Supporting Information

Skeletal Rearrangement of Twisted Polycyclic Aromatic Hydrocarbons under Scholl Reaction Conditions

Shunpei Nobusue, Kazuya Fujita, and Yoshito Tobe*,[†]

Division of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan [†] Present address: The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, 567-0047, Japan

Table of Contents

- 1. General Experimental Methods
- 2. Synthetic Procedures
- 3. X-ray Crystallographic Analysis of **13**
- 4. Estimation of Association Constant of **13** in Solution
- 5. Cyclic Voltammogram of **13**
- 6. Theoretical Calculations of **13**
- 7. Theoretical Calculations of Reaction Pathways
- 8. References
- 9. ¹H and ¹³C NMR Spectra
- 10. Computational Results

1. General Experimental Methods

¹H and ¹³C NMR spectra were recorded at 30 °C. The chemical shifts were referenced to the residual solvent protons in the ¹H NMR (7.26 ppm) and to solvent carbons in the ¹³C NMR (77.0 ppm). Mass spectral analyses were performed with EI, FAB mode. IR spectra were recorded as a KBr disk. Melting points were measured with a hot-stage apparatus equipped with a thermometer. Column chromatography and TLC were performed with silica gel (70-230 mesh) and precoated silica gel plates, respectively.

All reagents and solvents were obtained from commercial suppliers and used as received without purifications. THF and CH₂Cl₂ were dried with a glasscontour solvent purification system.

DFT calculations were performed with the Gaussian 09 program.¹ All geometry optimizations were carried out at the (R)B3LYP level of density functional theory with the 6-31G(d) basis set. The nature of the stationary points was assessed by means of vibrational frequency analysis. The transition states of the reaction paths were confirmed by intrinsic reaction coordinate (IRC) calculations. In the implicit solvent model by using B3LYP/6-31G(d) method, the CPCM polarizable conductor calculation model was used to the polarizable continuum model (PCM) in the self-consistent reaction field (SCRF) procedure.²

2. Synthetic Procedures

Reaction of 11 with FeCl₃ in CH₃NO₂ and CH₂Cl₂. A solution of FeCl₃ (35.1 mg, 0.216 mmol) in nitromethane (1.2 mL) was added to a solution of 11 (10.3 mg, 20.6 μ mol) in CH₂Cl₂ (8 mL). After stirring at room temperature for 1 h under an argon atmosphere, MeOH (4 mL) was added, and the reaction mixture was diluted with water and extracted with CHCl₃. The extract was washed with brine and dried over anhydrous MgSO₄. After removal of the solvent under reduced pressure, the residue was purified by chromatography (hexanes:CHCl₃ = 1:1) followed by recrystallization from hexanes/CHCl₃ to afford 13 (8.8 mg, 85%) as a purple solid.

13: mp 211.0–212.0 °C; ¹H NMR (400 MHz, CDCl₃): δ = 8.53 (d, *J* = 8.4 Hz, 2H), 8.47 (d, *J* = 7.2 Hz, 2H), 8.45 (d, *J* = 7.6 Hz, 2H), 8.32 (d, *J* = 7.6 Hz, 2H), 7.91 (d, *J* = 8.4 Hz, 2H), 7.81 (d, *J* = 7.2 Hz, 2H), 7.59 (dd, *J* = 7.2, 7.2 Hz, 2H), 7.48 (dd, *J* = 7.2, 7.2 Hz, 2H), 7.42 (dd, *J* = 7.6, 7.2 Hz, 2H), 7.23 (dd, *J* = 7.6, 7.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃): δ = 141.5, 140.9, 137.1, 137.0, 135.7, 131.3, 130.63, 130.57, 129.9, 129.2, 128.3, 126.81, 126.79, 126.7, 125.60, 125.58, 125.3, 124.1, 123.5, 119.3, 118.6; IR (KBr): 3068, 3011, 2978, 1499, 1470, 1387, 899, 823, 765 cm⁻¹; UV-vis (CH₂Cl₂): λ_{max} (log ε) 560 (3.49), 385 (4.22); MS (FAB): *m/z* 500.9 [M⁺]; HRMS (FAB): *m/z* calcd for C₄₀H₂₀: 500.1565 [M⁺]; found: 500.1553. The absorption spectra of **13** in cyclohexane and THF were nearly identical with that in CH₂Cl₂.

Reaction of 11 with DDQ and Sc(OTf)₃ at 80 °C. To a solution of 11 (10.0 mg, 20.0 μ mol) in toluene (5 mL) was added 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) (23.4 mg, 0.103 mmol) and scandium trifluoromethanesulfonate (Sc(OTf)₃) (40.3 mg, 81.9 μ mol). After stirring at 80 °C for 13 h under a nitrogen atmosphere, the reaction mixture was gradually cooled to room temperature, and N₂H₄·H₂O (97% solution, 0.5 mL) was added. The reaction mixture was passed through a short silica gel column (CH₂Cl₂). After removal of the solvent under reduced pressure, the residue was recrystallization from hexanes/CHCl₃ to afford 13 (3.4 mg, 34%) as a purple solid. The

spectral data are described above.

Reaction of 11 with DDQ and Sc(OTf)³ **at 120** °C. To a solution of **11** (8.3 mg, 17 μ mol) in chlorobenzene (5 mL) was added DDQ (18.7 mg, 82.4 μ mol) and Sc(OTf)³ (40.5 mg, 82.3 μ mol). After stirring at 120 °C for 5 h under a nitrogen atmosphere, the reaction mixture was gradually cooled to room temperature. The precipitated solid was filtered and washed with CHCl₃ and hexane to afford **14** (4.1 mg, 49%) as an orange solid.

