Supporting Information

Effect of Composition Asymmetry on the Phase Separation and Crystallization in Double Crystalline Binary Polymer Blends: A Dynamic Monte Carlo Simulation Study

Ashok Kumar Dasmahapatra*
Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India

Figure S1. Snapshots at $U_{p}=0$ for various compositions, x_{B} : (a) 0.125 , (b) 0.375, (c) 0.5, (d) 0.625 and (e) 0.875. Blue and magenta colors represent bonds of A- and B-polymers, respectively.

[^0]

Figure S2. Change in mean square displacement of center of mass ($d_{c m}^{2}$) with U_{p} for Aand B-polymers: (a) $d_{c m_{-} A}^{2}$ vs. U_{p} at $\lambda=\mathbf{1}$, (b) $d_{c m_{-} A}^{2}$ vs. U_{p} at $\lambda=6$, (c) $d_{c m_{-} B}^{2}$ vs. U_{p} at λ $=\mathbf{1}$, (d) $d_{c m_{-} B}^{2}$ vs. U_{p} at $\lambda=\mathbf{6}$.

Figure S3. Snapshots of macrophase separated melt at $U_{p}=\mathbf{0 . 1}$ during non-isothermal crystallization, for various compositions and λ : (a) $\lambda=1, x_{B}=0.125$, (b) $\lambda=1, x_{B}=0.375$, (c) $\lambda=1, x_{B}=0.5$, (d) $\lambda=1, x_{B}=\mathbf{0 . 6 2 5}$, (e) $\lambda=1, x_{B}=0.875$, (f) $\lambda=6, x_{B}=0.125$, (g) $\lambda=$ 6, $x_{B}=0.375$, (h) $\lambda=6, x_{B}=0.5$, (i) $\lambda=6, x_{B}=0.625$ and (j) $\lambda=6, x_{B}=0.875$. Blue and magenta colors represent bonds of A- and B-polymers, respectively.

Figure S4. Snapshots of semicrystalline structure at $U_{p}=0.28$ during non-isothermal crystallization for various compositions at $\lambda=1$: (a) $x_{B}=0.125$, (b) $x_{B}=0.25$, (c) $x_{B}=$ 0.375 , (d) $x_{B}=0.50$, ($\left.\mathbf{e}\right) x_{B}=0.625$, (f) $x_{B}=0.75$, (g) $x_{B}=0.875$. Blue and magenta colors represent crystalline bonds of A- and B-polymers, respectively. Yellow color represents non-crystalline bonds of both the polymers.

Figure S5. Change in crystallinity with U_{p} for A- and B-polymers: (a) X_{A} vs. U_{p} at $\lambda=$ 1, (b) X_{A} vs. U_{p} at $\lambda=6$, (c) X_{B} vs. U_{p} at $\lambda=1$, (d) X_{B} vs. U_{p} at $\lambda=6$.

Figure S6. Snapshots of crystalline structure at $U_{p}=0.6$ during non-isothermal crystallization, for various compositions and λ : (a) $\lambda=1, x_{B}=0.125$, (b) $\lambda=1, x_{B}=0.375$, (c) $\lambda=1, x_{B}=0.5$, (d) $\lambda=1, x_{B}=\mathbf{0 . 6 2 5}$, (e) $\lambda=1, x_{B}=0.875$, (f) $\lambda=6, x_{B}=0.125$, (g) $\lambda=$ 6, $x_{B}=\mathbf{0 . 3 7 5}$, (h) $\lambda=6, x_{B}=\mathbf{0 . 5}$, (i) $\lambda=6, x_{B}=0.625$ and (j) $\lambda=6, x_{B}=0.875$. Blue and magenta colors represent crystalline bonds of A- and B-polymers, respectively. Yellow color represents non-crystalline bonds of both the polymers.

Figure S7. Change in average crystallite size with U_{p} for A- and B-polymers: (a) $\left\langle S_{A}\right\rangle$ vs. U_{p} at $\lambda=1$, (b) $\left\langle S_{A}\right\rangle$ vs. U_{p} at $\lambda=6$, (c) $\left\langle S_{B}\right\rangle$ vs. U_{p} at $\lambda=1$, (d) $\left\langle S_{B}\right\rangle$ vs. U_{p} at $\lambda=6$.

