h under N₂ atmosphere. The resulting precipitate was collected by filtration, washed with methanol and dried to obtain the product **Dimer 3** (1.7 g, 81% yield).

White solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.26$ (s, 4H), 7.99 (s, 4H), 7.92 (s, 8H), 7.01 (d, J = 8.8 Hz, 4H), 6.91-6.85 (m, 8H), 6.78 (d, J = 8.8 Hz, 4H), 6.34 (d, J = 7.2 Hz, 4H), 0.88 (s, 36H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 169.1$, 169.0, 167.1, 166.8, 148.5, 147.0, 141.8, 138.3, 137.7, 133.8, 130.3, 127.2, 125.8, 124.2, 123.5 (q, J = 271.0 Hz), 121.2 (q, J = 4.1 Hz), 121.2 (q, J = 3.5 Hz), 115.2, 109.8, 34.7, 31.0. ¹⁹F NMR (376.4 MHz, CDCl₃) $\delta = -62.5$, -62.7. IR (KBr): v (cm⁻¹) 2966, 2908, 2871, 1619, 1606, 1566, 1516, 1483, 1468, 1444, 1414, 1395, 1377, 1355, 1281, 1252, 1178, 1136, 1106, 1057, 933, 900, 846, 806, 710, 682. HRMS (ESI, m/z) calcd for C_{100H72}ClF₂₄N₄O₄Rh₂: 2090.3042, found: 2090.2991.

(iii) Synthesis of rhodium Auxiliary Complexes Λ -(S)-3.

To a solution of NaOMe (230 mg, 2.0 mmol) in methanol (120 mL), L-proline (108 mg, 2.0 mmol) was added in one portion. The mixture was stirred for 10 min, to which a suspension of rhodium dimer (2.08 g, 1.0 mmol) was added. The mixture was stirred and heated at 50 °C for 12 h. After the mixture cooled to room temperature, CH_2Cl_2 (16.0 mL) was added. The reaction mixture was stirred for a further 12 h. The solvent was removed *in vacuo*. The residue was purified by flash chromatography on silica gel (EtOAc/DCM = 1:5) to obtain the product **A**-(*S*)-**3** (752 mg, 33%).

Yellow solid. $[\alpha]_D^{25} = + 123.9$ (c = 1.0, CHCl₃) ¹H NMR (400 MHz, CDCl₃): $\delta = 8.18$ (d, J = 1.2 Hz, 1H), 8.05 (s, 1H), 7.97 (d, J = 16.4 Hz, 5H), 7.55-7.52 (m, 2H), 7.33 (t, J = 8.4 Hz, 2H), 7.28 (d, J = 1.2 Hz, 1H), 7.04-6.90 (m, 4H), 6.84 (d, J = 7.2 Hz, 1H), 6.47 (d, J = 7.6 Hz, 1H), 4.29-4.24 (m, 1H), 4.07-4.01 (m, 1H), 2.86-2.81 (m, 1H), 2.26-2.21 (m, 2H), 2.09-1.99 (m, 1H), 1.75-1.70 (m, 1H), 1.61-1.49 (m, 1H), 1.40 (s, 9H), 1.38 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.6$, 171.5, 171.4,169.9, 169.9, 169.1, 168.8, 168.5, 168.1, 151.5, 150.4, 147.9, 147.9, 142.0, 141.6, 138.7, 138.6, 137.5, 137.1, 135.3, 134.2, 131.3 (q, J = 33.1 Hz), 131.0 (q, J = 32.5 Hz), 130.5, 130.4, 129.8, 127.7, 127.5, 125.9, 125.4, 124.3, 124.2, 123.5 (q, J = 271.1 Hz), 123.4 (q, J = 271.1 Hz), 121.6 (q, J = 3.4 Hz), 121.6 (q, J = 4.3 Hz), 121.2 (q, J = 4.3 Hz), 115.3, 111.7, 110.6, 110.5, 63.9, 49.4, 35.4, 35.2, 31.7, 31.7, 29.7, 26.9. ¹⁹F NMR (376.4 MHz, CDCl₃) $\delta = -62.7$. IR (KBr): ν (cm⁻¹) 1618,

1571, 1560, 1507, 1376, 1363, 1278, 1135, 1057, 709, 682. HRMS (ESI, *m/z*) calcd for C₅₅H₄₅F₁₂N₃O₄Rh [M+H]⁺: 1142.2222, found: 1142.2254.

(iv) Synthesis of Rhodium Catalysts Λ-Rh3.

A suspension of the rhodium auxiliary complex Λ -(*S*)-3 (239.0 mg, 0.28 mmol) and NH₄BF₄ (293.6 mg, 2.80 mmol) in acetonitrile (56.0 mL) was heated at 50 °C for 24 h under nitrogen in the dark. Then removed the solvent under reduced pressure and subjected to flash silica gel chromatography (100% CH₂Cl₂ to CH₂Cl₂/CH₃CN = 10:1) to give the enantiopure catalyst Λ -Rh3 (127.2 mg, 0.106 mmol, 38%) as a pale yellow solid.

Pale yellow solid. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.09-7.90$ (m, 8H), 7.63 (d, J = 8.8 Hz, 2H), 7.39 (d, J = 8.8 Hz, 2H), 7.16-6.90 (m, 4H), 6.44 (d, J = 7.6 Hz, 2H), 2.40 (d, J = 9.6 Hz, 6H), 1.44 (d, J = 9.2Hz, 18H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.9$, 167.9, 160.8, 160.4, 149.6, 145.8, 139.2, 136.8, 135.0, 131.1, 129.7 (q, J = 33.2 Hz), 129.4, 129.4, 128.0, 125.4, 124.9, 123.5, 122.9 (q, J = 271.2 Hz), 120.5(q, J = 3.4 Hz), 120.2(q, J = 3.6 Hz), 119.9 (q, J = 4.0 Hz), 111.4, 109.4, 33.5, 29.6, 1.4. ¹⁹F NMR (376.4 MHz, CDCl₃) $\delta = -62.7$, -62.7. IR (KBr): v (cm⁻¹) 3056, 2965, 2289, 1620, 1578, 1517, 1378, 1280, 1180, 1135, 1107, 847, 709. HRMS (ESI, m/z) calcd for C₅₄H₄₂F₁₂N₄O₂Rh [M]⁺: 1109.2166, found: 1109.2158. CD (MeOH): λ , nm (Δε, M⁻¹ cm⁻¹) 402 (- 25), 359 (+ 54), 301 (- 54), 254 (+ 44).

2. Synthesis of substrates

To a solution of *N*-methylimidazole (2.4 mL, 21.4 mmol) or *N*-isopropylimidazole (21.4 mmol) in THF (44.0 mL) at -78 °C was added *n*-BuLi (8.6 mL, 2.5 M in hexane, 21.4 mmol) drop wise. The reaction was stirred at -78 °C for 10 min, then stirred at room temperature for 1 h. The Weinreb amide **S1** (2.3 g, 17.8 mmol) was added to the flask after the reaction was cooled back down to -78 °C. The reaction was allowed to warm to room temperature slowly (over a period of 3-4 h) and stirred overnight. The reaction was quenched with saturated aqueous solution of Na₂CO₃ and extracted with EtOAc (3 × 50 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc/Petroleum ether = 1:3) to produce **1**.

