Supporting Information

$\frac{Design \ and \ synthesis \ of \ soluble \ and \ cell-permeable \ PI3K\delta \ inhibitors \ for \ long-acting \ inhaled \ administration}$

Authors Matthew W D Perry,^{*ab} Karin Björhall,^{ad} Britta Bonn,^{ac} Johan Carlsson,^e Yunhua Chen,^f Anders Eriksson,^{ab} Linda Fredlund,^e Hai'e Hao,^f Neil Holden,^{ad} Kostas Karabelas,^a Helena Lindmark,^e Feifei Liu,^f Nils Pemberton,^{ab} Jens Petersen,^e Sandra Rodrigo Blomqvist,^{ad} Reed W Smith,^{ab} Tor Svensson,^{ab} Ina Terstiege,^{ab} Christian Tyrchan,^{ab} Wenzhen Yang,^f Shuchun Zhao,^f Linda Öster.^e

Table of Contents

Page	Item
2	Ligand diagrams for the crystal structures
4	Kinase selectivity profile for 20b & 20f
4	Analytical HPLC conditions
5	HPLCMS results
6	Synthesis procedures for compounds 1 & 2
7	NMR spectra for compounds 3 – 20I
46	HPLCMS traces for compounds 20b & 20f
49	Determination of the mPI3Kδ crystal structures
50	References

Ligand diagram for 13

Ligand diagram for 15c

Kinase selectivity for 20b & 20f

Both of these compounds were screened against a panel of 345 kinases; **20b** was active against one other kinase at >50% at 1 μ M (SIK1, 73%, IC₅₀ >1 μ M on retest) whilst **20f** hit 1 enzyme (JAK1) with >50% inhibition at 1 μ M (86%, IC₅₀ > 30 μ M on retest) (figure **S1**).

Figure S1. Kinase selectivity of 20b and 20f

Kinome map produced using KinomeRender v1.1 Kinome illustration reproduced courtesy of Cell Signaling Technology, Inc. (<u>www.cellsignal.com</u>)

Analytical HPLC conditions

System 1

XBridge C18 3.5 μ m; 50 mm × 4.6 mm; Mobile phase A: 5mM NH₄HCO₃, B:Acetonitrile; gradient 10 – 95% B over 1.9 min then 95% B for 0.7 min.

System 2 Shim-pack XR-ODS 2.2 μ m; 50 mm × 3.0 mm; Mobile phase A: Water/0.05% TFA, B:Acetonitrile/0.05% TFA 5 – 100% B over 1.2 min then 100% B for 1.0 min

System 3 Shim-pack XR-ODS 2.2 μ m; 50 mm × 3.0 mm; Mobile phase A: Water/0.05% TFA, B:Acetonitrile/0.05% TFA 5 – 100% B over 4.2 min then 100% B for 1.0 min

System 4

Shim-pack XR-ODS 2.2 μ m; 50 mm × 3.0 mm; Mobile phase A: Water/0.05% TFA, B:Acetonitrile/0.05% TFA 5 – 100% B over 2.2 min then 100% B for 1.0 min

System 5

ACQUITY UPLC CSH C18 1.7 μ m; 50 mm × 2.1 mm;Mobile phaseA:water/0.1% formic acid, B:Acetonitrile/0.05% formic acid 5 – 100% B over 1.1 min then 100% B for 0.5 min.

System 6

ACQUITY UPLC BEH C18 1.7 μ m; 50 mm × 2.1 mm;Mobile phaseA:water/0.1% formic acid, B:Acetonitrile/0.05% formic acid 5 – 95% B over 2.0 min then 95% B for 0.6 min.

System 7

Phenomenex kinetex XB-C18 1.7 μ m; 50 mm × 2.1 mm, Mobile phase A: Water/0.05% TFA, B:Acetonitrile/0.05% TFA 0.7 mL/min 5 – 95% B over 2.0 min then 95% B for 1.1 min.

System 8

Waters HSS C18 1.8 μ m; 50 mm × 2.1 mm, Mobile phase A: Water/0.05% TFA, B:Acetonitrile/0.05% TFA 0.7 mL/min 5 – 60% B over 4.0 min then 60 - 95% B over 0.5 min then 95% B for 0.7 min.

