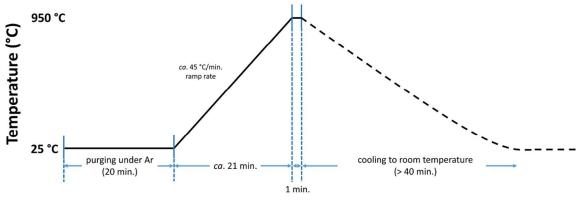
A Post-Synthetic Route for Modifying the Metal—Insulator Transition of VO₂ by Interstitial Dopant Incorporation

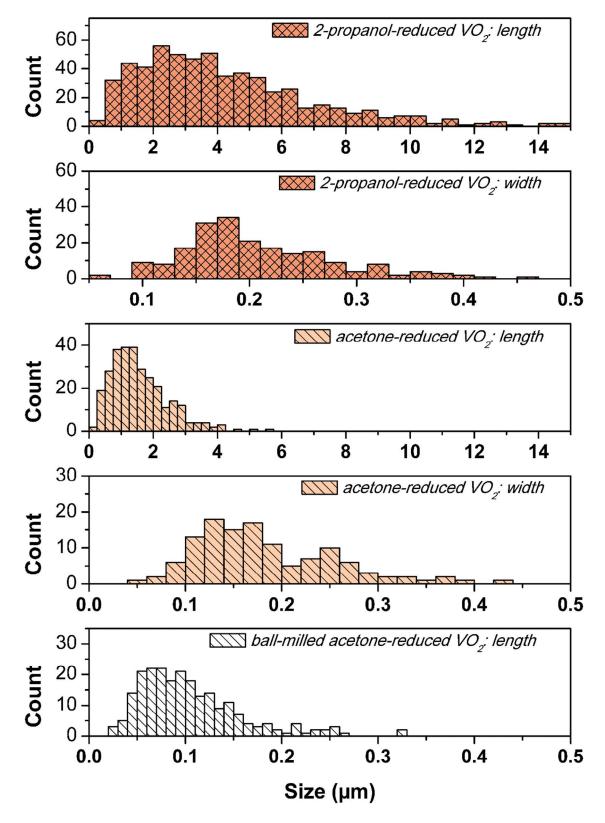
Theodore E. G. Alivio,^{*a,b*†} Diane G. Sellers,^{*a,b*†} Hasti Asayesh-Ardakani,^{*c,d*} Erick J. Braham,^{*a,b*} Gregory A. Horrocks,^{*a,b*} Kate E. Pelcher,^{*a,b*} Ruben Villareal,^{*b,e*} Lucia Zuin,^{*f*} Patrick J. Shamberger,^{*b*} Raymundo Arróyave,^{*b,e*} Reza Shahbazian-Yassar,^{*c,d*} and Sarbajit Banerjee*^{*a,b*}

^a Department of Chemistry, Texas A&M University, College Station, Texas 77842-3012, United States

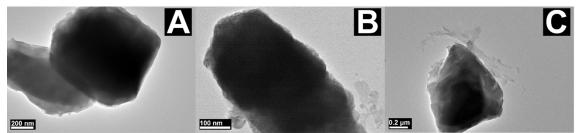

^b Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, 77843-3003, United States

^c Department of Mechanical Engineering-Engineering Mechanics, Michigan Technological University, Houghton, Michigan 49933-1295, United States

^d Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607-7059, United States

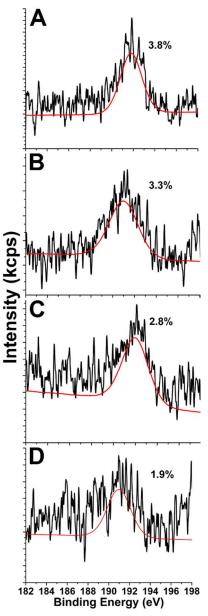

^e Department of Mechanical Engineering, Texas A&M University, College Station, Texas, 77843-3123, United States

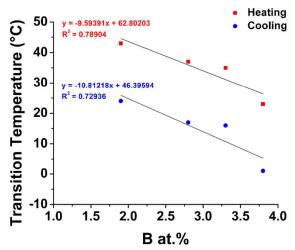
^f Canadian Light Source, University of Saskatchewan, Saskatoon S7N 2V3, Canada

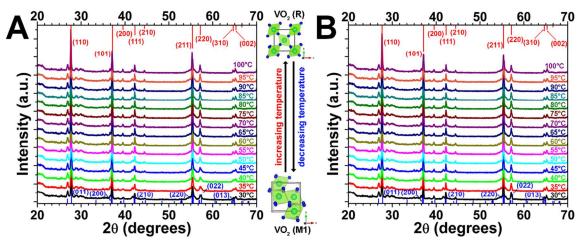


Time (minutes)

Figure S1: Rapid thermal annealing diagram for the diffusive doping process.