2-Acetyl-1-isopropylimidazole **S2** (10.0 mmol, 1.0 equiv.) and EtOH (20 mL) were added to a 100 mL RBF followed by aromatic aldehyde (10.0 mmol, 1.0 equiv.) and catalytic amount of KOH (0.2 equiv.). The solution was stirred for 12 h then transferred to a separatory funnel. Saturated NaCl (30 mL) and H₂O (10 mL) were added and the mixture was extracted with EtOAc (4 × 75 mL). The combined organic extracts were dried over sodium sulfate, filtered, and concentrated on a rotatory evaporator. The resulting residue was purified by flash column chromatography on silica gel (EtOAc/ Petroleum ether = 1:3).

 $1a^{4a}$, $1b^{4c}$, $1c^{4b}$, $1f^{4c}$, $1g^{4c}$, $1i^{4c}$, $1m^{4c}$, $1o^{4a}$, $1p^{4a}$, $1q^{4c}$, $1r^{4c}$, 2^{2-3} were known compounds, and all spectroscopic data were in agreement with literatures.

According to the general procedure B, **1d** was obtained as white solid, 1.37 g, 54% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.08$ (d, J = 16.0 Hz, 1H), 7.79 (d, J = 16.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 2H), 7.31 (s, 1H), 7.25 (s, 1H), 7.20 (d, J = 8.0 Hz, 2H), 5.76-5.70 (m, 1H), 2.38 (s, 3H), 1.49 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.7$, 143.5, 143.3, 140.9, 132.3, 129.7, 129.6, 128.8, 122.5, 121.3, 49.3, 23.7, 21.5. IR (KBr): v (cm⁻¹) 3151, 2988, 2960, 1658, 1597, 1567, 1512, 1254, 920, 892, 811, 785, 734. HRMS (ESI, m/z) calcd for C₁₆H₁₈N₂NaO [M+Na]⁺: 277.1311, found: 277.1310.

According to the general procedure B, **1e** was obtained as yellow oil, 1.93 g, 76% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.11$ (d, J = 16.0 Hz, 1H), 7.78 (d, J = 16.0 Hz, 1H), 7.55(s, 1H), 7.48(d, J = 7.6 Hz, 1H), 7.32-7.26 (m, 3H), 7.21 (d, J = 7.6 Hz, 1H), 5.77-5.70 (m, 1H), 2.38 (s, 3H), 1.49 (d, J = 6.8 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 180.6$, 143.4, 138.5, 134.9, 131.3, 129.8, 129.0, 128.7, 126.3, 123.2, 121.4, 49.4, 23.7, 21.3. IR (KBr): v (cm⁻¹) 3106, 2981, 2931, 1608, 1464, 1452, 1392, 1016, 919, 864, 848, 837. HRMS (ESI, m/z) calcd for C₁₆H₁₈N₂NaO [M+Na]⁺: 277.1311, found: 277.1309.

According to the general procedure B, **1f** was obtained as yellow solid, 1.94 g, 72% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.00$ (d, J = 16.0 Hz, 1H), 7.78 (d, J = 16.0 Hz,

1H), 7.65 (d, J = 8.8 Hz, 2H), 7.30 (s, 1H), 7.24 (s, 1H), 6.92 (d, J = 8.8 Hz, 2H), 5.77-5.71 (m, 1H), 3.85 (d, J = 2.4 Hz, 3H), 1.48 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.7$, 161.6, 143.5, 143.0, 130.5, 129.6, 127.8, 121.2, 121.2, 114.3, 55.4, 49.3, 23.7. IR (KBr): v (cm⁻¹) 3154, 2957, 2833, 1655, 1567, 1511, 1455, 831, 812, 781, 757. HRMS (ESI, m/z) calcd for C₁₆H₁₈N₂NaO₂ [M+Na]⁺: 293.1260, found: 293.1259.

According to the general procedure B, **1g** was obtained as yellow solid, 1.59 g, 50% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.11$ (d, J = 16.0 Hz, 1H), 7.72 (d, J = 16.0 Hz, 1H), 7.56-7.51 (m, 4H), 7.33-7.25 (m, 2H), 5.74-5.67 (m, 1H), 1.50-1.48 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.2$, 143.3, 141.6, 134.0, 132.1, 130.0, 129.9, 124.6, 124.2, 121.6, 49.4, 23.7. IR (KBr): v (cm⁻¹) 3146, 3078, 3034, 2983, 1655, 1586, 1564, 997, 947, 830, 817, 765. HRMS (ESI, m/z) calcd for C₁₅H₁₆BrN₂O [M+H]⁺: 319.0441, found: 319.0443.

According to the general procedure B, **1h** was obtained as yellow oil, 2.06 g, 65% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.13-8.08$ (m, 1H), 7.85 (t, J = 2.0 Hz, 1H), 7.73-7.67 (m, 1H), 7.57 (d, J = 6.4 Hz, 1H), 7.48 (d, J = 6.0 Hz, 1H), 7.33-7.23 (m, 3H), 5.74-5.66 (m, 1H), 1.50-1.47 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.0$, 143.2, 141.1, 137.1, 133.0, 131.1, 130.3, 129.9, 127.4, 124.8, 123.0, 121.7, 49.4, 23.6. IR (KBr): v (cm⁻¹) 2981, 2932, 1605, 1559, 1255, 1198, 1011, 806, 784, 745. HRMS (ESI, m/z) calcd for C₁₅H₁₅BrN₂NaO [M+Na]⁺: 341.0260, found: 341.0257.

According to the general procedure B, **1i** was obtained as white solid, 1.5 g, 55% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.09$ (d, J = 16.0 Hz, 1H), 7.74 (d, J = 16.0 Hz, 1H), 7.62 (d, J = 8.4 Hz, 2H), 7.38-7.25 (m, 4H), 5.75-5.68 (m, 1H), 1.49 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.3$, 143.3, 141.6, 136.2, 133.5, 129.9, 129.8, 129.1, 124.0, 121.6, 49.4, 23.7. IR (KBr): v (cm⁻¹) 3080, 2986, 1655, 1566, 1165, 919, 877, 820, 751, 645. HRMS (ESI, m/z) calcd for C₁₅H₁₅ClN₂NaO [M+Na]⁺: 297.0765, found: 297.0764.

According to the general procedure B, **1j** was obtained as white solid, 1.2 g, 43% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.14$ -8.08 (m, 1H), 7.74-7.67 (m, 2H), 7.55-7.51 (m, 1H), 7.37-7.24 (m, 4H), 5.74-5.67 (m, 1H), 1.50-1.45 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.1$, 143.2, 141.3, 141.3, 136.9, 134.9, 130.1, 130.0, 130.0, 128.2, 126.9, 124.9, 121.7, 49.4, 23.7. IR (KBr): v (cm⁻¹) 3141, 3070, 2977, 1658, 1600, 1254, 1200, 915, 813, 745. HRMS (ESI, *m/z*) calcd for C₁₅H₁₆ClN₂O [M+H]⁺: 275.0946, found: 275.0948.

According to the general procedure B, **1k** was obtained as white solid, 1.6 g, 63% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.16-8.04$ (m, 2H), 7.81 (d, J = 7.6 Hz, 1H), 7.32-7.20 (m, 5H), 5.76-5.70 (m, 1H), 2.50 (s, 3H), 1.50 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.7$, 143.4, 140.6, 138.3, 133.8, 130.8, 130.2, 129.9, 126.8, 126.3, 124.4, 121.4, 49.4, 23.7, 19.8. IR (KBr): v (cm⁻¹) 3155, 3098, 2965,

1659, 1596, 1452, 1218, 1074, 921, 856, 774. HRMS (ESI, m/z) calcd for C₁₆H₁₈N₂NaO [M+Na]⁺: 277.1311, found: 277.1311.

