Supporting Information

Chiral-at-Metal Rh(III) Complex-Catalyzed Asymmetric Conjugate Addition of Unactivated Alkenes with α, β-Unsaturated 2-Acyl Imidazoles

Kuan Li, Qian Wan and Qiang Kang*
${ }^{\text {a }}$ College of Chemistry, Fuzhou University, 350108, P. R. China.
${ }^{\text {b }}$ Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter ,Chinese Academy of Sciences, Fuzhou, 350002, P. R. China.

Table of Contents

I General Information 3
II Experimental Section 4
III References 28
IV Chiral HPLC analysis trace 29
V NMR Spectra of Products 50
VI Single Crystal X-Ray Diffraction of $\mathbf{3 k}$. 88
VII CD Spectra of Λ-Rh3 90

I General Information

All reactions were performed in Schlenk tubes under an atmosphere of argon using oven-dried glassware. Commercially obtained reagents were used without further purification, unless otherwise noted. Chloroform was distilled over $\mathrm{P}_{2} \mathrm{O}_{5}$ and stored over $3 \AA$ type molecular sieves. THF and toluene were distilled freshly before use over sodium and benzophenone. Acetonitrile (MeCN), Dichloromethane (DCM) and 1,2-dichloroethane (DCE) were distilled from CaH_{2}. Reactions were checked for completion by TLC analysis and plates were visualized with short-wave UV light (254 nm). The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained in CDCl_{3} using a Bruker-BioSpin AVANCE III HD NMR spectrometer at 400 and 100 MHz , respectively. Chemical shifts are reported in parts per million (δ value) calibrated against the residual solvent peak. Signal patterns are indicated as follows: s, singlet; d, doublet; t , triplet; q, quartet; m, multiplet. Coupling constants (J) are given in hertz (Hz). HPLC analyses of the compounds were done using chiralcel IA-IF columns using hexane and isopropanol as eluent. The infrared spectra were recorded on a Bruker VERTEX 70 IR spectrometer as KBr pellets, with absorption reported in cm^{-1}. High-resolution mass spectra were recorded on a Bruker Impact II UHR TOF LC/MS Mass Spectrometry. CD spectra were recorded on a MOS-450 circular dichroism spectrometer (600-200 nm, 1 nm bandwidth, $50 \mathrm{~nm} / \mathrm{min}$ scanning speed, accumulation of 3 scans).

II Experimental Section

$\boldsymbol{\Lambda}-\mathbf{R h}$ was prepared according to reported procedure. ${ }^{1}$ Alkenes $\mathbf{2}^{2-3}$ and α, β-unsaturated 2-acyl imidazoles ${ }^{4}$ was prepared according to reported procedure.

1. Synthesis of chiral catalysts $\boldsymbol{\Lambda}$-Rh3.

(i) Synthesis of Ligand L3.

Ligand L3
A solution of 2-amino-4-tert-butylphenol $(0.825 \mathrm{~g}, \quad 5.0 \mathrm{mmol})$ and 3',5'-bis(trifluoromethyl)-[1,1'-biphenyl]-2-carbaldehyde (1.59 g, 5.0 mmol) in m-xylene (16.0 mL) was stirred at $120^{\circ} \mathrm{C}$ for 30 min . 4-Methoxy-TEMPO $(46.5 \mathrm{mg}$, $5 \mathrm{~mol} \%$) was added to the mixture and the reaction was stirred at this temperature for further 8 h under oxygen atmosphere. Then the mixture was cooled to room temperature and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc/Petroleum ether $=1: 20$) to obtain the product ($1.97 \mathrm{~g}, 85 \%$ yield) as a white solid.

Ligand L3
White solid, $\mathrm{mp}=158-160{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.30-8.28(\mathrm{~m}, 1 \mathrm{H})$, $7.91(\mathrm{~s}, 1 \mathrm{H}), 7.82(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.63-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.43(\mathrm{~m}$, $1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.35(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}): \delta=162.2,148.5,148.3,143.1,141.4,139.0,131.3,131.2,131.1$ (q, $J=33.2$ $\mathrm{Hz}), 130.8,129.6(\mathrm{q}, J=2.7 \mathrm{~Hz}), 129.0,126.2,123.4(\mathrm{q}, ~ J=271.0 \mathrm{~Hz}), 123.3,121.1$ $(\mathrm{q}, J=3.9 \mathrm{~Hz}), 116.7,109.5,34.9,31.7 .{ }^{19} \mathrm{~F}$ NMR ($376.4 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=-62.8$. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 3026,2962,2870,1581,1549,1481,1463,1394,1380,1366,1334$,

1275, 1179, 1162, 1131, 1115, 1045, 904, 774, 680. HRMS (ESI, m/z) calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~F}_{6} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}: 464.1444$, found: 464.1442 .
(ii) Synthesis of precursor rhodium complex (Dimer 3):

Ligand $\mathbf{L 3}(1.9 \mathrm{~g}, 4.1 \mathrm{mmol})$ was added to $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(418.5 \mathrm{mg}, 2.0 \mathrm{mmol})$ in a mixture of 2-ethoxyethanol and water (3:1, 92 mL). The reaction mixture was heated at $120{ }^{\circ} \mathrm{C}$ for 24 h under N_{2} atmosphere. The resulting precipitate was collected by filtration, washed with methanol and dried to obtain the product Dimer 3 ($1.7 \mathrm{~g}, 81 \%$ yield).

Dimer 3
White solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.26(\mathrm{~s}, 4 \mathrm{H}), 7.99(\mathrm{~s}, 4 \mathrm{H}), 7.92(\mathrm{~s}, 8 \mathrm{H})$, $7.01(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 8 \mathrm{H}), 6.78(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 6.34(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 4 \mathrm{H}), 0.88(\mathrm{~s}, 36 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=169.1,169.0,167.1,166.8$, $148.5,147.0,141.8,138.3,137.7,133.8,130.3,127.2,125.8,124.2,123.5(\mathrm{q}, ~ J=$ $271.0 \mathrm{~Hz}), 121.2(\mathrm{q}, ~ J=4.1 \mathrm{~Hz}), 121.2(\mathrm{q}, J=3.5 \mathrm{~Hz}), 115.2,109.8,34.7,31.0 .{ }^{19} \mathrm{~F}$ NMR (376.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=-62.5,-62.7$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2966,2908,2871$, $1619,1606,1566,1516,1483,1468,1444,1414,1395,1377,1355,1281,1252,1178$, 1136, 1106, 1057, 933, 900, 846, 806, 710, 682. HRMS (ESI, m/z) calcd for $\mathrm{C}_{100} \mathrm{H}_{72} \mathrm{ClF}_{24} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Rh}_{2}$: 2090.3042, found: 2090.2991.
(iii) Synthesis of rhodium Auxiliary Complexes $\boldsymbol{\Lambda}$-(S)-3.

To a solution of NaOMe ($230 \mathrm{mg}, 2.0 \mathrm{mmol}$) in methanol (120 mL), L-proline (108 $\mathrm{mg}, 2.0 \mathrm{mmol}$) was added in one portion. The mixture was stirred for 10 min , to which a suspension of rhodium dimer $(2.08 \mathrm{~g}, 1.0 \mathrm{mmol})$ was added. The mixture was stirred and heated at $50{ }^{\circ} \mathrm{C}$ for 12 h . After the mixture cooled to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(16.0 \mathrm{~mL})$ was added. The reaction mixture was stirred for a further 12 h . The solvent was removed in vacuo. The residue was purified by flash chromatography on silica gel $(\mathrm{EtOAc} / \mathrm{DCM}=1: 5)$ to obtain the product $\boldsymbol{\Lambda}-(\boldsymbol{S}) \mathbf{- 3}(752 \mathrm{mg}, 33 \%)$.