System 9

Shim-pack XR-ODS 2.2 μ m; 50 mm × 3.0 mm; Mobile phase A: Water/0.05% TFA, B:Acetonitrile/0.05% TFA 5 – 60% B over 5 min then 60% B for 1.3 min

System 10

Shim-pack XR-ODS 2.2 μ m; 50 mm × 3.0 mm; Mobile phase A: Water/0.05% TFA, B:Acetonitrile/0.05% TFA 5 – 95% B over 2.2 min then 95% B for 1.0 min

System 11

Geminin NX C18 3 μ m; 50 mm × 3.0 mm; Mobile phase A: 6.5mM NH₄HCO₃, B:Acetonitrile; gradient 10 – 70% B over 3.5 min then 70% B for 1.3 min.

HPLCMS results

Compound	HPLC	Retention time	Ion and mass observed	HPLC
	System	(min)		purity
3	System 1	0.85	232.9 [M-H] ⁻	
4	System 2	1.37	230/232 (Cl pattern) [M+H] ⁺	
5	System 2	1.51	308/310/312 (BrCl pattern)	
			$[M+H]^+$	
6	System 2	1.25	324/326/328 (BrCl pattern)	
			$[M+H]^+$	
7	System 3	2.92	308 [M+H] ⁺	
8	System 2	1.68	315 [M+H] ⁺	
9	System 3	1.26	287 [M+H] ⁺	
10	System 4	1.96	421 [M+H] ⁺	
11	System 6	1.04	419 [M+H] ⁺	
12	System 7	0.70	285 [M+H] ⁺	
13	System 7	1.16	403 [M+H] ⁺	98.7
14	System 5	1.04	405 [M+H] ⁺	
15a	System 4	0.97	432 [M+H] ⁺	99.0
15b	System 4	1.26	446 [M+H] ⁺	99.7
15c	System 6	1.00	460 [M+H] ⁺	98.3
15d	System 4	1.30	490 [M+H] ⁺	98.0

15e	System 4	1.39	502 [M+H] ⁺	99.2
15f	System 4	1.29	472 [M+H] ⁺	98.0
15g	System 4	1.67	608 [M+H] ⁺	99.0
16	System 4	1.17	431 [M+H] ⁺	98.0
17	System 4	1.99	490 [M+H] ⁺	99.1
18	System 9	2.41	474 [M+H] ⁺	99.4
19	System 4	1.50	596 [M+H] ⁺	98.0
20a	System 10	1.19	545 [M+H] ⁺	97.6
20b	System 10	1.19	543 [M+H] ⁺	98.0
20c	System 12	2.25	599 [M+H] ⁺	99.6
20d	System 4	1.32	625 [M+H] ⁺	99.0
20e	System 13	1.89	614 [M+H] ⁺	96.1
20f	System 11	2.02	585 [M+H] ⁺	96.0
20g	System 4	1.26	634 [M+H] ⁺	99.5
20h	System 11	1.62	573 [M+H] ⁺	99.0
20i	System 11	2.01	627/629 (Cl pattern) [M+H] ⁺	99.0
20j	System 4	1.25	601 [M+H] ⁺	98.0
20k	System 11	2.05	621 [M+H] ⁺	99.0
201	System 11	2.74	615 [M+H] ⁺	99.0

Synthesis procedures for compounds 1 & 2

N-(1-hydroxypropan-2-yl)acetamide (1)

Three 20 L 4-necked round-bottom flasks were each charged with 2-aminopropan-1-ol (600 g, 8.0 mol) acetonitrile (12 L) and sodium carbonate (2544 g, 23.8 mol). The suspensions were cooled to 0 °C and acetyl chloride (624 g, 8.0 mol) was added dropwise to each. The resulting suspensions were stirred for 2 h at room temperature. The reaction mixtures were filtered, the filtrates were combined, dried (sodium sulfate), concentrated and chromatographed (silica gel, dichloromethane/methanol (30:1)) to give the title compound (2.31 kg, 82%).

LCMS (System 2) Tr 0.37 min; (ES, m/z): 178 [M+H]+

2,4-dimethyl-4,5-dihydro-1,3-thiazole (2)

Two 20 L 4-necked round-bottom flasks were charged with N-(1-hydroxypropan-2-yl)acetamide (333 g, 2.84 mol), tetrahydrofuran (10 L) and Lawesson's reagent (1.38 kg, 3.41 mol). The solutions were heated to 65 °C for 3 h. The reaction mixtures were combined and the solvent was removed by distillation at atmospheric pressure. Saturated aqueous sodium bicarbonate solution was added until a pH of 8-9 was obtained. The resulting mixture was extracted with 3×15 L of dichloromethane and the organic layers were combined, dried (MgSO₄) and concentrated to give the title compound (300 g 46%) as a yellow oil.