According to the general procedure B, **11** was obtained as yellow oil, 1.4 g, 49% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 8.70$ (d, J = 15.6 Hz, 1H), 8.32 (d, J = 8.4 Hz, 1H), 8.23 (d, J = 15.6 Hz, 1H), 8.03 (d, J = 7.2 Hz, 1H), 7.89 (t, J = 9.2 Hz, 2H), 7.60-7.49 (m, 3H), 7.33 (s, 1H), 7.27 (s, 1H), 5.80-5.74 (m, 1H), 1.52 (d, J = 6.4 Hz, 6H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 180.5$, 143.4, 139.8, 133.8, 132.2, 131.9, 130.7, 129.9, 128.8, 126.8, 126.1, 125.9, 125.5, 125.5, 123.5, 121.5, 49.5, 23.7. IR (KBr): v (cm⁻¹) 3136, 2975, 2931, 1649, 1594, 1572, 1020, 1006, 798, 786, 774. HRMS (ESI, m/z) calcd for C₁₉H₁₈N₂NaO [M+Na]⁺: 313.1311, found: 313.1310.

According to the general procedure B, **1m** was obtained as brown solid, 1.9 g, 83% yield, ¹H NMR (400 MHz, CDCl₃): $\delta = 7.97$ (d, J = 15.6 Hz, 1H), 7.59-7.51 (m, 2H), 7.31 (s, 1H), 7.23(s, 1H), 6.73(d, J = 3.2 Hz, 1H), 6.49-6.48 (m, 1H), 5.74-5.68 (m, 1H), 1.48-1.46 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.4$, 152.0, 144.9, 143.3, 129.8, 129.2, 121.6, 121.3, 115.4, 112.5, 49.2, 23.6. IR (KBr): v (cm⁻¹) 3102, 2981, 1662, 1552, 1007, 980, 930, 922, 881, 700. HRMS (ESI, m/z) calcd for C₁₃H₁₄N₂NaO₂ [M+Na]⁺: 253.0947, found: 253.0946.

1n

According to the general procedure B, **1n** was obtained as yellow solid, 1.5 g, 60% yield, ¹H NMR (400 MHz, CDCl₃): δ = 7.96-7.87 (m, 2H), 7.41-7.25 (m, 4H), 7.07 (s,

1H), 5.74-5.68 (m, 1H), 1.48 (d, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 180.2$, 143.3, 140.7, 135.6, 131.7, 129.8, 129.0, 128.2, 122.5, 121.4, 49.3, 23.7. IR (KBr): v (cm⁻¹) 3150, 3117, 2980, 1651, 1587, 1515, 966, 919, 837, 770, 743, 716. HRMS (ESI, m/z) calcd for C₁₃H₁₄N₂NaOS [M+Na]⁺: 269.0719, found: 269.0719.

3. Substrate Scope

(i) General procedure C for chiral-at-metal rhodium complex catalyzed asymmetric conjugate addition of alkenes with α , β -unsaturated 2 - acyl imidazoles.

To an oven-dried 25 mL Schlenk tube equipped with a stir bar, **A-Rh3** (1 mol %) was added along with α,β -unsaturated 2-acyl imidazole **1** (0.25 mmol), alkene **2** (0.3 mmol) and DCE (0.5 mL). The reaction was stirring at 30°C until consumption of the 2-acyl imidazole as monitored by thin layer chromatography. The solution directly purified by silica gel column chromatography (EtOAc/Petroleum ether = 1:4) to afford desired adducts **3**.

(ii) According to the general procedure D for hydrogenation reduction of 3k.

To an oven-dried 25 mL Schlenk tube equipped with a stir bar, **3k** (after recrystallization, ee % > 99%, 0.25 mmol) and 5mol % Pd/C (133 mg) in MeOH (2 ml) at 30 °C for 23 h under H₂ atmosphere. The solution directly purified by silica gel column chromatography (EtOAc/Petroleum ether = 1:4) to afford desired adduct **4**.

(iii) General procedure for gram-scale experiments with lower catalyst loading.

To an oven-dried 50 mL Schlenk tube equipped with a stir bar, **A-Rh3** (1 mol %) was added along with α,β -unsaturated 2-acyl imidazole **1k** (3.5 mmol), alkene **2a** (4.2 mmol) and DCE (7 mL). The reaction was stirring at 30°C for 4 h. The solution directly purified by silica gel column chromatography (EtOAc/Petroleum ether = 1:4) to afford desired adduct **3k**.

To an oven-dried 50 mL Schlenk tube equipped with a stir bar, **A-Rh3** (0.05 mol %) was added along with α,β -unsaturated 2-acyl imidazole **1k** (3.93 mmol), alkene **2a**

(4.7 mmol) and DCE (4 mL). The reaction was stirring at 30 $^{\circ}$ C for 72 h. The solution directly purified by silica gel column chromatography (EtOAc/Petroleum ether = 1:4) to afford desired adduct **3k**.

According to the general procedure C, **3a** was obtained as yellow oil, 104 mg, 87% yield, 92% ee, $[\alpha]_D^{25} = +95.8$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, $t_{\text{major}} = 30.88$ min, $t_{\text{minor}} = 35.18$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31$ (d, J = 7.2 Hz, 2H), 7.26 (t, J = 7.6 Hz, 2H) 7.14 (t, J = 7.2 Hz, 1H), 7.08 (s, 1H), 7.02 (d, J = 8.8 Hz, 2H), 6.92 (t, J = 6.0 Hz, 3H), 6.68 (d, J = 8.8 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 6.08 (d, J = 10.4 Hz, 1H), 4.28-4.22 (m, 1H), 3.85 (s, 3H), 3.61-3.49 (m, 2H), 2.96 (s, 6H), 2.89 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.2$, 149.7, 149.5, 145.0, 143.4, 141.4, 131.7, 130.6, 128.9, 128.4, 128.4, 128.3, 127.6, 127.3, 126.7, 126.0, 112.1, 112.0, 46.4, 41.7, 40.7, 40.6, 36.1. IR (KBr): v (cm⁻¹) 2962, 1674, 1608, 1521, 1407, 1261, 1224, 1192, 1028, 819. HRMS (ESI, m/z) calcd for C₃₁H₃₅N₄O [M+H]⁺: 479.2805, found: 479.2804.

According to the general procedure C, **3b** was obtained as white solid, 118 mg, 93% yield, 95% ee, $[\alpha]_D^{25} = + 131.7$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, $t_{major} = 30.92$ min, $t_{minor} = 25.87$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.30$ (d, J = 7.2 Hz, 2H), 7.27-7.23 (m, 2H), 7.19 (d, J = 0.4 Hz, 1H), 7.14 (t, J = 7.2 Hz, 2H), 7.00 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 6.56 (d, J = 8.8Hz, 2H), 6.09 (d, J = 10.4 Hz, 1H), 5.45-5.38 (m, 1H), 4.28-4.22 (m, 1H), 3.57

(d, J = 7.6 Hz, 2H), 2.96 (s, 6H), 2.89 (s, 6H), 1.32 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.4$, 149.7, 149.5, 145.1, 142.8, 141.4, 131.8, 130.7, 129.4, 128.4, 128.4, 127.6, 127.4, 125.9, 120.9, 112.1, 112.0, 49.0, 47.0, 42.0, 40.7, 40.6, 23.7, 23.5. IR (KBr): v (cm⁻¹) 2964, 2800, 1672, 1609, 1522, 1395, 1224, 1192, 947, 819, 701. HRMS (ESI, m/z) calcd for C₃₃H₃₉N₄O [M+H]⁺: 507.3118, found: 507.3121.