Yellow solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+123.9\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right){ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.18$ $(\mathrm{d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 5 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{t}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.28(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $6.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.24(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.81(\mathrm{~m}, 1 \mathrm{H})$, 2.26-2.21 (m, 2H), 2.09-1.99 (m, 1H), 1.75-1.70 (m, 1H), 1.61-1.49 (m, 1H), $1.40(\mathrm{~s}$, $9 \mathrm{H}), 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=180.6,171.5,171.4,169.9,169.9$, $169.1,168.8,168.5,168.1,151.5,150.4,147.9,147.9,142.0,141.6,138.7,138.6$, $137.5,137.1,135.3,134.2,131.3(\mathrm{q}, J=33.1 \mathrm{~Hz}), 131.0(\mathrm{q}, J=32.5 \mathrm{~Hz}), 130.5$, $130.4,129.8,129.8,127.7,127.5,125.9,125.4,124.3,124.2,123.5(\mathrm{q}, J=271.1 \mathrm{~Hz})$, $123.4(\mathrm{q}, J=271.1 \mathrm{~Hz}), 121.6(\mathrm{q}, J=3.4 \mathrm{~Hz}), 121.6(\mathrm{q}, J=4.3 \mathrm{~Hz}), 121.2(\mathrm{q}, J=4.3$ $\mathrm{Hz}), 121.2(\mathrm{q}, ~ J=3.1 \mathrm{~Hz}$), 115.3, 111.7, 110.6, 110.5, 63.9, 49.4, 35.4, 35.2, 31.7, 31.7, 29.7, 26.9. ${ }^{19} \mathrm{~F}$ NMR (376.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=-62.7$. $\mathrm{IR}(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 1618$,

1571, 1560, 1507, 1376, 1363, 1278, 1135, 1057, 709, 682. HRMS (ESI, m / z) calcd for $\mathrm{C}_{55} \mathrm{H}_{45} \mathrm{~F}_{12} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{Rh}[\mathrm{M}+\mathrm{H}]^{+}: 1142.2222$, found: 1142.2254.
(iv) Synthesis of Rhodium Catalysts $\boldsymbol{\Lambda}$-Rh3.

A suspension of the rhodium auxiliary complex $\boldsymbol{\Lambda}-(\boldsymbol{S}) \mathbf{- 3}(239.0 \mathrm{mg}, 0.28 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{BF}_{4}(293.6 \mathrm{mg}, 2.80 \mathrm{mmol})$ in acetonitrile $(56.0 \mathrm{~mL})$ was heated at $50^{\circ} \mathrm{C}$ for 24 h under nitrogen in the dark. Then removed the solvent under reduced pressure and subjected to flash silica gel chromatography $\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ to $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{CH}_{3} \mathrm{CN}=10: 1\right)$ to give the enantiopure catalyst $\boldsymbol{\Lambda}-\mathbf{R h} \mathbf{3}(127.2 \mathrm{mg}, 0.106 \mathrm{mmol}, 38 \%)$ as a pale yellow solid.

Pale yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.09-7.90(\mathrm{~m}, 8 \mathrm{H}), 7.63(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.39$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-6.90(\mathrm{~m}, 4 \mathrm{H}), 6.44(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.40 (d, $J=9.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.44(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 167.9, 167.9, 160.8, 160.4, 149.6, 145.8, 139.2, 136.8, 135.0, 131.1, 129.7 (q, $J=33.2$ $\mathrm{Hz}), 129.4,129.4,128.0,125.4,124.9,123.5,122.9(\mathrm{q}, J=271.2 \mathrm{~Hz}), 120.5(\mathrm{q}, J=$ $3.4 \mathrm{~Hz}), 120.2(\mathrm{q}, J=3.6 \mathrm{~Hz}), 119.9(\mathrm{q}, J=4.0 \mathrm{~Hz}), 111.4,109.4,33.5,29.6,1.4{ }^{19} \mathrm{~F}$ NMR (376.4 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=-62.7$, -62.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3056,2965,2289$, 1620, 1578, 1517, 1378, 1280, 1180, 1135, 1107, 847, 709. HRMS (ESI, m / z) calcd for $\mathrm{C}_{54} \mathrm{H}_{42} \mathrm{~F}_{12} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Rh}[\mathrm{M}]^{+}: 1109.2166$, found: 1109.2158. CD (MeOH): λ, $\mathrm{nm}(\Delta \varepsilon$, $\left.\mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) 402(-25), 359(+54), 301(-54), 254(+44)$.

2. Synthesis of substrates

To a solution of N-methylimidazole ($2.4 \mathrm{~mL}, 21.4 \mathrm{mmol}$) or N-isopropylimidazole $(21.4 \mathrm{mmol})$ in THF $(44.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(8.6 \mathrm{~mL}, 2.5 \mathrm{M}$ in hexane, 21.4 mmol) drop wise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 10 min , then stirred at room temperature for 1 h . The Weinreb amide $\mathbf{S} \mathbf{1}(2.3 \mathrm{~g}, 17.8 \mathrm{mmol})$ was added to the flask after the reaction was cooled back down to $-78^{\circ} \mathrm{C}$. The reaction was allowed to warm to room temperature slowly (over a period of 3-4 h) and stirred overnight. The reaction was quenched with saturated aqueous solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with EtOAc $(3 \times 50 \mathrm{~mL})$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel $(\mathrm{EtOAc} /$ Petroleum ether $=1: 3)$ to produce $\mathbf{1}$.

2-Acetyl-1-isopropylimidazole $\mathbf{S 2}$ ($10.0 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{EtOH}(20 \mathrm{~mL})$ were added to a 100 mL RBF followed by aromatic aldehyde ($10.0 \mathrm{mmol}, 1.0$ equiv.) and catalytic amount of KOH (0.2 equiv.). The solution was stirred for 12 h then transferred to a separatory funnel. Saturated $\mathrm{NaCl}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ were added and the mixture was extracted with EtOAc $(4 \times 75 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated on a rotatory evaporator. The resulting residue was purified by flash column chromatography on silica gel (EtOAc/ Petroleum ether $=1: 3$).

$$
\mathbf{1 a}^{4 \mathrm{a}}, \mathbf{1 b}^{4 \mathrm{c}}, \mathbf{1} \mathbf{c}^{4 \mathrm{~b}}, \mathbf{1 f}^{4^{\mathrm{c}}}, \mathbf{1 g}^{4 \mathrm{c}}, \mathbf{1 i}^{4 \mathrm{c}}, \mathbf{1 m}^{4 \mathrm{c}}, \mathbf{1 o}^{4 \mathrm{a}}, \mathbf{1} \mathbf{p}^{4 \mathrm{a}}, \mathbf{1 q}^{4 \mathrm{c}}, \mathbf{1 r}^{4 \mathrm{c}}, \mathbf{2}^{2-3} \text { were known }
$$ compounds, and all spectroscopic data were in agreement with literatures.

According to the general procedure B, 1d was obtained as white solid, $1.37 \mathrm{~g}, 54 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.08(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.76-5.70(m, 1H), $2.38(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=180.7,143.5,143.3,140.9,132.3,129.7,129.6,128.8,122.5,121.3,49.3$, 23.7, 21.5. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3151,2988,2960,1658,1597,1567,1512,1254,920$, 892, 811, 785, 734. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 277.1311$, found: 277.1310.

According to the general procedure $\mathrm{B}, \mathbf{1 e}$ was obtained as yellow oil, $1.93 \mathrm{~g}, 76 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.11(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.77-5.70 (m, 1H), $2.38(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz): $\delta=180.6,143.4,138.5,134.9,131.3,129.8,129.0,128.7,126.3,123.2,121.4$, 49.4, 23.7, 21.3. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3106,2981,2931,1608,1464,1452,1392,1016$, 919, 864, 848, 837. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 277.1311$, found: 277.1309.

According to the general procedure B, $\mathbf{1 f}$ was obtained as yellow solid, $1.94 \mathrm{~g}, 72 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.00(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=16.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~s}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $5.77-5.71(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=180.7,161.6,143.5,143.0,130.5,129.6,127.8,121.2,121.2$, 114.3, 55.4, 49.3, 23.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3154,2957,2833,1655,1567,1511,1455$, 831, 812, 781, 757. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 293.1260, found: 293.1259.