14: ¹H NMR (400 MHz, tetrachloroethane- d_2): $\delta = 9.47$ (s, 4H), 9.28 (d, J = 8.0 Hzm 4H), 9.24 (d, J = 7.6 Hz, 4H), 7.98 (dd, J = 7.6, 7.2 Hz, 4H), 7.90 (dd, J = 7.6, 7.2 Hz, 4H); ¹³C NMR spectrum was not obtained due to poor solubility in common organic solvents; HRMS (EI): m/z calcd for C₄₀H₂₀: 500.1565 [M⁺]; found: 500.1562. The spectral data of this product agreed with that reported in the literature.³

Reaction of 13 with DDQ and Sc(OTf)₃ **at 120** °C. To a solution of **13** (14.3 mg, 28.5 μ mol) in chlorobenzene (5 mL) was added DDQ (26.0 mg, 0.114 mmol) and Sc(OTf)₃ (55.7 mg, 0.113 mmol). After stirring at 120 °C for 4 h under an argon atmosphere, the solvent was removed under reduced pressure. The residue was washed with water, MeOH, and CHCl₃ to afford **14** (10.0 mg, 70%) as an orange solid. The spectral data are described above.

3. X-ray Crystallographic Analysis of 13

The X-ray diffraction data were collected with an imaging plate diffractometer with graphite monochromated MoK_a radiation. The positional and thermal parameters of non-hydrogen atoms were refined anisotropically on F_2 by the full-matrix least-squares method using SHELXL-2013.⁴ Hydrogen atoms were placed at calculated positions and refined "riding" on their corresponding carbon atoms. In the subsequent refinement, the function $\Sigma w(|F_o| - |F_c|)^2$ was minimized, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. The agreement indices are defined as $R_1 = \Sigma (||F_o| - |F_c||) / \Sigma |F_o|$ and $wR_2 = [\Sigma w (|F_o| - |F_c|)^2 / \Sigma (wF_o^2)^2]^{1/2}$.

Crystal data for **13**: Formula C₄₀H₂₀, $M_r = 500.56$, $0.50 \times 0.40 \times 0.10 \text{ mm}^3$, T = 113(2) K, triclinic, space group *P-1*, a = 14.953(2) Å, b = 15.734(3) Å, c = 17.704(3) Å, $a = 78.652(3)^\circ$, $\beta = 66.812(3)^\circ$, $\gamma = 72.621(3)^\circ$, V = 3638.8 (10) Å³, Z = 6, $\rho_{calcd} = 1.371 \text{ gcm}^{-3}$, $\mu = 0.078 \text{ mm}^{-1}$, F(000) = 1560, $2\theta_{max} = 55.0^\circ$, R_1 ($I > 2\theta(I)$) = 0.093, wR_2 (all data) = 0.218 and GOF = 1.032 for 16349 reflections and 1155 parameters.

4. Estimation of Association Constant of 13 in Solution

The self-aggregation behavior of 13 was investigated quantitatively on the basis of the concentration dependence of the ¹H NMR chemical shifts.⁵ The ¹H NMR spectra of 13 were measured at 0.465, 0.930, 1.40, 1.86, 2.79, 3.91, and 5.58 mM in CDCl₃ at 30 °C (Figure S1). The chemical shifts and dilution curves for H_a and H_b are shown in Table S1 and Figure S2, respectively. The association constant (K_2) was determined by assuming that monomer-dimer equilibrium is the predominant process of the self-association. The least-squares curve fitting to equation (1) was carried out to determine K_2 , where δ_m and δ_d are chemical shifts of the monomer and dimer, respectively, and C_t is the total concentration of the substrate. Estimated chemical shifts of the protons δ_m , δ_d and association constant K_2 are included in the bottom of Table S1.

$$\delta = \delta_m + (\delta_d - \delta_m) \left(1 + \frac{1 - \sqrt{8K_2C_t + 1}}{4K_2C_t} \right) \tag{1}$$

concentration / mM	H _a / ppm	H_b / ppm
5.58	8.583	7.968
3.91	8.610	8.000
2.79	8.630	8.020
1.86	8.657	8.043
1.40	8.668	8.055
0.930	8.680	8.067
0.465	8.692	8.080
calculated chemical shifts	8.708 ± 0.003	8.094 ± 0.002
for the proton of the dimer δ_d / ppm		
calculated chemical shifts	8.009 ± 0.002	7.235 ± 0.001
for the proton of the monomer $\delta_{\rm m}$ / ppm		
association constant K_2 / M^{-1}	24.1 ± 2.9	18.0 ± 1.4

Table S1. ¹H NMR dilution data of **13** in CDCl₃ at 30 °C, calculated association constants, and calculated chemical shifts for the monomer and dimer.

Figure S2. Concentration dependence of ¹H NMR chemical shifts for H_a (circle and solid line) and H_b (square and dotted line) of **13** in CDCl₃.

5. Cyclic Voltammogram of 13

Figure S3. Cyclic voltammogram of **13**. Condition: in CH_2Cl_2 at room temperature, 0.1 M Bu₄NClO₄, working electrode: glassy carbon, counter electrode: Pt. reference electrode: Ag/AgNO₃, scan rate: 0.1 V/s, Fc/Fc⁺ = 0 V.

6. Theoretical Calculations of 13

Table S2. Excitation energies of 13 calculated at the B3LYP/6-31G(d) level of theory.

excited	transition energy / eV	main CI coefficient	oscillator
state	(Wavelength / nm)		strength
			f
1	2.06 (603)	0.696 (HOMO - LUMO)	0.0897
2	2.45 (505)	0.700 (HOMO-1 - LUMO)	0.0122
3	2.61 (475)	0.693 (HOMO-2 - LUMO)	0.0012

Figure S4. HOMO and LUMO of 13.

7. Theoretical Calculations of Reaction Pathways

Scheme S1. Calculated energies of intermediates and barriers for isomerization and cyclodehydrogenation reaction pathways for 13. The calculated energies (kcal/mol) relative to C1 and D1 in each reaction are shown in parentheses.

8. References

- Gaussian 09, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2009.
- (2) (a) Jain, R.; Bally, T.; Rablen P. R. J. Org. Chem. 2009, 74, 4017–4023. (b) Bally, T.; Rablen, P. R. J. Org. Chem. 2011, 76, 4818–4830. (c) Cossi, M.; Scalmani, G.; Rega, N.; Barone, V. J. Chem. Phys. 2002, 117, 43–54.
- (3) (a) Clar, E.; McAndrew, B. A. *Tetrahedron* 1972, 28, 1137–1142. (b) Pola, S.; Kuo, C.-H.; Peng, W.-T.; Islam, M. M.; Chao, I.; Tao, Y.-T. *Chem. Mater.* 2012, 24, 2566–2571.
- (4) G. M. Acta Crystallogr. A 2008, 64, 112–122.
- (5) Tobe, Y.; Utsumi, N.; Kawabata, K.; Nagano, A.; Adachi, K.; Araki, S.; Sonoda, M.; Hirose, K.; Naemura, K. J. Am. Chem. Soc. 2002, 124, 5350–5364.

