Photoconversion Mechanisms and the Origin of Second-Harmonic Generation in Metal Iodates with Wide Transparency, NaLn(IO_3)₄ (Ln = La, Ce, Sm, and Eu) and NaLa(IO_3)₄:Ln³⁺ (Ln = Sm and Eu)

Seung-Jin Oh^a, Hyung-Gu Kim^a, Hongil Jo^a, Tae Gil Lim^b, Jae Soo Yoo^b and Kang Min Ok^{a*}

^aDepartment of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea

^bSchool of Chemical Engineering and Materials Science, Chung-Ang University, Seoul 06974, Republic of Korea

*E-mail: kmok@cau.ac.kr

Table of contents

Sections	Titles
Table S1.	Selected bond distances for NaLn(IO ₃) ₄ (Ln = La, Ce, Sm, and Eu)
Table S2.	Crystallographic information for NaLa _{1-x} Sm _x (IO ₃) ₄ ($x = 0-0.9$) solid solutions
Table S3.	Atomic ratios for NaLn(IO ₃) ₄ (Ln = La, Ce, Sm, and Eu) determined by EDX analyses
Table S4.	Bond-valence sum calculations for NaLn(IO_3) ₄ (Ln = La, Ce, Sm, and Eu)
Table S5.	Calculated dipole moments for LnO_8 and IO_3 polyhedra for $NaLn(IO_3)_4$ (Ln = La, Ce, Sm, and Eu)
Table S6.	Net direction of dipole moments for IO_3 polyhedra in NaLn(IO_3) ₄ (Ln = La, Ce, Sm, and Eu)
Table S7.	Fitted values of decay curves for NaLa $_{0.93}$ Sm $_{0.07}$ (IO $_3$) $_4$ and NaEu(IO $_3$) $_4$
Figure S1.	Rietveld plots for NaLa(IO ₃) ₄ and Sm ³⁺ -doped solid solutions (observed, black cross; calculated, red line; Bragg positions, magenta or cyan bar; difference, blue line)
Figure S2.	Ball-and-stick representations of (a) an asymmetric unit, (b) $La(1)O_8$, and (c) $La(2)O_8$ polyhedra in NaLa(IO_3) ₄
Figure S3.	PXRD patterns for NaLn(IO ₃) ₄ (Ln = La, Ce, Sm, and Eu)
Figure S4.	Variation of the unit cell parameters (a) a , (b) b , (c) c , and (d) β as a function of the samarium contents for NaLa _{1-x} Sm _x (IO ₃) ₄
Figure S5.	PXRD patterns for NaLa _{1-x} Sm _x (IO ₃) ₄ and NaLa _{1-x} Eu _x (IO ₃) ₄
Figure S6.	TGA diagrams for NaLn(IO ₃) ₄ (Ln = La, Ce, Sm, and Eu)
Figure S7.	PXRD patterns of the calcined products of NaLn(IO_3) ₄ (Ln = La, Ce, Sm, and Eu)
Figure S8.	The UV-vis diffuse-reflectance spectra for 1, 2, 3, and 4, which are represented by Kubelka-Munk function. The band-gap energy of each compounds is calculated with tangent line
Figure S9.	The excitation spectra of NaLa $_{0.93}$ Sm $_{0.07}$ (IO $_3$) $_4$ for 598 nm (blue) and 644 nm (red) emission
Figure S10.	Plots of PL intensities for NaLa _{1-x} Sm _x (IO ₃) ₄ as a function of Sm ³⁺ concentration ((a) excitation and (b) emission)
Figure S11.	Decay curves of NaLa _{0 93} Sm _{0.07} (IO ₃) ₄ and NaEu(IO ₃) ₄