According to the general procedure $\mathrm{B}, \mathbf{1 g}$ was obtained as yellow solid, $1.59 \mathrm{~g}, 50 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.11(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.25(\mathrm{~m}, 2 \mathrm{H}), 5.74-5.67(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.48(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=180.2,143.3,141.6,134.0,132.1,130.0,129.9,124.6$, 124.2, 121.6, 49.4, 23.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3146,3078,3034,2983,1655,1586,1564$, 997, 947, 830, 817, 765. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{BrN}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 319.0441$, found: 319.0443.

According to the general procedure $\mathrm{B}, \mathbf{1 h}$ was obtained as yellow oil, $2.06 \mathrm{~g}, 65 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.13-8.08(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.73-7.67 (m, 1H), 7.57 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}$, $3 \mathrm{H}), 5.74-5.66(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.47(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=180.0$, 143.2, 141.1, 137.1, 133.0, 131.1, 130.3, 129.9, 127.4, 124.8, 123.0, 121.7, 49.4, 23.6. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2981,2932,1605,1559,1255,1198,1011,806,784,745$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 341.0260$, found: 341.0257.

$1 i$
According to the general procedure $\mathrm{B}, \mathbf{1 i}$ was obtained as white solid, $1.5 \mathrm{~g}, 55 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.09(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=16.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.62$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.25(\mathrm{~m}, 4 \mathrm{H}), 5.75-5.68(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=180.3$, 143.3, 141.6, 136.2, 133.5, 129.9, 129.8, 129.1, 124.0, 121.6, 49.4, 23.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3080,2986,1655,1566$, $1165,919,877,820,751,645$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 297.0765, found: 297.0764

According to the general procedure $\mathrm{B}, \mathbf{1} \mathbf{j}$ was obtained as white solid, $1.2 \mathrm{~g}, 43 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.14-8.08(\mathrm{~m}, 1 \mathrm{H})$, 7.74-7.67 (m, 2H), 7.55-7.51 (m, 1H), 7.37-7.24 (m, 4H), 5.74-5.67 (m, 1H), 1.50-1.45 (m, 6H). ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=180.1,143.2,141.3,141.3,136.9,134.9,130.1,130.0$, $130.0,128.2,126.9,124.9,121.7,49.4,23.7$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3141,3070,2977$, 1658, 1600, 1254, 1200, 915, 813, 745. HRMS (ESI, m/z) calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 275.0946$, found: 275.0948 .

According to the general procedure $\mathrm{B}, \mathbf{1 k}$ was obtained as white solid, $1.6 \mathrm{~g}, 63 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.16-8.04(\mathrm{~m}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.32-7.20 (m, 5H), 5.76-5.70 (m, 1H), $2.50(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=180.7,143.4,140.6,138.3,133.8,130.8,130.2,129.9$, 126.8, 126.3, 124.4, 121.4, 49.4, 23.7, 19.8. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3155,3098,2965$,

1659, 1596, 1452, 1218, 1074, 921, 856, 774. HRMS (ESI, m / z) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 277.1311$, found: 277.1311.

11
According to the general procedure B, $\mathbf{1 l}$ was obtained as yellow oil, $1.4 \mathrm{~g}, 49 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.70(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.23(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{t}, J=9.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.49$ $(\mathrm{m}, 3 \mathrm{H}), 7.33(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H}), 5.80-5.74(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=180.5,143.4,139.8,133.8,132.2,131.9,130.7,129.9$, $128.8,126.8,126.1,125.9,125.5,125.5,123.5,121.5,49.5,23.7$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right)$ 3136, 2975, 2931, 1649, 1594, 1572, 1020, 1006, 798, 786, 774. HRMS (ESI, m / z) calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 313.1311$, found: 313.1310.

According to the general procedure $\mathrm{B}, \mathbf{1 m}$ was obtained as brown solid, $1.9 \mathrm{~g}, 83 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.97(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 2 \mathrm{H})$, $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.48(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.68(\mathrm{~m}$, 1 H), 1.48-1.46 (m, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=180.4,152.0,144.9,143.3$, $129.8,129.2,121.6,121.3,115.4,112.5,49.2,23.6$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 3102,2981$, 1662, 1552, 1007, 980, 930, 922, 881, 700. HRMS (ESI, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 253.0947$, found: 253.0946.

According to the general procedure $\mathrm{B}, \mathbf{1 n}$ was obtained as yellow solid, $1.5 \mathrm{~g}, 60 \%$ yield, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.96-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{~s}$,
$1 \mathrm{H}), 5.74-5.68(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ 180.2, 143.3, 140.7, 135.6, 131.7, 129.8, 129.0, 128.2, 122.5, 121.4, 49.3, 23.7. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 3150,3117,2980,1651,1587,1515,966,919,837,770,743,716$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{NaOS}[\mathrm{M}+\mathrm{Na}]^{+}: 269.0719$, found: 269.0719 .

3. Substrate Scope

(i) General procedure C for chiral-at-metal rhodium complex catalyzed asymmetric conjugate addition of alkenes with α, β-unsaturated 2-acyl imidazoles.

To an oven-dried 25 mL Schlenk tube equipped with a stir bar, $\boldsymbol{\Lambda}$ - $\mathbf{R h} \mathbf{3}$ ($1 \mathrm{~mol} \%$) was added along with α, β-unsaturated 2-acyl imidazole $\mathbf{1}(0.25 \mathrm{mmol})$, alkene $2(0.3 \mathrm{mmol})$ and DCE $(0.5 \mathrm{~mL})$. The reaction was stirring at $30^{\circ} \mathrm{C}$ until consumption of the 2-acyl imidazole as monitored by thin layer chromatography. The solution directly purified by silica gel column chromatography ($\mathrm{EtOAc} /$ Petroleum ether $=1: 4$) to afford desired adducts 3 .
(ii) According to the general procedure D for hydrogenation reduction of 3 k . To an oven-dried 25 mL Schlenk tube equipped with a stir bar, 3k (after recrystallization, ee $\%>99 \%, 0.25 \mathrm{mmol}$) and $5 \mathrm{~mol} \% \mathrm{Pd} / \mathrm{C}(133 \mathrm{mg})$ in $\mathrm{MeOH}(2$ ml) at $30^{\circ} \mathrm{C}$ for 23 h under H_{2} atmosphere. The solution directly purified by silica gel column chromatography $(\mathrm{EtOAc} /$ Petroleum ether $=1: 4)$ to afford desired adduct 4.
(iii) General procedure for gram-scale experiments with lower catalyst loading.

To an oven-dried 50 mL Schlenk tube equipped with a stir bar, $\boldsymbol{\Lambda} \mathbf{- R h} \mathbf{~ (1 ~ m o l ~ \%) ~ w a s ~}$ added along with α, β-unsaturated 2 -acyl imidazole $\mathbf{1 k}$ (3.5 mmol), alkene 2a (4.2 $\mathrm{mmol})$ and DCE $(7 \mathrm{~mL})$. The reaction was stirring at $30^{\circ} \mathrm{C}$ for 4 h . The solution directly purified by silica gel column chromatography ($\mathrm{EtOAc} /$ Petroleum ether $=1: 4$) to afford desired adduct $\mathbf{3 k}$.

To an oven-dried 50 mL Schlenk tube equipped with a stir bar, $\boldsymbol{\Lambda}-\mathbf{R h} \mathbf{3}$ ($0.05 \mathrm{~mol} \%$) was added along with α, β-unsaturated 2 -acyl imidazole $\mathbf{1 k}$ (3.93 mmol), alkene $\mathbf{2 a}$
$(4.7 \mathrm{mmol})$ and DCE $(4 \mathrm{~mL})$. The reaction was stirring at $30^{\circ} \mathrm{C}$ for 72 h . The solution directly purified by silica gel column chromatography ($\mathrm{EtOAc} /$ Petroleum ether $=1: 4$) to afford desired adduct $\mathbf{3 k}$.