9. ¹H and ¹³C NMR Spectra

Figure S5. ¹H and ¹³C NMR spectra of **13**.

Figure S6. ¹H NMR spectrum of 14.

10. Computational Results

10-1. Cartesian coordinates for optimized geometry of 13.

no.	atom	Х	Y	Z	no.	atom	Х	Y	Z
1	С	-1.34231	2.479913	0.326424	31	С	-3.39135	-3.38187	-1.46489
2	С	-3.35367	-1.09359	-0.62438	32	Н	-2.88957	-4.32709	-1.64062
3	С	-0.54335	1.305314	0.096285	33	С	1.315182	2.859041	-0.39354
4	С	2.72924	2.80694	-0.74799	34	С	4.43084	-1.11499	1.108272
5	С	-1.21824	-3E-06	0.000007	35	Н	4.754156	-0.08103	1.130614
6	С	2.72925	-2.80694	0.747974	36	С	4.885173	-3.45789	1.580048
7	С	-0.54335	-1.30532	-0.09628	37	Н	5.570969	-4.22516	1.929167
8	С	1.315196	-2.85904	0.393516	38	С	4.885165	3.457894	-1.58005
9	С	0.831545	1.544163	-0.18873	39	Н	5.570959	4.225172	-1.92917
10	С	0.831551	-1.54416	0.188726	40	С	-5.29875	1.953603	1.824682
11	С	-2.70721	2.338729	0.800296	41	Н	-6.28285	1.787034	2.254159
12	С	-1.3423	-2.47992	-0.32644	42	С	5.291905	-2.11838	1.559341
13	С	-2.70721	-2.33873	-0.8003	43	Н	6.286129	-1.85158	1.906937
14	С	4.430847	1.115002	-1.10824	44	С	5.291909	2.118391	-1.55931
15	Н	4.754173	0.081042	-1.13056	45	Н	6.286139	1.851594	-1.90689
16	С	-0.81505	3.772557	0.124526	46	С	0.493488	3.975049	-0.26175
17	Н	-1.47037	4.628397	0.237202	47	Н	0.873692	4.977046	-0.43936
18	С	-0.81504	-3.77256	-0.12457	48	С	-2.62727	-6E-06	0.000011
19	Н	-1.47034	-4.6284	-0.23726	49	С	2.001424	-0.64684	0.218672

-				
20	С	-4.64835	0.920373	1.175253
21	Н	-5.11943	-0.05417	1.127527
22	С	-3.35367	1.093581	0.624393
23	С	-4.67049	3.202001	1.958698
24	Н	-5.16938	4.013541	2.481285
25	С	-3.39136	3.381872	1.464878
26	Н	-2.88959	4.327094	1.640578
27	С	3.152951	-1.46219	0.658073
28	С	3.15295	1.462194	-0.65806
29	С	-4.64835	-0.92039	-1.17522
30	Н	-5.11945	0.054158	-1.12748

50	С	3.592314	-3.80946	1.187122
51	Н	3.261792	-4.84309	1.247728
52	С	-4.67049	-3.202	-1.9587
53	Н	-5.16937	-4.01354	-2.4813
54	С	-5.29876	-1.95361	-1.82466
55	Н	-6.28286	-1.78704	-2.25412
56	С	3.5923	3.809464	-1.18714
57	Н	3.261769	4.843086	-1.24777
58	С	0.493509	-3.97505	0.261706
59	Н	0.873721	-4.97705	0.4393
60	С	2.001423	0.64685	-0.21866

10-2. Cartesian coordinates for optimized geometry of A1.

no.	atom	Х	Y	Z
1	С	-0.45114	-1.63878	0.140991
2	С	0.853501	-1.44814	-0.31293
3	С	1.488037	-3.69674	0.402251
4	С	0.178456	-3.90053	0.870165
5	Н	2.21539	-4.50051	0.467616
6	Н	-0.09077	-4.85565	1.311361
7	С	1.818909	-2.48843	-0.20042
8	С	3.025881	-2.08729	-0.92998

no.	atom	Х	Y	Z
32	С	-3.07162	1.095997	-0.95319
33	С	-4.14163	0.560433	-1.67115
34	С	-4.03326	3.335101	-1.12347
35	С	-5.16565	1.414695	-2.09341
36	Н	-4.18213	-0.49763	-1.90933
37	С	-5.12129	2.783924	-1.80839
38	Н	-3.98727	4.404602	-0.93873
39	Н	-6.00098	1.009698	-2.65648

					_					
9	С	-0.77448	-2.90584	0.713034		40	Н	-5.92814	3.429239	-2.14217
10	С	-2.77135	-1.70526	0.529162		41	С	-1.70711	2.772649	-0.10508
11	С	-1.68443	-0.85507	-0.00803		42	С	-1.22091	3.91408	0.497324
12	С	2.815613	-0.81017	-1.48704		43	С	0.41613	1.642507	0.284232
13	С	3.772702	-0.21693	-2.30016		44	С	0.083438	3.937102	1.070005
14	С	4.96404	-0.90962	-2.54576		45	Н	-1.83993	4.804657	0.558237
15	Н	3.608572	0.76427	-2.73748		46	Н	0.444397	4.847711	1.538546
16	С	4.221452	-2.77096	-1.16659		47	С	0.878835	2.823869	0.969279
17	С	5.187537	-2.16924	-1.97571		48	С	1.537499	0.826603	0.002263
18	Н	5.721133	-0.46708	-3.18603		49	С	2.288627	2.589745	1.32493
19	Н	4.39826	-3.75558	-0.74302		50	С	2.684634	1.354116	0.732149
20	Н	6.118984	-2.69051	-2.17563		51	С	3.178534	3.336802	2.072587
21	С	-2.20935	-2.92491	0.99128		52	С	3.988675	0.876432	0.913042
22	С	-2.98722	-3.88766	1.621738		53	С	4.483172	2.839878	2.257843
23	С	-4.12626	-1.4455	0.77629		54	Н	2.887817	4.284532	2.516056
24	С	-4.34788	-3.62918	1.821917		55	С	4.87732	1.626811	1.693039
25	Н	-2.54935	-4.81786	1.972052		56	Н	4.313642	-0.05991	0.478579
26	С	-4.9048	-2.41333	1.414822		57	Н	5.191441	3.412895	2.84881
27	Н	-4.58247	-0.50768	0.489534		58	Н	5.886187	1.260329	1.853253
28	Н	-4.97009	-4.3711	2.313442		59	Н	-5.9559	-2.21339	1.598503
29	С	-1.82599	0.464073	-0.45771		60	С	1.475308	-0.26424	-1.0319
30	С	-0.92517	1.557738	-0.14287		61	Н	0.84429	0.078199	-1.86346
31	С	-3.00595	2.488725	-0.71683						