	NaL	a(IO ₃) ₄		NaCe(IO ₃) ₄			
La(1)-O(1)	2.433(8)	I(1)-O(1)	1.809(8)	Ce(1)-O(1)	2.405(13)	I(1)-O(1)	1.823(11)
La(1)-O(2)	2.403(8)	I(1)-O(2)	1.791(9)	Ce(1)-O(2)	2.391(12)	I(1)-O(2)	1.796(11)
La(1)-O(3)	2.478(8)	I(1)–O(23)	1.825(9)	Ce(1)-O(3)	2.442(12)	I(1)–O(23)	1.833(12)
La(1)-O(5)	2.542(8)	I(2)–O(3)	1.817(8)	Ce(1)-O(5)	2.532(11)	I(2)–O(3)	1.824(12)
La(1)-O(6)	2.483(8)	I(2)–O(4)	1.821(8)	Ce(1)-O(6)	2.488(13)	I(2)–O(4)	1.793(12)
La(1)-O(9)	2.679(8)	I(2)–O(5)	1.819(8)	Ce(1)-O(9)	2.687(12)	I(2)–O(5)	1.823(11)
La(1)-O(20)	2.497(8)	I(3)–O(6)	1.823(8)	Ce(1)-O(20)	2.501(9)	I(3)–O(6)	1.822(12)
La(1)-O(23)	2.497(9)	I(3)–O(7)	1.802(8)	Ce(1)-O(23)	2.490(11)	I(3)–O(7)	1.811(11)
La(2)-O(12)	2.398(8)	I(3)–O(8)	1.798(8)	Ce(2)-O(12)	2.387(12)	I(3)–O(8)	1.791(13)
La(2)-O(13)	2.420(8)	I(4)–O(9)	1.823(8)	Ce(2)-O(13)	2.412(12)	I(4)–O(9)	1.815(12)
La(2)-O(14)	2.492(8)	I(4)–O(10)	1.798(9)	Ce(2)-O(14)	2.497(11)	I(4)–O(10)	1.803(10)
La(2)-O(16)	2.536(8)	I(4)–O(11)	1.789(8)	Ce(2)-O(16)	2.509(11)	I(4)–O(11)	1.790(13)
La(2)-O(17)	2.486(8)	I(5)–O(12)	1.813(9)	Ce(2)-O(17)	2.461(12)	I(5)–O(12)	1.811(11)
La(2)-O(21)	2.549(8)	I(5)–O(13)	1.810(8)	Ce(2)-O(21)	2.536(11)	I(5)–O(13)	1.803(11)
La(2)–O(22)	2.466(8)	I(5)–O(24)	1.823(8)	Ce(2)-O(22)	2.474(10)	I(5)–O(24)	1.832(11)
La(2)-O(24)	2.530(8)	I(6)–O(14)	1.831(8)	Ce(2)-O(24)	2.503(11)	I(6)–O(14)	1.836(11)
		I(6)–O(15)	1.804(8)			I(6)–O(15)	1.809(13)
		I(6)–O(16)	1.806(8)			I(6)–O(16)	1.812(11)
		I(7)–O(17)	1.840(8)			I(7)–O(17)	1.834(12)
		I(7)–O(18)	1.819(8)			I(7)–O(18)	1.777(12)
		I(7)–O(19)	1.786(9)			I(7)–O(19)	1.792(14)
		I(8)–O(20)	1.818(8)			I(8)–O(20)	1.810(10)
		I(8)–O(21)	1.842(8)			I(8)–O(21)	1.822(10)
		I(8)–O(22)	1.826(9)			I(8)–O(22)	1.807(9)

Table S1. Selected bond distances for $NaLn(IO_3)_4$ (Ln = La, Ce, Sm, and Eu).