According to the general procedure C, **3c** was obtained as yellow oil, 122 mg, 90% yield, 86% ee, $[\alpha]_D^{25} = +69.2$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, $t_{\text{major}} = 42.55$ min, $t_{\text{minor}} = 36.63$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.38-7.23$ (m, 8H), 7.15 (t, J = 6.8 Hz, 1H), 7.10 (s, 1H), 7.07-7.01 (m, 4H), 6.87 (d, J = 8.8 Hz, 2H), 6.64-6.57 (m, 4H), 6.12 (d, J = 10.4 Hz, 1H), 4.28-4.21 (m, 1H), 3.63-3.58 (m, 1H), 3.47-3.42 (m, 1H), 2.94 (s, 6H), 2.90 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 189.9$, 149.8, 149.5, 145.0, 143.4, 141.6, 138.3, 131.6, 130.6, 129.5, 128.9, 128.5, 128.2, 127.7, 127.1, 126.7, 126.0, 125.7, 112.1, 112.0, 46.9, 42.2, 40.7. IR (KBr): ν (cm⁻¹) 2963, 2853, 2799, 1683, 1608, 1521, 1193, 1150, 948, 819, 763. HRMS (ESI, m/z) calcd for C₃₆H₃₇N₄O [M+H]⁺: 541.2962, found: 541.2962.

According to the general procedure C, **3d** was obtained as yellow oil, 124 mg, 95% yield, 93% ee, $[\alpha]_D^{25} = +$ 72.0 (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 75/25, flow rate 1.0 mL/min,

*t*_{major} = 9.15 min, *t*_{minor} = 7.93 min). ¹H NMR (400 MHz, CDCl₃): δ = 7.20 (d, *J* = 8.0 Hz, 3H), 7.14 (s, 1H), 7.07 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.67 (d, *J* = 8.8 Hz, 2H), 6.56 (d, *J* = 8.8 Hz, 2H), 6.07 (d, *J* = 10.4 Hz, 1H), 5.45-5.38 (m, 1H), 4.25-4.18 (m, 1H), 3.60-3.49 (m, 2H), 2.96 (s, 6H), 2.89 (s, 6H), 2.28 (s, 3H), 1.33-1.31 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): δ = 191.6, 149.7, 149.4, 142.8, 142.1, 141.1, 135.3, 131.9, 130.7, 129.4, 129.1, 128.5, 128.4, 127.6, 127.4, 120.8, 112.0, 112.0, 49.0, 47.1, 41.6, 40.7, 40.6, 23.7, 23.5, 21.1. IR (KBr): *v* (cm⁻¹) 2964, 2924, 1673, 1609, 1521, 1397, 1261, 1093, 817. HRMS (ESI, *m/z*) calcd for C₃₄H₄₁N₄O [M+H]⁺: 521.3275, found: 521.3277.

According to the general procedure C, **3e** was obtained as brown solid, 122 mg, 94% yield, 90% ee, $[\alpha]_D^{25} = +138.9$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, $t_{\text{major}} = 25.62$ min, $t_{\text{minor}} = 20.59$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.18$ (s, 1H), 7.16-7.09 (m, 4H), 7.00-6.92 (m, 5H), 6.67 (d, J = 8.8 Hz, 2H), 6.56 (d, J = 8.8 Hz, 2H), 6.09 (d, J = 10.4 Hz, 1H), 5.45-5.38 (m, 1H), 4.25-4.18 (m, 1H), 3.61-3.49 (m, 2H), 2.96 (s, 6H), 2.88 (s, 6H), 2.29 (s, 3H), 1.32 (t, J = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.5$, 149.7, 149.5, 145.1, 142.8, 141.3, 137.9, 131.9, 130.7, 129.4, 128.5, 128.4, 128.3, 128.3, 127.5, 126.7, 124.7, 120.8, 112.1, 112.0, 49.0, 47.2, 42.0, 40.7, 40.6, 23.7, 23.5, 21.6. IR (KBr): v (cm⁻¹) 2884, 2799, 1672, 1608, 1521, 1395, 1351, 947, 820, 706. HRMS (ESI, *m*/*z*) calcd for C₃₄H₄₁N₄O [M+H]⁺: 521.3275, found: 521.3279.

According to the general procedure C, **3f** was obtained as yellow oil, 107 mg, 80% yield, 87% ee, $[\alpha]_D^{25} = +63.6$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, $t_{major} = 34.16$ min, $t_{minor} = 39.30$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.23-7.19$ (m, 3H), 7.14 (s, 1H), 6.99 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.4 Hz, 2H), 6.56 (d, J = 8.8 Hz, 2H), 6.07 (d, J = 10.4 Hz, 1H), 5.45-5.38 (m, 1H), 4.24-4.17 (m, 1H), 3.75 (s, 3H), 3.53 (d, J = 7.6 Hz, 2H), 2.96 (s, 6H), 2.88 (s, 6H), 1.32 (t, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.6$, 157.7, 149.7, 149.4, 142.8, 141.1, 137.3, 131.8, 130.6, 129.4, 128.5, 128.4, 127.6, 120.9, 113.8, 112.1, 112.0, 55.2, 49.0, 47.2, 41.2, 40.7, 40.6, 23.7, 23.5. IR (KBr): ν (cm⁻¹) 2963, 2800, 1672, 1609, 1396, 1351, 1258, 1091, 1032, 818. HRMS (ESI, m/z) calcd for C₃₄H₄₁N₄O₂ [M+H]⁺: 537.3224, found: 537.3224.

According to the general procedure C, **3g** was obtained as yellow oil, 139 mg, 95% yield, 93% ee, $[\alpha]_D^{25} = +$ 99.5 (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $t_{major} = 11.80$ min, $t_{minor} = 17.33$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36$ (d, J = 8.4 Hz, 2H), 7.21 (s, 1H), 7.15 (t, J = 5.6 Hz, 3H), 7.00 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 6.03 (d, J = 10.0 Hz, 1H), 5.44-5.37 (m, 1H), 4.23-4.17 (m, 1H), 3.58-3.51 (m, 2H), 2.97 (s, 6H), 2.90 (s, 6H), 1.33 (t, J = 6.0 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.0$, 149.8, 149.5,

144.3, 142.6, 142.0, 131.4, 130.5, 129.5, 129.4, 128.4, 128.2, 126.5, 121.0, 119.6, 112.1, 112.0, 49.1, 46.7, 41.3, 40.6, 40.6, 23.7, 23.5. IR (KBr): v (cm⁻¹) 2964, 2800, 1672, 1608, 1521, 1394, 1352, 1261, 948, 818. HRMS (ESI, m/z) calcd for C₃₃H₃₈BrN₄O [M+H]⁺: 585.2224, found: 585.2227.

According to the general procedure C, **3h** was obtained as brown oil, 126 mg, 86% yield, 94% ee, $[\alpha]_D^{25} = +$ 91.5 (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IE, $\lambda = 254$ nm, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $t_{major} = 12.62$ min, $t_{minor} = 14.50$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.41$ (t, J = 1.6 Hz, 1H), 7.27-7.25 (m, 1H), 7.21 (d, J = 7.2 Hz, 2H), 7.14-7.09 (m, 2H), 7.02-7.00 (m, 2H), 6.91-6.89 (m, 2H), 6.68 (d, J = 8.8 Hz, 2H), 6.58 (t, J = 4.4 Hz, 2H), 6.04 (d, J = 10.4 Hz, 1H), 5.45-5.38 (m, 1H), 4.24-4.17 (m, 1H), 3.55-3.53 (m, 2H), 2.97 (s, 6H), 2.90 (s, 6H), 1.34 (t, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.9$, 149.8, 149.5, 147.6, 142.6, 142.3, 131.4, 130.7, 130.5, 129.9, 129.5, 129.0, 128.3, 128.1, 126.3, 126.3, 122.4, 121.0, 112.1, 112.0, 49.1, 46.8, 41.7, 40.6, 40.6, 23.6, 23.5 . IR (KBr): ν (cm⁻¹) 2964, 2884, 2800, 1673, 1521, 1395, 1353, 1259, 947, 819. HRMS (ESI, m/z) calcd for C₃₃H₃₈BrN₄O [M+H]⁺: 585.2224, found: 585.2217.