10-3. Cartesian coordinates for optimized geometry of A2.

no.	atom	Х	Y	Z	no.	atom	Х	Y	Ζ
1	С	-0.83553	-2.74204	-0.63631	32	С	1.77922	-2.77022	0.273391
2	С	-3.2963	0.182409	1.421976	33	С	4.06992	1.818486	-0.8473
3	С	-0.27303	-1.55962	-0.1015	34	Н	4.622603	0.889351	-0.78952
4	С	3.145638	-2.46685	0.697939	35	С	4.028268	4.190391	-1.4037
5	С	2.008857	3.08916	-0.72476	36	Н	4.555486	5.080798	-1.73256
6	С	-0.91582	0.991367	-0.01299	37	С	5.374882	-2.75666	1.539924
7	С	0.597468	2.845222	-0.46954	38	Н	6.195929	-3.40364	1.83377
8	С	1.060558	-1.54038	0.241176	39	C	-4.24716	-1.13787	-2.55756
9	С	0.391518	1.453741	-0.2474	40	Н	-5.06719	-0.66437	-3.08771
10	С	-2.0984	-2.3957	-1.26982	41	C	4.71881	2.978701	-1.27667
11	С	-1.93823	1.952935	0.276667	42	Н	5.775338	2.935296	-1.5241
12	С	-3.1499	1.543366	0.998321	43	C	5.500242	-1.36954	1.675838
13	С	4.463319	-0.512	1.295698	44	Н	6.41277	-0.95087	2.089615
14	Н	4.572406	0.55777	1.433181	45	С	1.180032	-3.96829	-0.12267
15	С	-0.12138	-3.94739	-0.63004	46	Н	1.740518	-4.89802	-0.10664
16	Н	-0.56163	-4.85385	-1.03476	47	С	1.745178	0.824364	-0.13852
17	С	-1.68881	3.320452	0.033411	48	С	2.659838	4.250494	-1.13877
18	Н	-2.46595	4.054287	0.20774	49	Н	2.114174	5.179955	-1.27523
19	С	-3.48254	-0.3959	-1.67005	50	С	-5.20217	2.034672	2.220627
20	Н	-3.71675	0.645741	-1.48036	51	Н	-5.95132	2.762749	2.518159

-				
21	С	-2.39857	-1.02055	-1.03112
22	С	-3.97487	-2.50382	-2.76964
23	Н	-4.60216	-3.07003	-3.45185
24	С	-2.91217	-3.1378	-2.13151
25	Н	-2.70011	-4.18453	-2.32635
26	С	2.707979	1.874494	-0.53456
27	С	3.288409	-1.05471	0.770782
28	С	-4.36736	-0.21306	2.264198
29	Н	-4.43825	-1.25396	2.56799
30	С	-4.1518	2.443941	1.40823
31	Н	-4.11378	3.483924	1.108918

52	С	-5.31039	0.705782	2.672074
53	Н	-6.13198	0.410208	3.315922
54	С	4.189016	-3.31649	1.058028
55	Н	4.079347	-4.39526	0.991089
56	С	-0.44897	3.762005	-0.39216
57	Н	-0.27892	4.817034	-0.583
58	С	2.015419	-0.42753	0.34857
59	С	-1.30877	-0.45906	-0.02019
60	С	-2.39576	-0.78797	0.937365
61	Н	-2.48046	-1.81395	1.281119

10-4. Cartesian coordinates for optimized geometry of A3.

no.	atom	Х	Y	Z
1	С	1.595984	2.276742	-0.29562
2	С	3.233577	-1.26481	0.567433
3	С	0.640118	1.176522	-0.1672
4	С	-2.46435	2.939523	0.841912
5	С	1.135762	-0.14848	-0.20502
6	С	-2.96382	-2.65957	-0.73753
7	С	0.393078	-1.35165	0.049716
8	С	-1.56888	-2.80577	-0.31724

no.	atom	Х	Y	Z
32	Н	2.438039	-4.09935	2.291342
33	С	-1.04187	2.860817	0.526611
34	С	-4.48611	-0.84163	-1.28706
35	Н	-4.70929	0.214077	-1.39072
36	С	-5.13694	-3.16183	-1.61715
37	Н	-5.87833	-3.88619	-1.94066
38	С	-4.56724	3.748275	1.659123
39	Н	-5.17802	4.55039	2.062203