3a
According to the general procedure C, 3a was obtained as yellow oil, $104 \mathrm{mg}, 87 \%$ yield, 92% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+95.8\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=30.88 \mathrm{~min}, t_{\text {minor }}=35.18 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.31(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{t}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.08(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.49(\mathrm{~m}, 2 \mathrm{H})$, 2.96 (s, 6H), 2.89 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.2,149.7,149.5$, 145.0, 143.4, 141.4, 131.7, 130.6, 128.9, 128.4, 128.4, 128.3, 127.6, 127.3, 126.7, 126.0, 112.1, 112.0, 46.4, 41.7, 40.7, 40.6, 36.1. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2962,1674,1608$, 1521, 1407, 1261, 1224, 1192, 1028, 819. HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 479.2805$, found: 479.2804.

According to the general procedure C, $\mathbf{3 b}$ was obtained as white solid, $118 \mathrm{mg}, 93 \%$ yield, 95% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+131.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=30.92 \mathrm{~min}, t_{\text {minor }}=25.87 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.30(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.57$
$(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=191.4,149.7,149.5,145.1,142.8,141.4,131.8,130.7,129.4$, 128.4, 128.4, 127.6, 127.4, 125.9, 120.9, 112.1, 112.0, 49.0, 47.0, 42.0, 40.7, 40.6, 23.7, 23.5. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2964,2800,1672,1609,1522,1395,1224,1192,947$, 819, 701. HRMS (ESI, m/z) calcd for $\mathrm{C}_{33} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 507.3118, found: 507.3121.

3c
According to the general procedure C, 3c was obtained as yellow oil, $122 \mathrm{mg}, 90 \%$ yield, $86 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{25}=+69.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=42.55 \mathrm{~min}, t_{\text {minor }}=36.63 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.38-7.23(\mathrm{~m}$, $8 \mathrm{H}), 7.15(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 6.64-6.57 (m, 4H), $6.12(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.21(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.58(\mathrm{~m}, 1 \mathrm{H})$, 3.47-3.42 (m, 1H), $2.94(\mathrm{~s}, 6 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=189.9$, $149.8,149.5,145.0,143.4,141.6,138.3,131.6,130.6,129.5,128.9,128.5,128.2$, 127.7, 127.1, 126.7, 126.0, 125.7, 112.1, 112.0, 46.9, 42.2, 40.7. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right)$ 2963, 2853, 2799, 1683, 1608, 1521, 1193, 1150, 948, 819, 763. HRMS (ESI, m / z) calcd for $\mathrm{C}_{36} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 541.2962$, found: 541.2962.

3d
According to the general procedure C, 3d was obtained as yellow oil, $124 \mathrm{mg}, 95 \%$ yield, 93% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+72.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\operatorname{PrOH}=75 / 25$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$,
$\left.t_{\text {major }}=9.15 \mathrm{~min}, t_{\text {minor }}=7.93 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.20(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 3 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=10.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.45-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}), 2.89(\mathrm{~s}$, $6 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 1.33-1.31(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.6,149.7$, $149.4,142.8,142.1,141.1,135.3,131.9,130.7,129.4,129.1,128.5,128.4,127.6$, $127.4,120.8,112.0,112.0,49.0,47.1,41.6,40.7,40.6,23.7,23.5,21.1$. IR (KBr): v $\left(\mathrm{cm}^{-1}\right) 2964,2924,1673,1609,1521,1397,1261,1093,817$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 521.3275$, found: 521.3277.

3e
According to the general procedure C, $\mathbf{3 e}$ was obtained as brown solid, $122 \mathrm{mg}, 94 \%$ yield, 90% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+138.9\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=25.62 \mathrm{~min}, t_{\text {minor }}=20.59 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.18(\mathrm{~s}, 1 \mathrm{H})$, 7.16-7.09 (m, 4H), 7.00-6.92 (m, 5H), 6.67 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.09(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.49(\mathrm{~m}$, $2 \mathrm{H}), 2.96(\mathrm{~s}, 6 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=191.5,149.7,149.5,145.1,142.8,141.3,137.9,131.9,130.7$, 129.4, 128.5, 128.4, 128.3, 128.3, 127.5, 126.7, 124.7, 120.8, 112.1, 112.0, 49.0, 47.2, 42.0, 40.7, 40.6, 23.7, 23.5, 21.6. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2884,2799,1672,1608,1521$, 1395, 1351, 947, 820, 706. HRMS (ESI, m / z) calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 521.3275$, found: 521.3279.

According to the general procedure C, $\mathbf{3 f}$ was obtained as yellow oil, $107 \mathrm{mg}, 80 \%$ yield, $87 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{25}=+63.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=34.16 \mathrm{~min}, t_{\text {minor }}=39.30 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.23-7.19(\mathrm{~m}$, 3H), 7.14 (s, 1H), 6.99 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.93$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 6.67$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.07(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.45-5.38 (m, 1H), 4.24-4.17 (m, 1H), 3.75 (s, 3H), 3.53 (d, J=7.6 Hz, 2H), 2.96 (s, $6 \mathrm{H}), 2.88(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.6$, 157.7, 149.7, 149.4, 142.8, 141.1, 137.3, 131.8, 130.6, 129.4, 128.5, 128.4, 127.6, $120.9,113.8,112.1,112.0,55.2,49.0,47.2,41.2,40.7,40.6,23.7,23.5$. IR (KBr): v $\left(\mathrm{cm}^{-1}\right) 2963,2800,1672,1609,1396,1351,1258,1091,1032,818$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 537.3224$, found: 537.3224.

$3 g$
According to the general procedure C, $\mathbf{3 g}$ was obtained as yellow oil, $139 \mathrm{mg}, 95 \%$ yield, 93% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+99.5\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=11.80 \mathrm{~min}, t_{\text {minor }}=17.33 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.44-5.37(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.51(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 6 \mathrm{H}), 2.90(\mathrm{~s}$, $6 \mathrm{H}), 1.33(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.0,149.8,149.5$,
$144.3,142.6,142.0,131.4,130.5,129.5,129.4,128.4,128.2,126.5,121.0,119.6$, 112.1, 112.0, 49.1, 46.7, 41.3, 40.6, 40.6, 23.7, 23.5. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2964,2800$, 1672, 1608, 1521, 1394, 1352, 1261, 948, 818. HRMS (ESI, m / z) calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{BrN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 585.2224$, found: 585.2227.

3h
According to the general procedure C, 3h was obtained as brown oil, $126 \mathrm{mg}, 86 \%$ yield, 94% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+91.5\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IE, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\operatorname{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=12.62 \mathrm{~min}, t_{\text {minor }}=14.50 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.41(\mathrm{t}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.00(\mathrm{~m}$, $2 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=$ $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.38(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.53(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 6 \mathrm{H})$, $2.90(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{t}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.9,149.8$, $149.5,147.6,142.6,142.3,131.4,130.7,130.5,129.9,129.5,129.0,128.3,128.1$, 126.3, 126.3, 122.4, 121.0, 112.1, 112.0, 49.1, 46.8, 41.7, 40.6, 40.6, 23.6, 23.5 . IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 2964,2884,2800,1673,1521,1395,1353,1259,947,819$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{BrN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 585.2224$, found: 585.2217.

3i
According to the general procedure C, $\mathbf{3 i}$ was obtained as yellow oil, $124 \mathrm{mg}, 92 \%$ yield, 94% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+110.1\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=13.33 \mathrm{~min}, t_{\text {minor }}=18.81 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{~d}, J=$
$4.8 \mathrm{~Hz}, 5 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.67(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.44-5.37(\mathrm{~m}, 1 \mathrm{H})$, 4.25-4.19 (m, 1H), 3.60-3.49 (m, 2H), 2.96 ($\mathrm{s}, 6 \mathrm{H}), 2.89$ (s, 6H), 1.33 (t, $J=6.4 \mathrm{~Hz}$, 6 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.1,149.8,149.5,143.7,142.6,141.9$, $131.5,131.4,130.5,129.5,129.0,128.5,128.4,128.2,126.6,121.0,112.1,112.0$, 49.1, 46.8, 41.3, 40.6, 40.6, 23.7, 23.5. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2884,2800,1673,1608$, 1521, 1396, 1352, 948, 819, 768. HRMS (ESI, m / z) calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 541.2729, found: 541.2730.