According to the general procedure C, **3i** was obtained as yellow oil, 124 mg, 92% yield, 94% ee, $[\alpha]_D^{25} = +$ 110.1 (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, $t_{\text{major}} = 13.33$ min, $t_{\text{minor}} = 18.81$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.21$ (d, J =

4.8 Hz, 5H), 7.14 (s, 1H), 7.00 (d, J = 8.8 Hz, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.67 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 6.04 (d, J = 10.4 Hz, 1H), 5.44-5.37 (m, 1H), 4.25-4.19 (m, 1H), 3.60-3.49 (m, 2H), 2.96 (s, 6H), 2.89 (s, 6H), 1.33 (t, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.1$, 149.8, 149.5, 143.7, 142.6, 141.9, 131.5, 131.4, 130.5, 129.5, 129.0, 128.5, 128.4, 128.2, 126.6, 121.0, 112.1, 112.0, 49.1, 46.8, 41.3, 40.6, 40.6, 23.7, 23.5. IR (KBr): v (cm⁻¹) 2884, 2800, 1673, 1608, 1521, 1396, 1352, 948, 819, 768. HRMS (ESI, m/z) calcd for C₃₃H₃₈ClN₄O [M+H]⁺: 541.2729, found: 541.2730.

According to the general procedure C, **3j** was obtained as yellow oil, 129 mg, 95% yield, 94% ee, $[\alpha]_D^{25} = +$ 119.3 (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IE, $\lambda = 254$ nm, hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, $t_{major} = 14.22$ min, $t_{minor} = 16.71$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.27$ (s, 1H), 7.21-7.10 (m, 5H), 7.01 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 6.68 (d, J = 8.8 Hz, 2H), 6.57 (d, J = 8.8 Hz, 2H), 6.04 (d, J = 10.4 Hz, 1H), 5.45-5.38 (m, 1H), 4.25-4.19 (m, 1H), 3.55 (d, J = 7.2 Hz, 2H), 2.97 (s, 6H), 2.90 (s, 6H), 1.33 (t, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.9$, 149.8, 149.5, 147.3, 142.6, 142.2, 134.1, 131.4, 130.5, 129.7, 129.5, 128.4, 128.1, 127.8, 126.3, 126.1, 125.8, 121.0, 112.1, 112.0, 49.1, 46.8, 41.6, 40.6, 40.6, 23.7, 23.5. IR (KBr): ν (cm⁻¹) 2964, 2886, 2800, 1673, 1608, 1521, 1396, 1353, 1260, 819, 697. HRMS (ESI, m/z) calcd for C₃₃H₃₈ClN₄O [M+H]⁺: 541.2729, found: 541.2727.

According to the general procedure C, **3k** was obtained as white solid, 124 mg, 95% yield, 93% ee, $[\alpha]_D^{25} = +35.5$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 95/5, flow rate 1.0 mL/min, $t_{major} = 27.64$ min, $t_{minor} = 30.58$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.33$ (d, J = 7.6 Hz, 1H), 7.13 (s, 1H), 7.08-7.03 (m, 2H), 7.00-6.96 (m, 2H), 6.90 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 2H), 6.57 (d, J = 8.4 Hz, 2H), 6.49 (d, J = 8.4 Hz, 2H), 6.07 (d, J = 10.0 Hz, 1H), 5.38-5.28 (m, 1H), 4.37-4.31 (m, 1H), 3.55-3.44 (m, 1H), 3.40-3.35 (m, 1H), 2.87 (s, 6H), 2.82 (s, 6H), 2.04 (s, 3H), 1.25 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.7$, 148.6, 148.4, 142.7, 141.8, 140.4, 134.5, 130.7, 129.4, 129.3, 128.4, 127.6, 127.3, 126.4, 125.9, 125.0, 124.6, 119.8, 111.1, 110.9, 47.9, 46.0, 39.6, 39.6, 37.2, 22.6, 22.5, 18.3 . IR (KBr): v (cm⁻¹) 2925, 2853, 2798, 1667, 1608, 1521, 1394, 1350, 947, 820, 759. HRMS (ESI, *m/z*) calcd for C₃₄H₄₁N₄O [M+H]⁺: 521.3275, found: 521.3276.

According to the general procedure C, **31** was obtained as yellow solid, 114 mg, 82% yield, 88% ee, $[\alpha]_D^{25} = -43.6$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $t_{major} = 13.66$ min, $t_{minor} = 18.18$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 8.02$ (d, J = 8.0 Hz, 1H), 7.82 (t, J = 6.0 Hz, 1H), 7.69-7.61 (m, 2H), 7.44-7.38 (m, 3H), 7.19 (d, J = 12.4 Hz, 2H), 6.99 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 6.58-6.55 (m, 4H), 6.28 (s, 1H), 5.41-5.35 (m, 1H), 5.12-5.06 (m, 1H), 3.64 (d, J = 7.6 Hz, 2H), 2.93 (s, 6H), 2.90 (s, 6H), 1.30 (t, J = 7.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 191.7$, 149.7, 149.5, 142.8, 141.8, 141.7, 134.0, 131.8, 131.0, 130.7, 129.5, 128.6, 128.3, 127.1, 126.6, 125.7, 125.6, 125.3, 124.4, 124.2, 120.9, 112.1, 112.0, 49.0, 47.6, 40.7, 40.6, 37.9, 23.6, 23.5. IR (KBr): v (cm⁻¹) 2930, 2884, 2800, 1670, 1521, 1395, 1354,

948, 821, 778. HRMS (ESI, *m*/*z*) calcd for C₃₇H₄₁N₄O [M+H]⁺: 557.3275, found: 557.3269.

According to the general procedure C, **3m** was obtained as brown oil, 114 mg, 92% yield, 88% ee, $[\alpha]_D^{25} = +90.0$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 80/20, flow rate 1.0 mL/min, $t_{\text{major}} = 23.65$ min, $t_{\text{minor}} = 15.56$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.28$ (s, 1H), 7.20 (s, 1H), 7.12 (s, 1H), 7.04 (d, J = 8.4 Hz, 4H), 6.68 (d, J = 8.8 Hz, 2H), 6.58 (d, J = 8.8 Hz, 2H), 6.25-6.24 (m, 1H), 6.07 (d, J = 3.2 Hz, 1H), 5.94 (d, J = 10.4 Hz, 1H), 5.49-5.42 (m, 1H), 4.40-4.34 (m, 1H), 3.68-3.62 (m, 1H), 3.50-3.44 (m, 1H), 2.95 (s, 6H), 2.90 (s, 6H), 1.36-1.34 (m, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.9$, 157.6, 149.8, 149.5, 142.7, 142.6, 141.0, 131.6, 130.6, 129.5, 128.5, 128.1, 124.1, 120.9, 112.1, 112.0, 110.1, 104.7, 49.1, 44.3, 40.6, 36.1, 23.6, 23.6. IR (KBr): ν (cm⁻¹) 2965, 2885, 2799, 1673, 1608, 1521, 1396, 1352, 1165, 819. HRMS (ESI, *m/z*) calcd for C₃₁H₃₇N₄O₂ [M+H]⁺: 497.2911, found: 497.2914.