					-					
9	С	-0.71477	1.526045	0.168001		40	С	5.394146	1.578527	-2.13728
10	С	-0.99565	-1.50375	-0.19894		41	Н	6.340679	1.386753	-2.63336
11	С	2.923063	2.058407	-0.88048		42	С	-5.41866	-1.79482	-1.70734
12	С	1.129762	-2.54254	0.431872		43	Н	-6.36965	-1.46732	-2.11589
13	С	2.486625	-2.38215	0.978067		44	С	-5.12289	2.477643	1.474081
14	С	-4.36307	1.429222	0.949056		45	Н	-6.15801	2.298676	1.74833
15	Н	-4.80876	0.448089	0.844998		46	С	-0.07628	3.851713	0.537874
16	С	1.221376	3.554427	0.1143		47	Н	-0.32328	4.864746	0.842613
17	Н	1.953572	4.352091	0.105885		48	С	-2.06774	-0.53658	-0.32606
18	С	0.515262	-3.78637	0.366944		49	С	-3.89733	-3.6064	-1.14255
19	Н	1.084196	-4.67201	0.628494		50	Н	-3.67099	-4.66839	-1.11435
20	С	4.628226	0.518386	-1.66457		51	С	4.280092	-3.01359	2.483847
21	Н	4.980153	-0.50195	-1.79129		52	Н	4.682633	-3.68896	3.232526
22	С	3.403295	0.748938	-1.02656		53	С	5.008825	-1.89429	2.081817
23	С	4.926693	2.889177	-1.98912		54	Н	5.980283	-1.68849	2.521225
24	Н	5.506779	3.723048	-2.37215		55	С	-3.22362	3.985681	1.356282
25	С	3.703879	3.124641	-1.37842		56	Н	-2.78503	4.962387	1.539685
26	Н	3.336464	4.143027	-1.32801		57	С	-0.81941	-3.93305	-0.04808
27	С	-3.26406	-1.27636	-0.76708		58	Н	-1.25562	-4.92504	-0.12199
28	С	-3.03046	1.667086	0.597162		59	С	-1.95673	0.7708	0.120945
29	С	4.487925	-1.02209	1.121124		60	С	2.592446	-0.41811	-0.54271
30	Н	5.062804	-0.15589	0.814478		61	Н	2.528323	-1.10379	-1.40573
31	С	3.020256	-3.25308	1.940219						

10-5. Cartesian coordinates for optimized geometry of B1.

no.	atom	Х	Y	Z	no.	atom	Х	Y	Z
1	С	0.672605	1.660834	0.211884	31	С	0.672605	-1.66083	-0.21188
2	С	-0.67261	1.660834	-0.21188	32	С	2.656566	-2.68784	-0.95978
3	С	-0.65341	4.132039	-0.25858	33	С	2.921616	-1.30621	-0.82976
4	С	0.653409	4.132039	0.258584	34	С	4.109979	-0.77426	-1.34525
5	Н	-1.16069	5.071754	-0.4549	35	С	3.588928	-3.54907	-1.52503
6	Н	1.160687	5.071754	0.454897	36	С	5.0419	-1.63812	-1.92501
7	С	-1.29438	2.926999	-0.48422	37	Н	4.311042	0.290106	-1.30835
8	С	-2.65657	2.687835	-0.95978	38	С	4.793077	-3.01302	-1.99967
9	С	-1.7302	0.645246	-0.26819	39	Н	3.388301	-4.61215	-1.62117
10	С	1.294381	2.926999	0.484219	40	Н	5.965868	-1.23529	-2.32797
11	С	2.921616	1.306211	0.829756	41	Н	5.531561	-3.66986	-2.44947
12	С	1.7302	0.645246	0.268185	42	С	1.294381	-2.927	-0.48422
13	С	-2.92162	1.306211	-0.82976	43	С	0.653409	-4.13204	-0.25858
14	С	-4.10998	0.774262	-1.34525	44	С	-0.67261	-1.66083	0.211884
15	С	-5.0419	1.63812	-1.92501	45	С	-0.65341	-4.13204	0.258584
16	Н	-4.31104	-0.29011	-1.30835	46	Н	1.160687	-5.07175	-0.4549
17	С	-3.58893	3.549066	-1.52503	47	Н	-1.16069	-5.07175	0.454897
18	С	-4.79308	3.013018	-1.99967	48	С	-1.29438	-2.927	0.484219
19	Н	-5.96587	1.235292	-2.32797	49	С	-1.7302	-0.64525	0.268185
20	Н	-3.3883	4.612145	-1.62117	50	С	-2.65657	-2.68784	0.959783

21	Н	-5.53156	3.669859	-2.44947
22	С	2.656566	2.687835	0.959783
23	С	3.588928	3.549066	1.525028
24	С	4.109979	0.774262	1.345251
25	С	4.793077	3.013018	1.999673
26	Н	3.388301	4.612145	1.621167
27	С	5.0419	1.63812	1.92501
28	Н	4.311042	-0.29011	1.308353
29	Н	5.531561	3.669859	2.449466
30	С	1.7302	-0.64525	-0.26819

51	С	-2.92162	-1.30621	0.829756
52	С	-3.58893	-3.54907	1.525028
53	С	-4.10998	-0.77426	1.345251
54	С	-4.79308	-3.01302	1.999673
55	Н	-3.3883	-4.61215	1.621167
56	С	-5.0419	-1.63812	1.92501
57	Н	-4.31104	0.290106	1.308353
58	Н	-5.53156	-3.66986	2.449466
59	Н	-5.96587	-1.23529	2.327973
60	Н	5.965868	1.235292	2.327973

10-6. Cartesian coordinates for optimized geometry of **B2**.

no.	atom	Х	Y	Z
1	С	0.000106	1.740948	0.628698
2	С	0.229959	1.705392	-0.7505
3	С	0.337429	4.186844	-0.72846
4	С	0.07396	4.208882	0.64428
5	Н	0.479312	5.117256	-1.26951
6	Н	0.013051	5.153922	1.176177
7	С	0.434687	2.970056	-1.39619
8	С	0.797084	2.734395	-2.78638
9	С	0.235958	0.649633	-1.80859

no.	atom	Х	Y	Z	
31	С	0.227408	-2.73785	2.74488	
32	С	0.248584	-1.32806	2.90353	
33	С	0.23105	-3.53934	3.866421	
34	С	0.290226	-1.60072	5.371951	
35	С	0.245861	-2.94537	5.180849	
36	Н	0.175691	-4.62124	3.783571	
37	Н	0.321743	-1.19479	6.378853	
38	Н	0.210909	-3.6087	6.039894	
39	С	0.070861	-3.00111	1.309816	