3j
According to the general procedure C, $\mathbf{3} \mathbf{j}$ was obtained as yellow oil, $129 \mathrm{mg}, 95 \%$ yield, $94 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{25}=+119.3\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IE, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, t_{\text {major }}$ $\left.=14.22 \mathrm{~min}, t_{\text {minor }}=16.71 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.27(\mathrm{~s}, 1 \mathrm{H})$, 7.21-7.10 (m, 5H), $7.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.04(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.45-5.38(\mathrm{~m}, 1 \mathrm{H})$, 4.25-4.19 (m, 1H), $3.55(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 6 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 6 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.9,149.8,149.5,147.3,142.6,142.2$, $134.1,131.4,130.5,129.7,129.5,128.4,128.1,127.8,126.3,126.1,125.8,121.0$, 112.1, 112.0, 49.1, 46.8, 41.6, 40.6, 40.6, 23.7, 23.5. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2964,2886$, 2800, 1673, 1608, 1521, 1396, 1353, 1260, 819, 697. HRMS (ESI, m / z) calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{ClN}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 541.2729$, found: 541.2727.

According to the general procedure C, $\mathbf{3 k}$ was obtained as white solid, $124 \mathrm{mg}, 95 \%$ yield, 93% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+35.5\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=95 / 5$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=27.64 \mathrm{~min}, t_{\text {minor }}=30.58 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.33(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13$ (s, 1H), 7.08-7.03 (m, 2H), 7.00-6.96 (m, 2H), 6.90 (d, $J=8.4 \mathrm{~Hz}$, 2H), 6.80 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.49$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.07$ $(\mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38-5.28(\mathrm{~m}, 1 \mathrm{H}), 4.37-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.44(\mathrm{~m}, 1 \mathrm{H})$, 3.40-3.35 (m, 1H), 2.87 (s, 6H), 2.82 ($\mathrm{s}, 6 \mathrm{H}$), 2.04 ($\mathrm{s}, 3 \mathrm{H}$), 1.25 (t, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.7,148.6,148.4,142.7,141.8,140.4,134.5$, 130.7, 129.4, 129.3, 128.4, 127.6, 127.3, 126.4, 125.9, 125.0, 124.6, 119.8, 111.1, $110.9,47.9,46.0,39.6,39.6,37.2,22.6,22.5,18.3$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2925,2853$, 2798, 1667, 1608, 1521, 1394, 1350, 947, 820, 759. HRMS (ESI, m / z) calcd for $\mathrm{C}_{34} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 521.3275$, found: 521.3276.

31

According to the general procedure C, $\mathbf{3 1}$ was obtained as yellow solid, $114 \mathrm{mg}, 82 \%$ yield, 88% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=-43.6\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=13.66 \mathrm{~min}, t_{\text {minor }}=18.18 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.02(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 3 \mathrm{H}), 7.19(\mathrm{~d}, J$ $=12.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58-6.55(\mathrm{~m}, 4 \mathrm{H})$, $6.28(\mathrm{~s}, 1 \mathrm{H}), 5.41-5.35(\mathrm{~m}, 1 \mathrm{H}), 5.12-5.06(\mathrm{~m}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}$, $6 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=191.7$, 149.7, 149.5, 142.8, 141.8, 141.7, 134.0, 131.8, 131.0, 130.7, 129.5, 128.6, 128.3, 127.1, 126.6, 125.7, 125.6, 125.3, 124.4, 124.2, 120.9, 112.1, 112.0, 49.0, 47.6, 40.7, $40.6,37.9,23.6,23.5$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2930,2884,2800,1670,1521,1395,1354$,

948, 821, 778. HRMS (ESI, m / z) calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 557.3275$, found: 557.3269 .

3m

According to the general procedure C, $\mathbf{3 m}$ was obtained as brown oil, $114 \mathrm{mg}, 92 \%$ yield, 88% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+90.0\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\operatorname{PrOH}=80 / 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=23.65 \mathrm{~min}, t_{\text {minor }}=15.56 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.28(\mathrm{~s}, 1 \mathrm{H})$, $7.20(\mathrm{~s}, 1 \mathrm{H}), 7.12(\mathrm{~s}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 6.68(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.25-6.24(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.49-5.42 (m, 1H), 4.40-4.34 (m, 1H), 3.68-3.62 (m, 1H), 3.50-3.44 (m, 1H), $2.95(\mathrm{~s}$, $6 \mathrm{H}), 2.90(\mathrm{~s}, 6 \mathrm{H}), 1.36-1.34(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.9,157.6$, $149.8,149.5,142.7,142.6,141.0,131.6,130.6,129.5,128.5,128.1,124.1,120.9$, $112.1,112.0,110.1,104.7,49.1,44.3,40.6,36.1,23.6,23.6$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2965$, 2885, 2799, 1673, 1608, 1521, 1396, 1352, 1165, 819. HRMS (ESI, m/z) calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 497.2911$, found: 497.2914.

3n
According to the general procedure C, 3n was obtained as yellow oil, $115 \mathrm{mg}, 90 \%$ yield, 88% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+112.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=93 / 7$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=39.94 \mathrm{~min}, t_{\text {minor }}=37.48 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.20(\mathrm{~s}, 1 \mathrm{H})$, 7.14 (s, 1H), 7.10-7.09 (m, 1H), 7.04-6.99 (m, 4H), 6.89 (t, $J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.67$ (d, J $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.02(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.49-5.43(\mathrm{~m}, 1 \mathrm{H})$,
4.58-4.52 (m, 1H), 3.63-3.61 (m, 2H), $2.95(\mathrm{~s}, 6 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H}), 1.35(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 6 H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.8,149.8,149.5,149.2,142.6,141.9$, $131.4,130.6,129.5,128.5,128.0,126.6,123.2,123.2,121.0,112.1,112.0,49.1,47.4$, $40.6,37.5,23.7,23.6$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2964,2884,2799,1672,1608,1521,1395$, 1353, 1256, 1164, 819. HRMS (ESI, m / z) calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{OS}[\mathrm{M}+\mathrm{H}]^{+}$: 513.2683, found: 513.2684.

30
According to the general procedure C, $\mathbf{3 o}$ was obtained as brown oil, $91 \mathrm{mg}, 82 \%$ yield, 95% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+69.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=92 / 8$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=13.75 \mathrm{~min}, t_{\text {minor }}=21.24 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{~s}, 1 \mathrm{H})$, $7.13(\mathrm{~s}, 1 \mathrm{H}), 7.03-6.96(\mathrm{~m}, 4 \mathrm{H}), 6.67(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.74(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.47(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.11(\mathrm{~m}, 3 \mathrm{H}), 2.95(\mathrm{~s}, 6 \mathrm{H}), 2.90(\mathrm{~s}$, $6 \mathrm{H}), 1.38(\mathrm{t}, J=6.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.12(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.5,149.6,149.3,142.8,140.3,132.0,130.5,130.4,129.3,128.8,128.2,120.8$, 112.1, 112.1, 49.1, 47.2, 40.7, 31.4, 23.7, 21.8. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2963,2869,2799$, 1672, 1609, 1521, 1395, 1350, 1258, 947, 818. HRMS (ESI, m / z) calcd for $\mathrm{C}_{28} \mathrm{H}_{37} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 445.2962$, found: 445.2962.

3p
According to the general procedure C, $\mathbf{3 p}$ was obtained as yellow oil, $86 \mathrm{mg}, 80 \%$ yield, 95% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+47.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$,
$\left.t_{\text {major }}=11.19 \mathrm{~min}, t_{\text {minor }}=18.11 \mathrm{~min}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.06(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.65(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 5.69 (d, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 3.13$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.95$ (s, 6H), 2.90 (s, $6 \mathrm{H}), 1.74(\mathrm{~s}, 1 \mathrm{H}), 1.58-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta=192.6,149.6,149.2,143.5,141.7,132.1,130.5,128.9$, $128.8,128.1,126.7,112.1,112.1,45.0,40.7,37.8,36.2,29.1,11.9$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right)$ 2960, 2928, 2799, 1672, 1609, 1520, 1406, 1350, 1224, 1020, 948, 819, 773. HRMS (ESI, m / z) calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 431.2805$, found: 431.2808.