According to the general procedure C, **3n** was obtained as yellow oil, 115 mg, 90% yield, 88% ee, $[\alpha]_D^{25} = +$ 112.4 (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 93/7, flow rate 1.0 mL/min, $t_{major} = 39.94$ min, $t_{minor} = 37.48$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.20$ (s, 1H), 7.14 (s, 1H), 7.10-7.09 (m, 1H), 7.04-6.99 (m, 4H), 6.89 (t, J = 4.0 Hz, 2H), 6.67 (d, J = 8.8 Hz, 2H), 6.58 (d, J = 8.8 Hz, 2H), 6.02 (d, J = 10.4 Hz, 1H), 5.49-5.43 (m, 1H),

4.58-4.52 (m, 1H), 3.63-3.61 (m, 2H), 2.95 (s, 6H), 2.89 (s, 6H), 1.35 (d, J = 6.4 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.8$, 149.8, 149.5, 149.2, 142.6, 141.9, 131.4, 130.6, 129.5, 128.5, 128.0, 126.6, 123.2, 123.2, 121.0, 112.1, 112.0, 49.1, 47.4, 40.6, 37.5, 23.7, 23.6. IR (KBr): v (cm⁻¹) 2964, 2884, 2799, 1672, 1608, 1521, 1395, 1353, 1256, 1164, 819. HRMS (ESI, m/z) calcd for C₃₁H₃₇N₄OS [M+H]⁺: 513.2683, found: 513.2684.

According to the general procedure C, **30** was obtained as brown oil, 91 mg, 82% yield, 95% ee, $[\alpha]_D^{25} = +$ 69.7 (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 92/8, flow rate 1.0 mL/min, $t_{major} = 13.75$ min, $t_{minor} = 21.24$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.21$ (s, 1H), 7.13 (s, 1H), 7.03-6.96 (m, 4H), 6.67 (d, J = 8.4 Hz, 2H), 6.58 (d, J = 8.4 Hz, 2H), 5.74 (d, J = 8.8 Hz, 1H), 5.52-5.47 (m, 1H), 3.18-3.11 (m, 3H), 2.95 (s, 6H), 2.90 (s, 6H), 1.38 (t, J = 6.0 Hz, 6H), 1.12 (d, J = 5.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.5$, 149.6, 149.3, 142.8, 140.3, 132.0, 130.5, 130.4, 129.3, 128.8, 128.2, 120.8, 112.1, 112.1, 49.1, 47.2, 40.7, 31.4, 23.7, 21.8. IR (KBr): ν (cm⁻¹) 2963, 2869, 2799, 1672, 1609, 1521, 1395, 1350, 1258, 947, 818. HRMS (ESI, *m/z*) calcd for C₂₈H₃₇N4O [M+H]⁺: 445.2962, found: 445.2962.

According to the general procedure C, **3p** was obtained as yellow oil, 86 mg, 80% yield, 95% ee, $[\alpha]_D^{25} = +47.4$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 85/15, flow rate 1.0 mL/min,

 $t_{\text{major}} = 11.19 \text{ min}, t_{\text{minor}} = 18.11 \text{ min}$). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.06$ (t, J = 8.4 Hz, 3H), 6.94 (d, J = 4.4 Hz, 3H), 6.65 (d, J = 7.2 Hz, 2H), 6.59 (d, J = 7.6 Hz, 2H), 5.69 (d, J = 10.4 Hz, 1H), 3.93 (s, 3H), 3.13 (d, J = 7.2 Hz, 2H), 2.95 (s, 6H), 2.90 (s, 6H), 1.74 (s, 1H), 1.58-1.52 (m, 1H), 1.46-1.38 (m, 1H), 0.89 (t, J = 8.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.6$, 149.6, 149.2, 143.5, 141.7, 132.1, 130.5, 128.9, 128.8, 128.1, 126.7, 112.1, 112.1, 45.0, 40.7, 37.8, 36.2, 29.1, 11.9. IR (KBr): v (cm⁻¹) 2960, 2928, 2799, 1672, 1609, 1520, 1406, 1350, 1224, 1020, 948, 819, 773. HRMS (ESI, m/z) calcd for C₂₇H₃₅N₄O [M+H]⁺: 431.2805, found: 431.2808.

According to the general procedure C, **3q** was obtained as yellow oil, 99 mg, 84% yield, 95% ee, $[\alpha]_D^{25} = + 9.2$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $t_{\text{major}} = 8.15$ min, $t_{\text{minor}} = 12.24$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.14$ (s, 1H), 7.07 (s, 1H), 6.94 (d, J = 8.8 Hz, 2H), 6.84 (d, J = 8.4 Hz, 2H), 6.58 (d, J = 8.4 Hz, 2H), 6.50 (d, J = 8.8 Hz, 2H), 5.71 (d, J = 10.4 Hz, 1H), 5.46-5.39 (m, 1H), 3.23-3.17 (m, 1H), 3.08-3.03 (m, 1H), 2.87 (s, 6H), 2.82 (s, 6H), 1.76-1.64 (m, 2H), 1.30 (t, J = 8.0 Hz, 6H), 0.86 (d, J = 6.8 Hz, 3H), 0.80 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 193.1$, 149.5, 149.1, 142.9, 141.9, 132.4, 130.6, 129.3, 129.0, 128.1, 127.3, 120.8, 112.1, 112.0, 49.1, 43.0, 41.9, 40.7, 40.7, 33.2, 23.7, 23.7, 20.5, 19.5. IR (KBr): ν (cm⁻¹) 2959, 2872, 2799, 1672, 1609, 1521, 1395, 1256, 1223, 1164, 818. HRMS (ESI, m/z) calcd for C₃₀H₄N₄O [M+H]⁺: 473.3275, found: 473.3277.

24

According to the general procedure C, **3r** was obtained as yellow oil, 84 mg, 67% yield, 93% ee, $[\alpha]_D^{25} = + 140.4$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $t_{major} = 45.46$ min, $t_{minor} = 61.38$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.21$ (s, 1H), 7.17-7.10 (m, 5H), 6.71 (d, J = 8.8 Hz, 2H), 6.61 (d, J = 8.8 Hz, 2H), 5.84 (d, J = 10.4 Hz, 1H), 5.49-5.43 (m, 1H), 4.21-4.13 (m, 2H), 3.88-3.82 (m, 1H), 3.78-3.72 (m, 1H), 3.38-3.32 (m, 1H), 2.96 (s, 6H), 2.92 (s, 6H), 1.40-1.35 (m, 6H), 1.26 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 190.5$, 174.3, 149.9, 149.6, 144.5, 142.0, 131.2, 130.8, 129.5, 128.5, 127.7, 120.9, 112.1, 112.0, 60.7, 49.1, 42.8, 41.8, 40.6, 40.6, 23.7, 23.5, 14.2. IR (KBr): v (cm⁻¹) 2979, 2934, 2887, 2801, 1729, 1677, 1522, 1397, 1360, 978, 948, 821. HRMS (ESI, m/z) calcd for C₃₀H₃₉N₄O₃ [M+H]⁺: 503.3017, found: 503.3015.