					_					
10	С	-0.07086	3.001105	1.309816		40	С	-0.07396	-4.20888	0.64428
11	С	-0.24858	1.328057	2.90353		41	С	-0.22996	-1.70539	-0.7505
12	С	-0.07531	0.699663	1.655622		42	С	-0.33743	-4.18684	-0.72846
13	С	0.723555	1.346191	-3.02906		43	Н	-0.01305	-5.15392	1.176177
14	С	1.250915	0.839966	-4.22424		44	Н	-0.47931	-5.11726	-1.26951
15	С	1.744406	1.724212	-5.18334		45	С	-0.43469	-2.97006	-1.39619
16	Н	1.285654	-0.22602	-4.41349		46	С	-0.23596	-0.64963	-1.80859
17	С	1.27574	3.621993	-3.74993		47	С	-0.79708	-2.7344	-2.78638
18	С	1.734889	3.10829	-4.96239		48	С	-0.72356	-1.34619	-3.02906
19	Н	2.15005	1.331009	-6.11077		49	С	-1.27574	-3.62199	-3.74993
20	Н	1.321477	4.689404	-3.55356		50	С	-1.25092	-0.83997	-4.22424
21	Н	2.116763	3.780189	-5.72522		51	С	-1.73489	-3.10829	-4.96239
22	С	-0.22741	2.737845	2.74488		52	Н	-1.32148	-4.6894	-3.55356
23	С	-0.23105	3.539342	3.866421		53	С	-1.74441	-1.72421	-5.18334
24	С	-0.24586	2.945373	5.180849		54	Н	-1.28565	0.226022	-4.41349
25	Н	-0.17569	4.621242	3.783571		55	Н	-2.11676	-3.78019	-5.72522
26	С	-0.29023	1.60072	5.371951		56	Н	-2.15005	-1.33101	-6.11077
27	Н	-0.21091	3.6087	6.039894		57	С	-0.43469	0.650377	4.218921
28	Н	-0.32174	1.194787	6.378853		58	Н	-1.48876	0.301876	4.258624
29	С	0.075306	-0.69966	1.655622		59	С	0.434687	-0.65038	4.218921
30	С	-0.00011	-1.74095	0.628698		60	Н	1.488758	-0.30188	4.258624

10-7. Cartesian coordinates for optimized geometry of C1.

no.	atom	Х	Y	Z	no.	atom	Х	Y	Z
1	С	1.083208	-2.4629	0.551126	32	Н	3.22714	4.287375	-1.27389
2	С	3.418756	0.907393	-0.76593	33	C	-1.64787	-2.58692	-0.11177
3	С	0.444067	-1.28073	0.059376	34	С	-4.31488	1.098498	0.797146
4	С	-2.97958	-2.43056	-0.69858	35	Н	-4.68952	0.143541	0.452043
5	С	1.228549	-0.06433	-0.14508	36	C	-4.70526	3.217834	1.923875
6	С	-2.51367	2.727327	1.082633	37	Н	-5.38356	3.89418	2.435235
7	С	0.673459	1.262977	-0.1264	38	С	-5.17258	-2.94708	-1.52915
8	С	-1.07893	2.816289	0.756039	39	Н	-5.99844	-3.6425	-1.64549
9	С	-0.91806	-1.39367	-0.27595	40	С	5.254052	-2.30877	1.51578
10	С	-0.68995	1.558258	0.187538	41	Н	6.298314	-2.24379	1.804787
11	С	2.504436	-2.43442	0.86274	42	С	-5.16843	1.983834	1.474522
12	С	1.55402	2.405303	-0.17137	43	Н	-6.20229	1.700986	1.645088
13	С	2.888248	2.222143	-0.72861	44	С	-5.25712	-1.67118	-2.10163
14	С	-4.20602	-0.75641	-1.96764	45	Н	-6.14459	-1.3911	-2.66128
15	Н	-4.27855	0.230769	-2.41631	46	С	-1.02003	-3.71994	0.408272
16	С	0.326096	-3.64231	0.723635	47	Н	-1.55466	-4.65834	0.518887
17	Н	0.815134	-4.53996	1.08063	48	C	2.647576	-0.17426	-0.1637
18	С	1.119636	3.63748	0.314171	49	С	-1.85583	0.802573	-0.04198
19	Н	1.819127	4.466738	0.333261	50	С	-3.36273	3.604465	1.726567
20	С	4.658419	-1.26294	0.84215	51	Н	-3.01624	4.570264	2.082677

-				
21	Н	5.236587	-0.36979	0.646881
22	С	3.28609	-1.30437	0.467398
23	С	4.493014	-3.43871	1.856717
24	Н	4.951691	-4.26304	2.394623
25	С	3.14495	-3.48802	1.548105
26	Н	2.575561	-4.34895	1.875717
27	С	-2.98314	1.471127	0.601403
28	С	-3.0785	-1.13913	-1.25029
29	С	4.64284	0.685725	-1.43636
30	Н	5.011357	-0.32661	-1.55558
31	С	3.632111	3.280805	-1.27914

52	С	4.853745	3.046451	-1.89493
53	Н	5.404323	3.873398	-2.33298
54	С	5.349125	1.739486	-1.99587
55	Н	6.276333	1.546636	-2.52652
56	С	-4.03194	-3.34121	-0.82882
57	Н	-3.96441	-4.34029	-0.40788
58	С	-0.17982	3.850373	0.827042
59	Н	-0.45264	4.824315	1.22129
60	С	-1.80323	-0.36813	-0.97299
61	Н	-1.33971	-0.02807	-1.91162

10-8. Cartesian coordinates for optimized geometry of C2.

no.	atom	Х	Y	Z
1	С	-1.01849	-2.7759	-0.32065
2	С	-3.51861	0.511416	1.292013
3	С	-0.52127	-1.53958	0.09129
4	С	3.099676	-2.15947	0.625239
5	С	-1.55301	-0.45927	0.057074
6	С	2.310704	2.621454	-0.62263
7	С	-1.01223	0.926331	-0.05458
8	С	0.89123	2.436575	-0.3705

no.	atom	Х	Y	Z
32	Н	-3.95697	3.814031	0.518378
33	С	1.70474	-2.42465	0.315372
34	С	4.547052	1.687444	-0.89062
35	Н	5.216737	0.837572	-0.88406
36	С	4.140988	3.995683	-1.4678
37	Н	4.498119	4.94679	-1.85081
38	С	5.249316	-2.90766	1.494525
39	Н	5.893299	-3.712	1.836827