$3 q$
According to the general procedure C, $\mathbf{3 q}$ was obtained as yellow oil, $99 \mathrm{mg}, 84 \%$ yield, $95 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{25}=+9.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=8.15 \mathrm{~min}, t_{\text {minor }}=12.24 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.14(\mathrm{~s}, 1 \mathrm{H})$, $7.07(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.50(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.71(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.46-5.39(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.17$ $(\mathrm{m}, 1 \mathrm{H}), 3.08-3.03(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~s}, 6 \mathrm{H}), 2.82(\mathrm{~s}, 6 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.86(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=193.1,149.5,149.1,142.9,141.9,132.4,130.6,129.3,129.0,128.1$, 127.3, 120.8, 112.1, 112.0, 49.1, 43.0, 41.9, 40.7, 40.7, 33.2, 23.7, 23.7, 20.5, 19.5. IR $(\mathrm{KBr}): v\left(\mathrm{~cm}^{-1}\right) 2959,2872,2799,1672,1609,1521,1395,1256,1223,1164,818$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 473.3275$, found: 473.3277.

$3 r$

According to the general procedure $\mathrm{C}, \mathbf{3 r}$ was obtained as yellow oil, $84 \mathrm{mg}, 67 \%$ yield, 93% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+140.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=45.46 \mathrm{~min}, t_{\text {minor }}=61.38 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{~s}, 1 \mathrm{H})$, 7.17-7.10 (m, 5H), $6.71(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~d}, J=10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.49-5.43(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 1 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H})$, 3.38-3.32 (m, 1H), $2.96(\mathrm{~s}, 6 \mathrm{H}), 2.92(\mathrm{~s}, 6 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=190.5,174.3,149.9,149.6,144.5,142.0$, $131.2,130.8,129.5,128.5,127.7,120.9,112.1,112.0,60.7,49.1,42.8,41.8,40.6$, 40.6, 23.7, 23.5, 14.2. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2979,2934,2887,2801,1729,1677,1522$, 1397, 1360, 978, 948, 821. HRMS (ESI, m/z) calcd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{4} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$: 503.3017, found: 503.3015.

3s
According to the general procedure C, $\mathbf{3 s}$ was obtained as yellow oil, $100 \mathrm{mg}, 80 \%$ yield, 95% ee, $[\alpha]_{\mathrm{D}}{ }^{25}=+67.3\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=93 / 7$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=8.76 \mathrm{~min}, t_{\text {minor }}=14.65 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.21(\mathrm{~s}, 1 \mathrm{H})$, $7.13(\mathrm{~s}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.53(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.71-5.67(\mathrm{~m}, 1 \mathrm{H}), 5.53-5.46(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.28(\mathrm{~m}$, $8 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.19-1.10(\mathrm{~m}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=192.6,146.7,146.5,142.8,140.4,130.9,130.7,129.7,129.3,128.4$, 127.7, 120.7, 111.2, 49.1, 47.3, 44.3, 44.3, 31.4, 23.7, 21.9, 12.8, 12.6. IR (KBr): v $\left(\mathrm{cm}^{-1}\right) 2968,2928,2870,1673,1608,1519,1397,1263,1196,815$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{32} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 501.3588$, found: 501.3592.

$\mathrm{Ar}=$

$3 t$
According to the general procedure C, $\mathbf{3 t}$ was obtained as yellow oil, $111 \mathrm{mg}, 85 \%$ yield, $95 \% \mathrm{ee},[\alpha]_{\mathrm{D}}{ }^{25}=+50.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ i-\mathrm{PrOH}=90 / 10$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=8.55 \mathrm{~min}, t_{\text {minor }}=13.40 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.22(\mathrm{~s}, 1 \mathrm{H})$, $7.13(\mathrm{~s}, 1 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $5.78(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.52-5.45(\mathrm{~m}, 1 \mathrm{H}), 3.18-3.10(\mathrm{~m}, 11 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 12 \mathrm{H})$, $1.38(\mathrm{t}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta=$ 192.4, 151.1, 150.7, 142.7, 140.1, 134.1, 131.2, 131.1, 130.4, 129.3, 128.0, 120.8, $115.8,115.8,50.6,50.5,49.1,47.2,31.4,26.0,25.8,24.4,24.3,23.7,21.7$. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2928,2851,2806,1672,1607,1514,1260,1234,916,822$. HRMS (ESI, m / z) calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 547.3407$, found: 547.3401.

According to the general procedure D, 4 was obtained as yellow oil, $112 \mathrm{mg}, 86 \%$ yield, $>99 \%$ ee, $[\alpha]_{\mathrm{D}}^{25}=-7.7\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$; The ee was determined by HPLC (Chiralpak column IC, $\lambda=254 \mathrm{~nm}$, hexane $/ \mathrm{i}-\mathrm{PrOH}=85 / 15$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $\left.t_{\text {major }}=16.15 \mathrm{~min}, \mathrm{t}_{\text {minor }}=9.47 \mathrm{~min}\right) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.31(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 3 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 6 \mathrm{H}), 6.67(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.44-5.37(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.47-3.46(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{~s}, 6 \mathrm{H})$, $2.85(\mathrm{~s}, 6 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .13 \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=192.0,149.0,148.9$, $142.8,142.6,136.6,134.9,132.8,130.1,129.3,128.7,128.1,126.1,125.6,120.8$,
113.1, 113.0, 48.9, 46.5, 42.5, 40.9, 23.7, 23.5, 19.5. IR (KBr): $v\left(\mathrm{~cm}^{-1}\right) 2963,2924$, 2799, 1674, 1614, 1518, 1261, 1089, 1021, 947, 806. HRMS (ESI, m/z) calcd for $\mathrm{C}_{34} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}: 545.3251$, found: 545.3250.

III References

(1) (a) Wang, C.; Chen, L.-A.; Huo, H.; Shen, X.; Harms, K.; Gong, L.; Meggers, E. Chem. Sci. 2015, 6, 1094. (b) Li, S.-W.; Gong, J.; Kang, Q. Org. Lett. 2017, 19, 1350.
(2) Cui, L.; Zhang, L.; Luo, S.; Cheng, J.-P. Eur. J. Org. Chem. 2014, 3540.
(3) (a) Yoshida, K.; Koujiri, T.; Sakamoto, E.; Kubo, Y. Bull. Chem. Soc. Jpn. 1990, 63, 1748. (b) Liwosz, T. W.; Chemler, S. R. Chem. - Eur. J. 2013, 19, 12771.
(4) (a) Huo, H.; Fu, C.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2014, 136, 2990.
(b) Huo, H.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2016, 138, 6936. (c) Evans, D.
A.; Fandrick, K. R. Org, Lett. 2006, 8, 2249.