According to the general procedure C, **3s** was obtained as yellow oil, 100 mg, 80% yield, 95% ee, $[\alpha]_D^{25} = +67.3$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 93/7, flow rate 1.0 mL/min, $t_{major} = 8.76$ min, $t_{minor} = 14.65$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.21$ (s, 1H), 7.13 (s, 1H), 7.02 (d, J = 8.8 Hz, 2H), 6.94 (d, J = 8.4 Hz, 2H), 6.60 (d, J = 8.4 Hz, 2H), 6.53 (d, J = 8.8 Hz, 2H), 5.71-5.67 (m, 1H), 5.53-5.46 (m, 1H), 3.37-3.28(m, 8H), 3.14 (s, 3H), 1.38 (t, J = 7.2 Hz, 6H), 1.19-1.10 (m, 15H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 192.6$, 146.7, 146.5, 142.8, 140.4, 130.9, 130.7, 129.7, 129.3, 128.4, 127.7, 120.7, 111.2, 49.1, 47.3, 44.3, 44.3, 31.4, 23.7, 21.9, 12.8, 12.6. IR (KBr): ν (cm⁻¹) 2968, 2928, 2870, 1673, 1608, 1519, 1397, 1263, 1196, 815. HRMS (ESI, *m/z*) calcd for C₃₂H₄₅N₄O [M+H]⁺: 501.3588, found: 501.3592.

According to the general procedure C, **3t** was obtained as yellow oil, 111 mg, 85% yield, 95% ee, $[\alpha]_D^{25} = +50.7$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/*i*-PrOH = 90/10, flow rate 1.0 mL/min, $t_{major} = 8.55$ min, $t_{minor} = 13.40$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.22$ (s, 1H), 7.13 (s, 1H), 7.02-6.95 (m, 4H), 6.87 (d, J = 8.4 Hz, 2H), 6.77 (d, J = 8.4 Hz, 2H), 5.78 (d, J = 9.6 Hz, 1H), 5.52-5.45 (m, 1H), 3.18-3.10 (m, 11H), 1.72-1.55 (m, 12H), 1.38 (t, J = 8.0 Hz, 6H), 1.11 (d, J = 6.4 Hz, 3H). ¹³C NMR (CDCl₃, 100 MHz): $\delta = 192.4$, 151.1, 150.7, 142.7, 140.1, 134.1, 131.2, 131.1, 130.4, 129.3, 128.0, 120.8, 115.8, 115.8, 50.6, 50.5, 49.1, 47.2, 31.4, 26.0, 25.8, 24.4, 24.3, 23.7, 21.7. IR (KBr): v (cm⁻¹) 2928, 2851, 2806, 1672, 1607, 1514, 1260, 1234, 916, 822. HRMS (ESI, m/z) calcd for C₃₄H₄₄N₄NaO [M+Na]⁺: 547.3407, found: 547.3401.

According to the general procedure D, **4** was obtained as yellow oil, 112 mg, 86% yield, > 99% ee, $[\alpha]_D^{25} = -7.7$ (c = 0.5, CHCl₃); The ee was determined by HPLC (Chiralpak column IC, $\lambda = 254$ nm, hexane/i-PrOH = 85/15, flow rate 1.0 mL/min, $t_{major} = 16.15$ min, $t_{minor} = 9.47$ min). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.31$ (d, J = 7.6 Hz, 1H), 7.18-7.10 (m, 3H), 7.04-6.97 (m, 6H), 6.67 (d, J = 8.8 Hz, 2H), 6.61 (d, J = 8.8 Hz, 2H), 5.44-5.37 (m, 1H), 3.60-3.51 (m, 2H), 3.47-3.46 (m, 2H), 2.89 (s, 6H), 2.85 (s, 6H), 2.48-2.41 (m, 1H), 2.31-2.24 (m, 1H), 1.91 (s, 3H), 1.36 (d, J = 6.8 Hz, 3H). 13C NMR (100 MHz, CDCl₃): $\delta = 192.0$, 149.0, 148.9, 142.8, 142.6, 136.6, 134.9, 132.8, 130.1, 129.3, 128.7, 128.1, 126.1, 125.6, 120.8,

113.1, 113.0, 48.9, 46.5, 42.5, 40.9, 23.7, 23.5, 19.5. IR (KBr): *v* (cm⁻¹) 2963, 2924, 2799, 1674, 1614, 1518, 1261, 1089, 1021, 947, 806. HRMS (ESI, m/z) calcd for C₃₄H₄₂N₄NaO [M+Na]⁺: 545.3251, found: 545.3250.

III References

- (1) (a) Wang, C.; Chen, L.-A.; Huo, H.; Shen, X.; Harms, K.; Gong, L.; Meggers, E.
- Chem. Sci. 2015, 6, 1094. (b) Li, S.-W.; Gong, J.; Kang, Q. Org. Lett. 2017, 19, 1350.
- (2) Cui, L.; Zhang, L.; Luo, S.; Cheng, J.-P. Eur. J. Org. Chem. 2014, 3540.
- (3) (a) Yoshida, K.; Koujiri, T.; Sakamoto, E.; Kubo, Y. Bull. Chem. Soc. Jpn. 1990,
- 63, 1748. (b) Liwosz, T. W.; Chemler, S. R. Chem. Eur. J. 2013, 19, 12771.
- (4) (a) Huo, H.; Fu, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2014, 136, 2990.
- (b) Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936. (c) Evans, D.
- A.; Fandrick, K. R. Org, Lett. 2006, 8, 2249.

IV chiral HPLC analysis

Racemic **3a**:

<Peak Table>

Delector A 254nm	
Peak# Ret. Time Area Height Conc. Unit Mark	Name
1 31.026 11471084 220600 50.051 M	
2 35.047 11447712 192917 49.949 M	
Total 22918796 413518	

Chiral **3a**:

Figure S1. HPLC traces of racemic **3a** (reference) and chiral **3a**. Area integration = 96.0:4.0 (92%

Racemic **3b**:

PeakTable										
PDA Ch1 254nm 4nm										
Peak#	Name	Ret. Time	Area	Height	Area %	Resolution				
1	RT25.892	25.892	5158742	102749	50.025	0.000				
2	RT31.081	31.081	5153590	86687	49.975	3.595				
Tota			10312332	189436	100.000					

Chiral **3b**:

Figure S2. HPLC traces of racemic 3b (reference) and chiral 3b. Area integration = 2.7:97.3 (95%

Racemic **3c**:

PDA Ch1 254nm 4nm										
Peak#	Name	Ret. Time	Area	Height	Area %	Resolution				
1		36.413	4298188	60151	49.984	0.000				
2		42.377	4300944	58034	50.016	3.132				
Total			8599132	118185	100.000					

Chiral **3c**:

Figure S3. HPLC traces of racemic **3c** (reference) and chiral **3c**. Area integration = 7.2:92.8 (86%

Racemic 3d

<Chromatogram>

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.933	5742482	429371	49.919		M	
2	9.160	5761158	361255	50.081		M	
Total		11503640	790626				

Chiral 3d:

Figure S4. HPLC traces of racemic 3d (reference) and chiral 3d. Area integration = 3.7:96.3 (93%

Racemic 3e

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	20.605	14436624	375609	50.033		M	
2	25.778	14417387	301333	49.967		M	
Total		28854011	676941				

Chiral 3e:

Figure S8. HPLC traces of racemic 3e (reference) and chiral 3e. Area integration = 5.0:95.0 (90%

Racemic **3f**

<Chromatogram>

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	34.139	23388878	380735	50.020		М	
2	39.008	23369871	336021	49.980		М	
Total		46758748	716756				

Chiral 3f:

Figure S10. HPLC traces of racemic 3f (reference) and chiral 3f. Area integration = 93.7:6.3 (87%

Racemic **3g**

<Chromatogram>

<Peak Table>

Detect	or a 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.939	16238501	770668	49.919		M	
2	17.414	16291424		50.081		M	
Total		32529926	1292138				