					_					
9	С	0.835854	-1.30049	0.252304		40	С	-4.50143	-1.48657	-2.36653
10	С	0.392571	1.121469	-0.16745		41	Н	-5.33587	-1.09795	-2.94108
11	С	-2.31371	-2.54022	-0.95058		42	С	5.006488	2.894433	-1.38574
12	С	-1.87659	2.018851	0.145315		43	Н	6.033895	2.980583	-1.72665
13	С	-3.1983	1.799593	0.743413		44	С	5.689085	-1.57778	1.545145
14	С	4.867481	-0.55506	1.097807		45	Н	6.669107	-1.34195	1.949101
15	Н	5.210214	0.468022	1.188814		46	С	1.161778	-3.71118	0.077225
16	С	-0.16387	-3.89325	-0.29694		47	Н	1.815308	-4.5761	0.094989
17	Н	-0.51264	-4.87711	-0.59593		48	С	2.709982	0.260754	0.077695
18	С	-1.35471	3.322063	-0.0392		49	С	2.815046	3.850313	-1.10679
19	Н	-1.9889	4.190815	0.092518		50	Н	2.146168	4.691579	-1.24663
20	С	-3.7537	-0.62903	-1.57089		51	С	-5.28954	2.62314	1.68336
21	Н	-4.02169	0.418807	-1.48661		52	Н	-5.98818	3.444112	1.816168
22	С	-2.64996	-1.14609	-0.87351		53	С	-5.56554	1.375567	2.272962
23	С	-4.19556	-2.85843	-2.41751		54	Н	-6.46565	1.236225	2.862498
24	Н	-4.81078	-3.51641	-3.02427		55	С	3.966927	-3.18589	1.054977
25	С	-3.11429	-3.39091	-1.71415		56	Н	3.609055	-4.20919	1.092872
26	Н	-2.87942	-4.44821	-1.78959		57	С	-0.02528	3.514185	-0.33571
27	С	3.211403	1.524676	-0.45		58	Н	0.330179	4.529263	-0.46431
28	С	3.577747	-0.81187	0.580463		59	С	1.33549	0.042805	0.078267
29	С	-4.68974	0.328732	2.068903		60	С	-2.68323	-0.59656	1.003921
30	Н	-4.89796	-0.65498	2.480934		61	Н	-2.85178	-1.54857	1.49744
31	С	-4.13321	2.831821	0.941058						

10-9. Cartesian coordinates for optimized geometry of C3.

no.	atom	Х	Y	Z	no.	atom	Х	Y	Z
1	С	-1.54202	2.365463	-0.20931	32	Н	-2.71129	-4.49191	1.413825
2	С	-3.47979	-1.33297	0.354363	33	С	1.306367	2.475459	0.228938
3	С	-0.75626	1.164577	-0.15239	34	С	4.944266	-0.98714	-0.93593
4	С	2.727409	2.511849	0.53289	35	Н	5.407183	-0.01398	-1.0371
5	С	-1.38269	-0.09276	-0.21062	36	С	5.036989	-3.37082	-1.28252
6	С	2.961616	-2.35224	-0.5121	37	Н	5.587439	-4.25642	-1.58525
7	С	-0.63552	-1.28529	-0.06883	38	С	4.687469	3.690509	1.375997
8	С	1.534937	-2.43472	-0.23941	39	Н	5.148865	4.612537	1.716442
9	С	0.670511	1.227147	0.026672	40	С	-5.64621	2.185092	-1.39932
10	С	0.789809	-1.23295	-0.14096	41	Н	-6.66494	2.131515	-1.77106
11	С	-2.9763	2.304831	-0.51147	42	С	5.646646	-2.10781	-1.33632
12	С	-1.30887	-2.53161	0.132853	43	Н	6.660866	-2.00571	-1.7097
13	С	-2.71902	-2.51199	0.542583	44	С	5.410492	2.486866	1.403601
14	С	4.822013	1.321151	0.955447	45	Н	6.423154	2.466557	1.794205
15	Н	5.370609	0.392075	1.036594	46	С	0.500958	3.62772	0.194125
16	С	-0.86876	3.578106	-0.02171	47	Н	0.951073	4.604452	0.329129
17	Н	-1.40909	4.51559	-0.04321	48	C	2.86463	0.090119	-0.02536
18	С	-0.54181	-3.69808	0.070035	49	С	3.712991	-3.48237	-0.89577
19	Н	-1.01383	-4.66742	0.183165	50	Н	3.243151	-4.45843	-0.9323
20	С	-4.91778	1.017361	-1.19837	51	С	-4.57603	-3.50509	1.762605

-				
21	Н	-5.37359	0.059264	-1.42851
22	С	-3.60402	1.054708	-0.71293
23	С	-5.05628	3.423267	-1.12755
24	Н	-5.61635	4.341806	-1.27251
25	С	-3.737	3.478967	-0.70645
26	Н	-3.28941	4.453	-0.55089
27	С	3.609137	-1.07791	-0.46432
28	С	3.491823	1.304329	0.45808
29	С	-4.75433	-1.24654	0.910868
30	Н	-5.32923	-0.33374	0.817523
31	С	-3.29037	-3.59127	1.24076

52	Н	-4.9985	-4.3454	2.304638
53	С	-5.30006	-2.32253	1.615817
54	Н	-6.28743	-2.22672	2.05755
55	С	3.366689	3.693294	0.96666
56	Н	2.812204	4.622643	1.021586
57	С	0.832661	-3.64806	-0.141
58	Н	1.370039	-4.58808	-0.19602
59	С	1.44793	0.03212	-0.06107
60	С	-2.84696	-0.23943	-0.52166
61	Н	-2.83254	-0.69969	-1.52975

10-10. Cartesian coordinates for optimized geometry of **D1**.