IV chiral HPLC analysis

Racemic 3a:

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	et. Time	Area	Height	Conc.	Unit	Mark	Name
1	31.026	11471084	220600	50.051		M	
2	35.047	11447712	192917	49.949		M	
Total		22918796	413518				

Chiral 3a:

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	30.882	44136993	833581	96.018		M	
2	35.180	1830412	31969	3.982		M	
Total		45967406	865550				

Figure S1. HPLC traces of racemic 3a (reference) and chiral 3a. Area integration $=$ 96.0:4.0 $(92 \%$ ee)

Racemic 3b:

Chiral 3b

Figure S2. HPLC traces of racemic 3b (reference) and chiral 3b. Area integration $=$ 2.7:97.3 $(95 \%$ ee)

Racemic 3c:

Chiral 3c:

Chromatogram
LK-3-15-chiral-IC-8\% D:IdataLLiKuanNLK-3-15-chiral-IC-8\%.ldd
1 PDA Multi $1 / 254 \mathrm{~nm} 4 \mathrm{~nm}$
PDA Ch1 254 nm 4 nm

Peak\#	Name	Ret. Time	Area	Height	Area $\%$	Resolution
1		36.634	812825	11858	7.165	0.000
2		42.554	10531151	139535	92.835	3.094
Total			11343975	151393	100.000	

Figure S3. HPLC traces of racemic 3c (reference) and chiral 3c. Area integration $=7.2: 92.8(86 \%$ ee)

Racemic 3d

<Chromatogram>

mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	7.933	5742482	429371	49.919		M	
2	9.160	576158	361255	50.081		M	
Total		11503640	790626				

Chiral 3d:

<Peak Table>

\left.| Detector A 254nm | | | | | | |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |$\right]$ Name

Figure S4. HPLC traces of racemic 3d (reference) and chiral 3d. Area integration $=$ 3.7:96.3 $(93 \%$ ee)

Racemic 3e

<Chromatogram>
mV

<Peak Table>

\left.| | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Detector A 254nm | | | | | | |
| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |$\right]$ Name

Chiral 3e:

<Chromatogram>
mV

<Peak Table>

\left.| | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Detector A 254 nm | | | | | | |
| Peak\#\#. | Ret. Time | Area | Height | Conc. | Unit | Mark |$\right]$ Name

Figure S8. HPLC traces of racemic 3e (reference) and chiral 3e. Area integration $=$ 5.0:95.0 $(90 \%$ ee)

Racemic $3 f$

<Peak Table>

\left.| | | | | | | |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| Detector A 254nm | | | | | | |
| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |$\right]$ Name

Chiral 3f:

<Chromatogram>

mV

<Peak Table>

Detecto	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	34.155	23859196	389112	93.681		M	
2	39.301	1609456	23921	6.319		M	
Total		25468652	413033				

Figure S10. HPLC traces of racemic $\mathbf{3 f}$ (reference) and chiral 3f. Area integration $=$ 93.7:6.3 (87% ee)

Racemic 3g

<Chromatogram>
 mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.939	16238501	770668	49.919		M	
2	17.414	16291424	521471	50.081		M	
Total		32529926	1292138				

Chiral 3g:

<Chromatogram>

mV

<Peak Table>

\left.| Detector A 254nm | | | | | | |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |$\right]$ Name

Figure S5. HPLC traces of racemic $\mathbf{3 g}$ (reference) and chiral 3g. Area integration $=96.6: 3.4(93 \%$ ee)

Racemic 3h

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	12.710	24907293	1151446	49.969		M	
2	14.369	24938439	989683	50.031		M	
Total		49845732	2141129				

Chiral 3h:

<Chromatogram>

mV

<Peak Table>

\left.| | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Detector A 254 nm | | | | | | |
| Peak\# | Ret. Time | Area | Height | Conc. | Unit | Mark |$\right]$ Name

Figure S6. HPLC traces of racemic 3h (reference) and chiral 3h. Area integration $=97.0: 3.0(94 \%$ ee)

Racemic 3i

<Peak Table>

Detector	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.380	16610241	702389	49.259		M	
2	18.901	17110307	502716	50.741		M	
Total		33720548	1205105				

Chiral 3i:

<Chromatogram>
mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.326	57214129	2514461	96.839		M	
2	18.806	1867287	62448	3.161		M	
Total		59081417	2576909				

Figure S7. HPLC traces of racemic $\mathbf{3 i}$ (reference) and chiral 3i. Area integration $=96.8: 3.2(94 \%$ ee)

Racemic 3j

> <Chromatogram>
> mV
> <Peak Table>

Chiral 3j:

<Chromatogram>
 mV

<Peak Table>

Detecto	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	14.220	51656131	1835955	97.185		M	
2	16.711	1495986	49831	2.815		M	
Total		53152117	1885787				

Figure S9. HPLC traces of racemic 3j (reference) and chiral 3j. Area integration $=97.2: 2.8(94 \%$ ee)

Racemic 3k

<Chromatogram>
 mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	27.695	10165174	203218	50.132		M	
2	30.497	10111628	181874	49.868		M	
Total		20276802	385092				

Chiral 3k:

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	27.641	26134743	512984	96.575		M	
2	30.581	926993	17882	3.425		M	
Total		27061736	530866				

Figure S11. HPLC traces of racemic 3k (reference) and chiral 3k. Area integration $=$ 96.6:3.4 (93\% ee)

Racemic 3l

<Chromatogram>
 mV

<Peak Table>
Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.708	8161054	312519	49.576		M	
2	18.191	8300508	231416	50.424		M	
Total		16461562	543935				

Chiral 31:

<Chromatogram>

<Peak Table>

Detect	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	13.661	14436060	549110	93.791		M	
2	18.184	955633	28917	6.209		M	
Total		15391694	578027				

Figure S14. HPLC traces of racemic 31 (reference) and chiral 31. Area integration $=93.8: 6.2(88 \%$ ee)

Racemic 3m

<Chromatogram>
mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.577	19976184	723598	49.963		M	
2	23.959	20006016	446828	50.037		M	
Total		39982200	1170426				

Chiral 3m:
<Chromatogram>
mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	15.557	4892284	182140	6.117		M	
2	23.645	75087902	1618139	93.883		M	
Total		79980185	1800278				

Figure S12. HPLC traces of racemic 3m (reference) and chiral 3m. Area integration $=$ 6.1:93.9 (88% ee)

Racemic 3n

<Chromatogram>
mV

<Peak Table>

Petector A 254nm	Height	Conc.	Unit	Mark	Name	
1	37.357	26334923	425916	49.960		M
2	40.249	26376910	389878	50.040		M
Total		52711832	815794			

Chiral 3n:

<Chromatogram>
mV

<Peak Table>

Detector A 254nm Peak\# Ret. Time		Area	Height	Conc.	Unit	Mark	Name
1	37.478	5743408	98810	5.973		M	
2	39.940	90415041	1287675	94.027		M	
Total		96158450	1386485				

Figure S13. HPLC traces of racemic 3n (reference) and chiral 3n. Area integration $=6.0: 94.0$ (88% ee)

Racemic 30

<Peak Table>

Detector A 254 nm Peak\# Ret. Time		Area	Height	Conc.	Unit	Mark	Name
1	13.728	38732562	1617038	49.919		M	
2	21.075	38857741	1092368	50.081		M	
Total		77590303	2709406				

Chiral 3o:

<Chromatogram>

mV

<Peak Table>

Detector A 254nm Peak\# Ret. Time		Area	Height	Conc.	Unit	Mark	Name
1	13.749	41014903	1809850	97.688		M	
2	21.242	970784	30925	2.312		M	
Total		41985687	1840774				

Figure S17. HPLC traces of racemic 3o (reference) and chiral 30. Area integration $=$ 97.7:2.3 (95\% ee)

Racemic 3p

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	11.200	30118085	1705635	49.714		M	
2	17.967	30464913	1010572	50.286		M	
Total		60582997	2716207				

Chiral 3p:

<Peak Table>

| Detector A 254nm |
| ---: | ---: | ---: | ---: | :---: | :---: | :---: |
| Peak\# Ret. Time Area Height Conc.
 Unit Mark Name
 1 11.185 43840185 2575381 97.509
 M
 2 18.110 1119883 40027 2.491
 M
 Total 44960068 2615408
 |

Figure S18. HPLC traces of racemic 3p (reference) and chiral 3p. Area integration $=97.5: 2.5$ (95\% ee)

Racemic 3q

<Chromatogram>

mV

<Peak Table>

Detecto	A 254nm	Area	Height	Conc.	Unit	Mark	Name
1	8.199	22636451	1733187	49.821		M	
2	12.243	22799079	1151657	50.179		M	
Tota		45435529	2884844				

Chiral 3q:

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.153	19246721	1517773	97.525		M	
2	12.235	488460	25737	2.475		M	
Total		19735180	1543510				

Figure S16. HPLC traces of racemic 3q (reference) and chiral 3q. Area integration $=97.5: 2.5$ (95\% ee)

Racemic 3r

<Chromatogram>

mv

<Peak Table>

Detector A 254nm							
1	45.758	14097815	179211	50.102		M	
2	61.066	14040337	133392	49.898		M	
Total		28138152	312603				

Chiral 3r:

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							Name
		Area	Height	Conc.	Unit	Mark	
1	45.459	35350204	441447	96.344		M	
2	61.378	1341354	13314	3.656		M	
Total		36691558	454761				

Figure S15. HPLC traces of racemic 3r (reference) and chiral 3r. Area integration $=$ 96.3:3.7 (93\% ee)

Racemic 3s

<Chromatogram>

mV

<Peak Table>

Detector A 254 nm							
Peak\#	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.752	13594395	835070	49.929		M	
2	14.595	13632973	534271	50.071		M	
Total		27227369	1369342				

Chiral 3s:
<Chromatogram>
mV

<Peak Table>

Detector	Ret. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.762	26022481	1749213	97.673		M	
2	14.646	620075	26204	2.327		M	
Total		26642556	1775417				

Figure S19. HPLC traces of racemic 3s (reference) and chiral 3s. Area integration $=97.7: 2.3$ (95\% ee)

Racemic 3t

<Peak Table>

Detector A 254nm							
		Area	Height	Conc.	Unit	Mark	Name
1	8.563	7451280	531224	49.867		M	
2	13.387	7491054	327797	50.133		M	
Total		14942334	859021				

Chiral 3t:

<Chromatogram>

mV

<Peak Table>

Detector A 254nm							
Peak\#	et. Time	Area	Height	Conc.	Unit	Mark	Name
1	8.547	31123883	2206530	97.607		M	
2	13.404	763164	33979	2.393		M	
Total		31887048	2240509				

Figure S20. HPLC traces of racemic $\mathbf{3 t}$ (reference) and chiral 3t. Area integration $=$ 97.6:2.4 $(95 \%$ ee)

Racemic 4

<Chromatogram>

mV

<Peak Table>

$\begin{aligned} & \text { Detecto } \\ & \text { Peak\#1 } \end{aligned}$	$\begin{aligned} & \text { or A } 254 \mathrm{~nm} \\ & \hline \text { Ret. Time } \end{aligned}$	Area	Height	Conc.	Unit	Mark	Name
1	9.452	40781536	2557419	49.872		M	
2	16.159	40991487	1414317	50.128		M	
Total		81773023	3971736				

Chiral 4

<Peak Table>

Detector A 254nm
Peak\# Ret. Time Area Height Conc. Unit Mark
1

HPLC traces of racemic 4 (reference) and chiral 4. Area integration $=0.01: 99.99(>99 \% \mathrm{ee})$

V NMR Spectra of Products

 lsx-ligand

Ligand L3
${ }^{13}$ C NMR (100 MHz) spectra of Ligand L3

${ }^{19}$ F NMR (376.4 MHz) spectra of Ligand L3

${ }^{13}$ C NMR (100 MHz) spectra of Dimer 3

1sx-dimer

${ }^{19}$ F NMR (376.4 MHz) spectra of Dimer 3

${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\boldsymbol{\Lambda}-(\mathbf{S}) \mathbf{- 3}$

${ }^{19}$ F NMR ($\mathbf{3 7 6 . 4} \mathrm{MHz}$) spectra of $\boldsymbol{\Lambda}-\mathbf{(S)} \mathbf{- 3}$

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ spectra of catalyst $\boldsymbol{\Lambda} \mathbf{- R h} \mathbf{3}$

	のनm	
	$\cdots{ }^{-1}$	न－
	がす。	mo
$\cdots \cdots{ }^{-1}$	R2\％	m
V	\downarrow	

${ }^{13} \mathrm{C}$ NMR（ 100 MHz ）spectra of catalyst $\boldsymbol{\Lambda}$－Rh3

VI NMR Spectra of Substrates

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 d}$
 $\underbrace{\infty}$

1e
-180.625

ब̈न
\qquad $\stackrel{\text { è }}{\stackrel{\circ}{\infty}}$
Nim

1 e
${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 e}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 f}$

1g

菦

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 g}$

${ }^{1} \mathrm{H}$ NMR（ 400 MHz ）and ${ }^{13} \mathrm{C}$ NMR（ 100 MHz ）spectra of $\mathbf{1 h}$

$1 i$

ஸ゙

$1 i$
${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 i}$

1j

1j
$\begin{array}{lllllllllllllllll}190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30\end{array}$
${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 j}$

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 k}$

11

11
${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 I}$

1m

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{1 m}$

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz})$ spectra of $\mathbf{1 n}$

VII NMR Spectra of Products

3b

\％			M6゙がn
\pm	すจis	F＊＊	¢゙げずす
｜	N1／	V	\IVV

${ }^{1} \mathrm{H}$ NMR（ 400 MHz ）and ${ }^{13} \mathrm{C}$ NMR（ 100 MHz ）spectra of 3b

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 c}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 d}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 e}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 f}$

\％		¢ัロ゙ミ	
$\stackrel{\square}{7}$		「F゙\％	¢்¢ ¢¢
		V	UVV

${ }^{1} \mathrm{H}$ NMR（400 MHz）and ${ }^{13} \mathrm{C}$ NMR（ 100 MHz ）spectra of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 h}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 i}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3} \mathbf{j}$

ำ\%ถ̊\%	
¢冖¢	
V	\1 V/

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 k}$

31

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of 31

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 m}$
ゴロ
$\underbrace{\text { riricirion }}$

${ }^{1} \mathrm{H}$ NMR（ 400 MHz ）and ${ }^{13} \mathrm{C}$ NMR（ 100 MHz ）spectra of $\mathbf{3 n}$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 p}$

${ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 q}$

®			โัํ	$\stackrel{8}{\circ}$	®	
$\stackrel{\text { ¢ }}{ }$,		-	$\stackrel{+}{0}$	○nmiri ต่ำ웅	$\stackrel{\sim}{\text { n }}$
1		V11 ज1/1 V	V		IVV	

$3 r$

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of $\mathbf{3 r}$

3s

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of 3 s

Ar

3t

		$\begin{aligned} & \text { mon } \\ & \text { O\% } \\ & \text { Fig } \end{aligned}$	i̋ig
\|	\ W / / /	\downarrow	V/l

${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra of 3 t

VI Single Crystal X-Ray Diffraction of 3k

SFigure 1. X-ray derived ORTEP of $\mathbf{3 k}$ with thermal ellipsoids shown at the 35\% probability level

Table 1. Crystal data and structure refinement for data.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
$\mathrm{F}(000)$
Crystal size
Theta range for data collection

3k
C34 H40 N4 O
520.70
100.0(3) K
$1.54184 \AA$
Orthorhombic
P 212121
$\begin{array}{ll}\mathrm{a}=9.59380(10) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=12.2141(2) \AA & \beta=90^{\circ} . \\ \mathrm{c}=24.9699(4) \AA & \gamma=90^{\circ} .\end{array}$
2925.96(7) \AA^{3}

4
$1.182 \mathrm{Mg} / \mathrm{m}^{3}$
$0.558 \mathrm{~mm}^{-1}$
1120
$0.160 \times 0.150 \times 0.120 \mathrm{~mm}^{3}$
3.540 to 73.366°.

Index ranges	$-11<=\mathrm{h}<=9,-14<=\mathrm{k}<=15,-29<=1<=30$
Reflections collected	12308
Independent reflections	$5479[\mathrm{R}(\mathrm{int})=0.0227]$
Completeness to theta $=67.684^{\circ}$	100.0%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.00000 and 0.96883
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$5479 / 0 / 370$
Goodness-of-fit on F^{2}	1.072
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0329, \mathrm{wR} 2=0.0763$
R indices (all data)	$\mathrm{R} 1=0.0376, \mathrm{wR} 2=0.0798$
Absolute structure parameter	$-0.09(13)$
Extinction coefficient	n / a
Largest diff. peak and hole	0.145 and $-0.212 \mathrm{e} . \AA^{-3}$

VII CD Spectra of $\boldsymbol{\Lambda}-\mathrm{Rh} 3$

Figure 1. CD spectra of $\Lambda-\mathrm{Rh} 3$ recorded in $\mathrm{CH}_{3} \mathrm{OH}(0.2 \mathrm{mM})$