Chiral **3g**:

Figure S5. HPLC traces of racemic **3g** (reference) and chiral **3g**. Area integration = 96.6:3.4 (93% ee)

Racemic 3h

<Peak Table>

	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.710	24907293	1151446	49.969		M	
2	14.369	24938439	989683	50.031		M	
Total		49845732	2141129				

Chiral **3h**:

Figure S6. HPLC traces of racemic 3h (reference) and chiral 3h. Area integration = 97.0:3.0 (94%

Racemic 3i

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.380	16610241	702389	49.259		М	
2	18.901	17110307	502716	50.741		M	
Total		33720548	1205105				

Chiral 3i:

Figure S7. HPLC traces of racemic **3i** (reference) and chiral **3i**. Area integration = 96.8:3.2 (94% ee)

Racemic 3j

<Chromatogram>

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.294	36600151	1358023	50.001		М	
2	16.464	36598569	1140747	49.999		М	
Total		73198720	2498770				

Chiral **3j**:

Figure S9. HPLC traces of racemic **3j** (reference) and chiral **3j**. Area integration = 97.2:2.8 (94% ee)

Racemic 3k

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	27.695	10165174	203218	50.132		М	
2	30.497	10111628	181874	49.868		М	
Total		20276802	385092				

Chiral 3k:

mV

Figure S11. HPLC traces of racemic **3k** (reference) and chiral **3k**. Area integration = 96.6:3.4 (93% ee)

Racemic 31

<Chromatogram>

<Peak Table>

	Detect	or A 254nm						
[Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
[1	13.708	8161054	312519	49.576		М	
[2	18.191	8300508	231416	50.424		М	
[Total		16461562	543935				

Chiral **3l**:

Figure S14. HPLC traces of racemic 3l (reference) and chiral 3l. Area integration = 93.8:6.2 (88%

ee)

Racemic 3m

<Peak Table>

	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.577	19976184	723598	49.963		М	
2	23.959	20006016	446828	50.037		М	
Tota		39982200	1170426				

Chiral **3m**:

Figure S12. HPLC traces of racemic **3m** (reference) and chiral **3m**. Area integration = 6.1:93.9 (88% ee)

Racemic 3n

<Chromatogram>

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	37.357	26334923	425916	49.960		М	
2	40.249	26376910	389878	50.040		М	
Total		52711832	815794				

Chiral 3n:

Figure S13. HPLC traces of racemic 3n (reference) and chiral 3n. Area integration = 6.0:94.0 (88% ee)

Racemic 30

<Peak Table> Detector A 254nm

Deleci	OF A 2541111						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.728	38732562	1617038	49.919		М	
2	21.075	38857741	1092368	50.081		М	
Tota		77590303	2709406				

Figure S17. HPLC traces of racemic **30** (reference) and chiral **30**. Area integration = 97.7:2.3 (95% ee)

Racemic **3p**

SPeak Table

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.200	30118085	1705635	49.714		М	
2	17.967	30464913	1010572	50.286		М	
Total		60582997	2716207				

Chiral **3p**:

Figure S18. HPLC traces of racemic 3p (reference) and chiral 3p. Area integration = 97.5:2.5 (95% ee)

Racemic 3q

<Peak Table>

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.199	22636451	1733187	49.821		М	
2	12.243	22799079	1151657	50.179		М	
Total		45435529	2884844				

Chiral **3q**:

Figure S16. HPLC traces of racemic **3q** (reference) and chiral **3q**. Area integration = 97.5:2.5 (95% ee)

45

Racemic 3r

<Peak Table>

	tor A 254nm						
Peak#	# Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	45.758	14097815	179211	50.102		М	
2	61.066	14040337	133392	49.898		М	
Tota	il .	28138152	312603				

Chiral **3r**:

Figure S15. HPLC traces of racemic **3r** (reference) and chiral **3r**. Area integration = 96.3:3.7 (93% ee)

Racemic 3s

<Peak Table>

		or A 254nm						
Pe	eak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
	1	8.752	13594395	835070	49.929		М	
	2	14.595	13632973	534271	50.071		М	
	Total		27227369	1369342				

Chiral 3s:

Figure S19. HPLC traces of racemic 3s (reference) and chiral 3s. Area integration = 97.7:2.3 (95% ee)

Racemic 3t

Chiral **3t**:

Figure S20. HPLC traces of racemic 3t (reference) and chiral 3t. Area integration = 97.6:2.4 (95%

ee)

Detect	or A 254nm						
Peak#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	9.452	40781536	2557419	49.872		M	
2	16.159	40991487	1414317	50.128		M	
Total		81773023	3971736				

Chiral 4

HPLC traces of racemic 4 (reference) and chiral 4. Area integration = 0.01:99.99 (> 99% ee)

V NMR Spectra of Products

¹³C NMR (100 MHz) spectra of Ligand L3

¹⁹F NMR (376.4 MHz) spectra of Ligand L3

¹³C NMR (100 MHz) spectra of **Dimer 3**

¹H NMR (400 MHz) spectra of Λ -(S)-3

¹³C NMR (100 MHz) spectra of Λ -(S) -3

¹H NMR (400 MHz) spectra of catalyst Λ -Rh3

 ^{13}C NMR (100 MHz) spectra of catalyst **A-Rh3**

VI NMR Spectra of Substrates

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 1d

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **1e**

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 1f

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **1g**

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **1h**

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **1i**

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **1**j

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 1k

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 11

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **1m**

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **1n**

VII NMR Spectra of Products

 ^{1}H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 3a

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **3b**

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 3c

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **3d**

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 3e

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 3f

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 3g

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 3h

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **3i**

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 3j

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 3k

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **3**l

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 3m

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 3n

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 3o

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of **3p**

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 3q

 ^1H NMR (400 MHz) and ^{13}C NMR (100 MHz) spectra of 3r

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 3s

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra of 3t

 1 H NMR (400 MHz) and 13 C NMR (100 MHz) spectra of 4

VI Single Crystal X-Ray Diffraction of 3k

SFigure 1. X-ray derived ORTEP of **3k** with thermal ellipsoids shown at the 35% probability level

Table 1.	Crystal data	and structure	refinement for	data.
----------	--------------	---------------	----------------	-------

Identification code	3k	
Empirical formula	C34 H40 N4 O	
Formula weight	520.70	
Temperature	100.0(3) K	
Wavelength	1.54184 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 9.59380(10) Å	α=90°.
	b = 12.2141(2) Å	β= 90°.
	c = 24.9699(4) Å	$\gamma = 90^{\circ}$.
Volume	2925.96(7) Å ³	
Volume Z	2925.96(7) Å ³ 4	
Z	4	
Z Density (calculated)	4 1.182 Mg/m ³	
Z Density (calculated) Absorption coefficient	4 1.182 Mg/m ³ 0.558 mm ⁻¹	.3

Index ranges	-11<=h<=9, -14<=k<=15, -29<=l<=30
Reflections collected	12308
Independent reflections	5479 [R(int) = 0.0227]
Completeness to theta = 67.684°	100.0 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.96883
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	5479 / 0 / 370
Goodness-of-fit on F ²	1.072
Final R indices [I>2sigma(I)]	R1 = 0.0329, $wR2 = 0.0763$
R indices (all data)	R1 = 0.0376, $wR2 = 0.0798$
Absolute structure parameter	-0.09(13)
Extinction coefficient	n/a
Largest diff. peak and hole	0.145 and -0.212 e.Å ⁻³

VII CD Spectra of Λ-Rh3

Ψ

Figure 1. CD spectra of Λ -Rh3 recorded in CH₃OH (0.2 mM)