Supporting Information

Effect of Composition Asymmetry on the Phase Separation and Crystallization in Double Crystalline Binary Polymer Blends: A Dynamic Monte Carlo Simulation Study

Ashok Kumar Dasmahapatra^{*}

Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India

Figure S1. Snapshots at $U_p = 0$ for various compositions, x_B : (a) 0.125, (b) 0.375, (c) 0.5, (d) 0.625 and (e) 0.875. Blue and magenta colors represent bonds of A- and B-polymers, respectively.

^{*} Corresponding author: Phone: +91-361-2582273, Fax: +91-361-2582291, Electronic mail: akdm@iitg.ernet.in

Figure S2. Change in mean square displacement of center of mass (d_{cm}^2) with U_p for Aand B-polymers: (a) $d_{cm_A}^2$ vs. U_p at $\lambda = 1$, (b) $d_{cm_A}^2$ vs. U_p at $\lambda = 6$, (c) $d_{cm_B}^2$ vs. U_p at λ = 1, (d) $d_{cm_B}^2$ vs. U_p at $\lambda = 6$.

Figure S3. Snapshots of macrophase separated melt at $U_p = 0.1$ during non-isothermal crystallization, for various compositions and λ : (a) $\lambda = 1$, $x_B = 0.125$, (b) $\lambda = 1$, $x_B = 0.375$, (c) $\lambda = 1$, $x_B = 0.5$, (d) $\lambda = 1$, $x_B = 0.625$, (e) $\lambda = 1$, $x_B = 0.875$, (f) $\lambda = 6$, $x_B = 0.125$, (g) $\lambda = 6$, $x_B = 0.375$, (h) $\lambda = 6$, $x_B = 0.5$, (i) $\lambda = 6$, $x_B = 0.625$ and (j) $\lambda = 6$, $x_B = 0.875$. Blue and magenta colors represent bonds of A- and B-polymers, respectively.

Figure S4. Snapshots of semicrystalline structure at $U_p = 0.28$ during non-isothermal crystallization for various compositions at $\lambda = 1$: (a) $x_B = 0.125$, (b) $x_B = 0.25$, (c) $x_B = 0.375$, (d) $x_B = 0.50$, (e) $x_B = 0.625$, (f) $x_B = 0.75$, (g) $x_B = 0.875$. Blue and magenta colors represent crystalline bonds of A- and B-polymers, respectively. Yellow color represents non-crystalline bonds of both the polymers.

Figure S5. Change in crystallinity with U_p for A- and B-polymers: (a) X_A vs. U_p at $\lambda = 1$, (b) X_A vs. U_p at $\lambda = 6$, (c) X_B vs. U_p at $\lambda = 1$, (d) X_B vs. U_p at $\lambda = 6$.

Figure S6. Snapshots of crystalline structure at $U_p = 0.6$ during non-isothermal crystallization, for various compositions and λ : (a) $\lambda = 1$, $x_B = 0.125$, (b) $\lambda = 1$, $x_B = 0.375$, (c) $\lambda = 1$, $x_B = 0.5$, (d) $\lambda = 1$, $x_B = 0.625$, (e) $\lambda = 1$, $x_B = 0.875$, (f) $\lambda = 6$, $x_B = 0.125$, (g) $\lambda = 6$, $x_B = 0.375$, (h) $\lambda = 6$, $x_B = 0.5$, (i) $\lambda = 6$, $x_B = 0.625$ and (j) $\lambda = 6$, $x_B = 0.875$. Blue and magenta colors represent crystalline bonds of A- and B-polymers, respectively. Yellow color represents non-crystalline bonds of both the polymers.

Figure S7. Change in average crystallite size with U_p for A- and B-polymers: (a) $\langle S_A \rangle$ vs. U_p at $\lambda = 1$, (b) $\langle S_A \rangle$ vs. U_p at $\lambda = 6$, (c) $\langle S_B \rangle$ vs. U_p at $\lambda = 1$, (d) $\langle S_B \rangle$ vs. U_p at $\lambda = 6$.

Figure S8. Change in average lamellar thickness with U_p for A- and B-polymers: (a) $\langle l_A \rangle$ vs. U_p at $\lambda = 1$, (b) $\langle l_A \rangle$ vs. U_p at $\lambda = 6$, (c) $\langle l_B \rangle$ vs. U_p at $\lambda = 1$, (d) $\langle l_B \rangle$ vs. U_p at $\lambda = 6$.

Figure S9. Change in isothermal overall crystallinity with number of Monte Carlo steps (*MCS*) at (a) $\lambda = 1$ and (b) $\lambda = 6$.

	Weak segregation, $\lambda = 1$		Strong segregation, $\lambda = 6$	
Composition (x_B)	X _A	X _B	X _A	X _B
0.125	0.683	0.632	0.175	0.053
0.25	0.664	0.639	0.085	0.048
0.375	0.660	0.639	0.070	0.054
0.5	0.653	0.641	0.072	0.066
0.625	0.645	0.648	0.051	0.064
0.75	0.645	0.663	0.051	0.080
0.875	0.641	0.690	0.067	0.167

Table S1. Comparison in saturated crystallinity of A-polymer, X_A , B-polymer, X_B , with composition, x_B , during one-step isothermal crystallization, at $\lambda = 1$ and 6.

	Two-step cooling		One-step cooling
Composition (x_B)	$U_{p} = 0.28$	$U_{p} = 0.6$	$U_p = 0.6$
0.125	3.47	3.51	2.7
0.25	3.46	3.46	2.67
0.375	3.39	3.44	2.68
0.5	3.43	3.47	2.74
0.625	3.45	3.47	2.73
0.75	3.53	3.63	2.81
0.875	3.61	3.72	2.95

Table S2. Comparison in average lamellar thickness of A-polymer, $\langle l_A \rangle$, with composition, x_B , during one- and two-step isothermal crystallization, at $\lambda = 1$.

Table S3. Comparison in average lamellar thickness of B-polymer, $\langle l_B \rangle$, with composition, x_B , during one- and two-step isothermal crystallization, at $\lambda = 1$.

	Two-step cooling	One-step cooling
Composition (x_B)	$U_p = 0.6$	$U_{p} = 0.6$
0.125	3.00	3.01
0.25	2.83	2.85
0.375	2.79	2.79
0.5	2.78	2.74
0.625	2.77	2.74
0.75	2.78	2.75
0.875	2.86	2.80

	Two-step cooling		One-step cooling	
Composition (x_B)	$U_{p} = 0.28$	$U_{p} = 0.6$	$U_{p} = 0.6$	
0.125	0.623	0.668	0.175	
0.25	0.397	0.473	0.085	
0.375	0.294	0.335	0.070	
0.5	0.384	0.426	0.072	
0.625	0.358	0.422	0.051	
0.75	0.276	0.329	0.051	
0.875	0.429	0.523	0.067	

Table S4. Comparison in saturated crystallinity of A-polymer, X_A , with composition, x_B , during one- and two-step isothermal crystallization, at $\lambda = 6$.

Table S5. Comparison in saturated crystallinity of B-polymer, X_B , with composition, x_B , during one- and two-step isothermal crystallization, at $\lambda = 6$.

	Two-step cooling		One-step cooling
Composition (x_B)	$U_{p} = 0.28$	$U_p = 0.6$	$U_p = 0.6$
0.125	0.126	0.342	0.053
0.25	0.144	0.243	0.048
0.375	0.145	0.180	0.054
0.5	0.151	0.250	0.066
0.625	0.143	0.259	0.064
0.75	0.150	0.246	0.051
0.875	0.137	0.523	0.167