Figure S2: Size distribution histograms for VO₂ samples prepared by 2-propanol-reduction of V_2O_5 , reduction of V_2O_5 by acetone, and reduction of V_2O_5 by acetone followed by ball milling. The dimensions are derived from TEM images.


Figure S3: TEM images of B-incorporated samples of VO₂ nanowires reduced from A) 2-propanol, B) acetone, and C) acetone, subsequently ball-milled.


Figure S4: TEM images of VO₂ nanowires reduced from A) 2-propanol, B) acetone, and C) acetone, subsequently ball-milled annealed without exposure to the molecular B precursor.

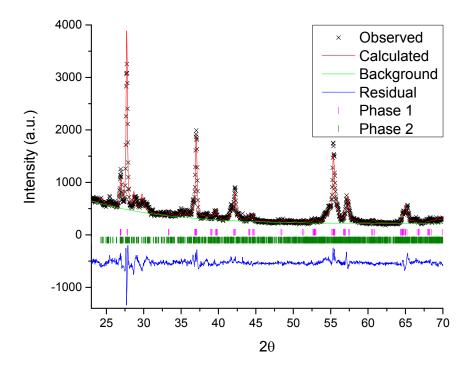

Figure S5: High-resolution B 1s XPS spectra of B-incorporated VO_2 samples with increasing B content. All fits (shown in red) are plotted as B-spline functions.

Figure S6: Linear relationship between atomic percent of B as deduced from XPS and VO₂ transition temperatures determined from DSC measurements.

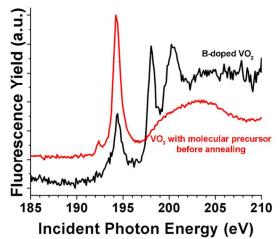

Figure S7: XRD patterns corresponding to *in situ* heating (a) and cooling (c) of a B-incorporated VO₂ sample collected at 5°C increments from 30 to 100 °C. Vertical bars indicate positions and relative intensities of reflections derived from JCPDS XRD patterns. Reflections of VO₂(M₁) are indicated in blue (JCPDS # 43-1051) and VO₂(R) in red (JCPDS # 79-1655).

Figure S8. Rietveld refinement of powder XRD pattern of 2.8 at.% B-doped VO₂ nanocrystals acquired at 295 K (see <u>Table S1</u> for details). Pink tick marks indicate the position of reflections corresponding to the P1 21/c 1 monoclinic space group of VO₂ whereas green tick marks indicate the position of reflections corresponding to the P -1 triclinic space group of V₈O₁₅.

Table S1. Tabulated parameters from a Rietveld refinement of 2.8 at.% B-doped VO₂ structure. Refinement statistics, including goodness of fit (χ^2), weighted goodness of fit (wRp) and the individual point residuals (Rp) show good agreement between the observed and calculated patterns.

Phase 1: VO ₂ (M ₁) // Space Group: P1 21/c 1 // Wt. Fraction: 0.55810 // Vol: 118.70(3) Å ³				
$\alpha = 90.000(0)^{\circ}$	$\beta = 122.31(2)^{\circ}$	$\gamma = 90.000(0)^{\circ}$		
a = 5.7424(8)	b = 4.539(1)	c = 5.388(2)		
$X^2 = 4.511$	wRp = 0.1040	Rp = 0.0834		
Phase 2: V ₈ O ₁₅ (triclinic) // Space Group: P -1 // Wt. Fraction: 0.44190 // Vol: 916.095(0) Å ³				
$\alpha = 98.90(4)^{\circ}$	$\beta = 128.46 \ (3)^{\circ}$	γ= 109.12(3)°		
a = 5.450(3)	b = 7.011(2)	c=37.04(1)		
$X^2 = 4.511$	wRp = 0.1040	Rp = 0.0834		

Figure S9: B K-edge XANES spectra of an acetone-reduced B-doped VO₂ sample before and after thermal annealing.

Table S2: Fractional atomic coordinates of viable interstitial and substitutional sites for B placement within a tetragonal VO_2 assessed using DFT calculations.

Site	X	у	Z
<i>I1</i>	0.875000	0.000000	0.500000
<i>I2</i>	0.250001	0.411638	0.121699
I3	0.240321	0.875014	0.606839
V	0.500000	0.500000	0.250000
0	0.500000	0.779781	0.250000