LCMS (System 2) T_r 0.40 min; (ES, m/z): 116 [M+H]⁺

¹H NMR (400 MHz, CDCl3) δ 4.50 (m, 1H), 3.43 (dd, J = 8.3, 10.8 Hz, 1H), 2.93 (dd, J = 7.8, 10.8 Hz, 1H), 2.20 (d, J = 1.6 Hz, 3H), 1.35 (d, J = 6.7 Hz, 3H)

Compound 15a

Compound 15b

Compound 15d

Compound 15e

Compound 15f

Compound 20b ¹³C

Compound 20e

Compound 20g

Compound 20h

Compound 20i

Compound 20j

Compound 20k

HPLC trace compound 20b

Sample ID EN07098-84-002 Description

Determination of the mPI3Kδ crystal structures

The expression and purification of mouse PI3K δ followed the same procedure as previously described.¹ Compound 13 and 15C were both solubilised to 50 mM in DMSO. In each case, 0.4 µL of compound stock was mixed with 3 µL of 5% w/v n-dodecyl- β -D-maltoside (DDM) from Hampton Research® prior to the addition of 25 µL mPI3K δ (at 5 mg/mL in 20 mM Tris pH 7.2, 50 mM AmSO4, 1% ethylene glycol, 1% betaine, 0.02% CHAPS and 5 mM DTT). The mixture was left to incubate for 1 hour and then centrifuged at 13.000 rpm for 30 minutes. Hanging drops were set up with a one to one ratio of protein solution and well solution around condition G6 of the Morpheus screen (Molecular Dimensions®): 50% ethylene glycol/PEG 8000, 0.1 M carboxylic acids mix, 0.1 M Buffer system 2 pH 7.5. Streak seeding improved the size and quality of the crystals. For data collection crystals were flash frozen in liquid nitrogen without the addition of any cryo-protection. All data was collected at the European Synchrotron Radiation Facility, France; compound beam line ID23-1 Complex.structures of mPI3K δ were determined by Molecular replacement using the program "Molrep²" using internal structures as search models. Manual fitting and inspection of structures were carried out in the program Coot³ and refinement carried out using the program Buster⁴.

Compound #	13	15c	
Space group	<i>C</i> 2	<i>C</i> 2	
Unit cell dimensions			
a, b, c (Å)	140.98, 64.55, 116.01	141.65, 64.84 116.60	
β () α=γ=90°	103.59	103.63	
Beam line	ID23	ID23	
Wavelength (Å)	0.970	0.970	
Resolution (Å)	50.00-1.90	42.97-1.94	
High Resolution Shell (Å)	(1.97-1.90)	(2.01-1.94)	
Total / Unique reflections	268 967 (77199)	234743 (73956)	
Multiplicity	3.5 (3.4)	3.2 (3.0)	
Completeness (%)	96.7 (90.8)	97.0 (95.6)	
$< I/\sigma I >$	13.6 (1.7)	15.9 (2.5)	
R _{merge} (%) ^a	0.058 (0.0.697)	0.038 (0.358)	
Refinement			
$R_{work}^{b} / R_{free}^{c}$ (%)	22.2 / 26.4	22.5 / 25.9	
PDB Code	5NCY 5NCZ		

^a $\overline{R_{merge}} = \Sigma |I-\langle I \rangle | / \Sigma I$, where I is the integrated intensity of a given reflection and $\langle I \rangle$ is the average intensity of multiple observations of symmetry-related reflections. ^b $R_{work} = \Sigma |F_o - F_c| / \Sigma F_o$), where F_o and F_c are observed and calculated structure factors. ^c R_{free} was calculated from a 5% subset of reflections that were excluded from the refinement. Brackets indicate highest resolution shell.

References

- 1. Berndt, A., et al. Nat. Chem. Biol. 2010, 6, 117-124
- 2. Vagin, A., Teplyakov A. J. Appl. Cryst. 1997, 30, 1022-1025.

3. Emsley P., Lohkamp B., Scott W. G. & Cowtan K. 2010 Acta. Cryst D. 66,486-501.

4. Bricogne G., Blanc E., Brandl M., Flensburg C., Keller P., Paciorek W., Roversi P, Sharff A., Smart O.S., Vonrhein C., Womack T.O. (2016). BUSTER version 2.11.6. Cambridge, United Kingdom: Global Phasing Ltd.