Figure S8. Change in average lamellar thickness with U_{p} for A- and B-polymers: (a) $\left\langle l_{A}\right\rangle$ vs. U_{p} at $\lambda=1$, (b) $\left\langle l_{A}\right\rangle$ vs. U_{p} at $\lambda=6$, (c) $\left\langle l_{B}\right\rangle$ vs. U_{p} at $\lambda=1$, (d) $\left\langle l_{B}\right\rangle$ vs. U_{p} at $\lambda=6$.

Figure S9. Change in isothermal overall crystallinity with number of Monte Carlo steps (MCS) at (a) $\lambda=1$ and (b) $\lambda=6$.

Table S1. Comparison in saturated crystallinity of A-polymer, X_{A}, B-polymer, X_{B}, with composition, x_{B}, during one-step isothermal crystallization, at $\lambda=1$ and 6 .

	Weak segregation, $\lambda=1$		Strong segregation, $\lambda=6$	
Composition $\left(x_{B}\right)$	X_{A}	X_{B}	X_{A}	X_{B}
0.125	0.683	0.632	0.175	0.053
0.25	0.664	0.639	0.085	0.048
0.375	0.660	0.639	0.070	0.054
0.5	0.653	0.641	0.072	0.066
0.625	0.645	0.648	0.051	0.064
0.75	0.645	0.663	0.051	0.080
0.875	0.641	0.690	0.067	0.167

Table S2. Comparison in average lamellar thickness of A-polymer, $\left\langle l_{A}\right\rangle$, with composition, x_{B}, during one- and two-step isothermal crystallization, at $\lambda=1$.

	Two-step cooling		One-step cooling
Composition $\left(x_{B}\right)$	$U_{p}=0.28$	$U_{p}=0.6$	$U_{p}=0.6$
0.125	3.47	3.51	2.7
0.25	3.46	3.46	2.67
0.375	3.39	3.44	2.68
0.5	3.43	3.47	2.74
0.625	3.45	3.47	2.73
0.75	3.53	3.63	2.81
0.875	3.61	3.72	2.95

Table S3. Comparison in average lamellar thickness of B-polymer, $\left\langle l_{B}\right\rangle$, with composition, x_{B}, during one- and two-step isothermal crystallization, at $\lambda=1$.

	Two-step cooling	One-step cooling
Composition $\left(x_{B}\right)$	$U_{p}=0.6$	$U_{p}=0.6$
0.125	3.00	3.01
0.25	2.83	2.85
0.375	2.79	2.79
0.5	2.78	2.74
0.625	2.77	2.74
0.75	2.78	2.75
0.875	2.86	2.80

Table S4. Comparison in saturated crystallinity of A-polymer, X_{A}, with composition, x_{B} , during one- and two-step isothermal crystallization, at $\lambda=6$.

	Two-step cooling		One-step cooling
Composition $\left(x_{B}\right)$	$U_{p}=0.28$	$U_{p}=0.6$	$U_{p}=0.6$
0.125	0.623	0.668	0.175
0.25	0.397	0.473	0.085
0.375	0.294	0.335	0.070
0.5	0.384	0.426	0.072
0.625	0.358	0.422	0.051
0.75	0.276	0.329	0.051
0.875	0.429	0.523	0.067

Table $\mathbf{S 5}$. Comparison in saturated crystallinity of B-polymer, X_{B}, with composition, x_{B} , during one- and two-step isothermal crystallization, at $\lambda=6$.

	Two-step cooling		One-step cooling
Composition $\left(x_{B}\right)$	$U_{p}=0.28$	$U_{p}=0.6$	$U_{p}=0.6$
0.125	0.126	0.342	0.053
0.25	0.144	0.243	0.048
0.375	0.145	0.180	0.054
0.5	0.151	0.250	0.066
0.625	0.143	0.259	0.064
0.75	0.150	0.246	0.051
0.875	0.137	0.523	0.167

[^0]: * Corresponding author: Phone: +91-361-2582273, Fax: +91-361-2582291, Electronic mail: akdm@iitg.ernet.in