no.	atom	Х	Y	Z
1	С	0.531721	2.431327	1.338895
2	С	-0.73972	-1.01411	3.347344
3	С	0.196741	1.279526	0.536599
4	С	-0.61944	2.842128	-2.72572
5	С	0	0	1.195588
6	С	0.619437	-2.84213	-2.72572
7	С	-0.19674	-1.27953	0.536599
8	С	0.229906	-2.87846	-1.31664

no.	atom	Х	Y	Z
31	С	-1.77774	-3.21527	3.374698
32	Н	-2.03188	-4.14696	2.88207
33	С	-0.22991	2.87846	-1.31664
34	С	1.085358	-1.15221	-4.40976
35	Н	1.157211	-0.1188	-4.72756
36	С	1.453387	-3.51217	-4.87165
37	Н	1.774527	-4.29071	-5.55701
38	С	-1.45339	3.512167	-4.87165

9	С	-0.08941	1.540506	-0.83823	39	Н	-1.77453	4.290706	-5.55701
10	С	0.089407	-1.54051	-0.83823	40	С	2.020029	1.752348	5.286785
11	С	1.021084	2.242129	2.697252	41	Н	2.43966	1.550231	6.267243
12	С	-0.53172	-2.43133	1.338895	42	С	1.502003	-2.17358	-5.2707
13	С	-1.02108	-2.24213	2.697252	43	Н	1.874356	-1.91939	-6.25827
14	С	-1.08536	1.15221	-4.40976	44	С	-1.502	2.173584	-5.2707
15	Н	-1.15721	0.118798	-4.72756	45	Н	-1.87436	1.919386	-6.25827
16	С	0.409249	3.723984	0.818086	46	С	0	3.963469	-0.49377
17	Н	0.606094	4.572428	1.46284	47	Н	-0.10916	4.980889	-0.8565
18	С	-0.40925	-3.72398	0.818086	48	С	0	0	2.634856
19	Н	-0.60609	-4.57243	1.46284	49	С	0.190262	-0.66624	-1.99321
20	С	1.273888	0.782763	4.64171	50	С	1.021532	-3.85769	-3.58466
21	Н	1.140498	-0.18597	5.1079	51	Н	1.023536	-4.8965	-3.26734
22	С	0.739716	1.014114	3.347344	52	С	-2.26116	-2.98143	4.65466
23	С	2.261164	2.981429	4.65466	53	Н	-2.85736	-3.74113	5.151034
24	Н	2.857363	3.741126	5.151034	54	С	-2.02003	-1.75235	5.286785
25	С	1.777739	3.215267	3.374698	55	Н	-2.43966	-1.55023	6.267243
26	Н	2.031879	4.146958	2.88207	56	С	-1.02153	3.857692	-3.58466
27	С	0.60834	-1.49164	-3.14099	57	Н	-1.02354	4.896503	-3.26734
28	С	-0.60834	1.491639	-3.14099	58	С	0	-3.96347	-0.49377
29	С	-1.27389	-0.78276	4.64171	59	Н	0.109156	-4.98089	-0.8565
30	Н	-1.1405	0.18597	5.1079	60	С	-0.19026	0.666244	-1.99321

10-11. Cartesian coordinates for optimized geometry of **D2**.

no.	atom	Х	Y	Z		no.	atom	Х	Y	Z
1	С	0.314458	2.515318	1.413433		31	С	-0.07779	2.906698	-1.34594
2	С	-0.58464	-1.11335	3.41881		32	C	0.021025	-3.02163	-5.24576
3	С	0.120316	1.332475	0.616999		33	Н	-0.10146	-3.71274	-6.07452
4	С	-0.17163	2.748767	-2.82177		34	C	-0.02103	3.021626	-5.24576
5	С	0	0	1.269371		35	Н	0.101461	3.712739	-6.07452
6	С	0.171626	-2.74877	-2.82177		36	C	1.720351	1.981657	5.398447
7	С	-0.12032	-1.33248	0.616999		37	Н	2.150085	1.81037	6.380828
8	С	0.07779	-2.9067	-1.34594		38	C	0.096282	-1.68776	-5.5025
9	С	-0.02847	1.610328	-0.76475		39	Н	0.065212	-1.33178	-6.52856
10	С	0.028465	-1.61033	-0.76475		40	C	-0.09628	1.687758	-5.5025
11	С	0.713005	2.381941	2.803932		41	Н	-0.06521	1.331775	-6.52856
12	С	-0.31446	-2.51532	1.413433		42	C	0	4.023448	-0.52456
13	С	-0.71301	-2.38194	2.803932		43	Н	-0.07132	5.035673	-0.91089
14	С	0.19763	3.800713	0.83323		44	C	0	0	2.678052
15	Н	0.264193	4.664573	1.483231		45	С	0.076988	-0.68437	-1.85553
16	С	-0.19763	-3.80071	0.83323		46	С	0.079609	-3.58564	-3.91061
17	Н	-0.26419	-4.66457	1.483231		47	Н	-0.00771	-4.66293	-3.79894
18	С	1.135447	0.932904	4.711637		48	C	-1.78192	-3.25422	4.811971
19	Н	1.138538	-0.05429	5.156604	1	49	Н	-2.24295	-4.081	5.343898
20	С	0.584639	1.113351	3.41881	1	50	С	-1.72035	-1.98166	5.398447

21	С	1.781916	3.254215	4.811971
22	Н	2.242945	4.080996	5.343898
23	С	1.300622	3.442383	3.52883
24	Н	1.431473	4.412378	3.063696
25	С	0.209519	-1.35017	-3.07197
26	С	-0.20952	1.350169	-3.07197
27	С	-1.13545	-0.9329	4.711637
28	Н	-1.13854	0.054293	5.156604
29	С	-1.30062	-3.44238	3.52883
30	Н	-1.43147	-4.41238	3.063696

51	Н	-2.15009	-1.81037	6.380828
52	С	-0.07961	3.585644	-3.91061
53	Н	0.007712	4.66293	-3.79894
54	С	0	-4.02345	-0.52456
55	Н	0.071323	-5.03567	-0.91089
56	С	-0.07699	0.684373	-1.85553
57	С	-0.37221	0.697207	-4.40279
58	Н	-1.45186	0.450259	-4.50427
59	С	0.372212	-0.69721	-4.40279
60	Н	1.451863	-0.45026	-4.50427