NaSm(IO ₃) ₄			NaEu(IO ₃) ₄				
Sm(1)-O(1)	2.35(2)	I(1)-O(1)	1.81(2)	Eu(1)-O(1)	2.374(12)	I(1)-O(1)	1.804(13)
Sm(1)-O(2)	2.33(2)	I(1)-O(2)	1.80(2)	Eu(1)-O(2)	2.324(13)	I(1)-O(2)	1.814(14)
Sm(1)-O(3)	2.38(2)	I(1)–O(23)	1.81(2)	Eu(1)-O(3)	2.380(14)	I(1)–O(23)	1.828(13)
Sm(1)-O(5)	2.49(2)	I(2)–O(3)	1.84(2)	Eu(1)-O(5)	2.476(14)	I(2)–O(3)	1.821(15)
Sm(1)-O(6)	2.47(2)	I(2)–O(4)	1.81(2)	Eu(1)-O(6)	2.402(13)	I(2)–O(4)	1.783(12)
Sm(1)-O(9)	2.61(2)	I(2)–O(5)	1.84(2)	Eu(1)-O(9)	2.627(15)	I(2)–O(5)	1.812(14)
Sm(1)-O(20)	2.401(17)	I(3)–O(6)	1.79(2)	Eu(1)-O(20)	2.450(13)	I(3)–O(6)	1.847(14)
Sm(1)-O(23)	2.43(2)	I(3)–O(7)	1.82(2)	Eu(1)-O(23)	2.424(13)	I(3)–O(7)	1.806(15)
Sm(2)-O(12)	2.33(2)	I(3)–O(8)	1.80(2)	Eu(2)-O(12)	2.334(11)	I(3)–O(8)	1.812(14)
Sm(2)-O(13)	2.367(18)	I(4)–O(9)	1.811(19)	Eu(2)-O(13)	2.329(13)	I(4)–O(9)	1.807(12)
Sm(2)-O(14)	2.45(2)	I(4)–O(10)	1.812(19)	Eu(2)-O(14)	2.429(12)	I(4)–O(10)	1.825(13)
Sm(2)-O(16)	2.47(2)	I(4)–O(11)	1.81(2)	Eu(2)-O(16)	2.455(13)	I(4)–O(11)	1.801(14)
Sm(2)-O(17)	2.42(2)	I(5)–O(12)	1.81(2)	Eu(2)-O(17)	2.446(14)	I(5)–O(12)	1.799(12)
Sm(2)-O(21)	2.50(2)	I(5)–O(13)	1.781(19)	Eu(2)-O(21)	2.432(12)	I(5)–O(13)	1.822(14)
Sm(2)-O(22)	2.427(17)	I(5)-O(24)	1.84(2)	Eu(2)-O(22)	2.403(13)	I(5)–O(24)	1.828(12)
Sm(2)-O(24)	2.447(19)	I(6)–O(14)	1.82(2)	Eu(2)-O(24)	2.437(12)	I(6)–O(14)	1.811(12)
		I(6)–O(15)	1.79(2)			I(6)–O(15)	1.832(13)
		I(6)–O(16)	1.78(2)			I(6)–O(16)	1.820(12)
		I(7)–O(17)	1.84(2)			I(7)–O(17)	1.806(15)
		I(7)–O(18)	1.78(2)			I(7)–O(18)	1.775(15)
		I(7)–O(19)	1.80(2)			I(7)–O(19)	1.803(14)
		I(8)-O(20)	1.86(2)			I(8)–O(20)	1.818(14)
		I(8)–O(21)	1.822(18)			I(8)–O(21)	1.841(12)
		I(8)–O(22)	1.812(17)			I(8)–O(22)	1.810(13)

Table S2. Cr	ystallographic	information	for NaLa1-	$_{x}Sm_{x}(IO_{3})_{4}$	(x = 0 - 0.9)	solid solutions

Formula	NaLa(IO ₃) ₄	$NaLa_{0.95}Sm_{0.05}(IO_3)_4$	NaLa _{0.94} Sm _{0.06} (IO ₃) ₄	NaLa _{0.93} Sm _{0.07} (I	D ₃) ₄
FW (g mol ⁻¹)	861.51	862.08	862.19	862.31	- , -
Shace group	C_{c} (No. 9)	C_{c} (No. 9)	C_{α} (No. 9)	C_{α} (No. 0)	
pace group	21.7(0(2))	21 750(7)	21.754(0)	CC (INU. 9)	
(A)	31.769(2)	31.759(7)	31./54(8)	31.7424(15)	
(A)	5.7007(4)	5.6981(12)	5.6976(14)	5.6944(3)	
: (Å)	12.9508(9)	12.940(3)	12.937(3)	12.9288(6)	
$\hat{\mathbf{O}}$	90.6558(15)	90.6714(12)	90.6752(16)	90.6929(7)	
$J(Å^3)$	2345 3(5)	2341.6(14)	23404(17)	2336 7(3)	
	2545.5(5)	2541.0(14)	2340.4(17)	2550.7(5)	
- 	0	0	0	0	
θ range (°)	10-110	15-70	15-70	15-110	
ζ _p	4.28	9.69	10.31	4.41	
₹ _{wp}	5.55	12.91	13.67	5.73	
{ avn	3.98	11.45	11.41	4.10	
2	1 988	1 326	1 / 97	2 006	
Coodmona of fit	1.788	1.520	1.22	1.42	
	1.41	1.15	1.22	1.42	
ormula	NaLa _{0.92} Sm _{0.08} (IO ₃) ₄	NaLa0.91Sm0.09(IO3)4	NaLa _{0.90} Sm _{0.10} (IO ₃) ₄	NaLa _{0.89} Sm _{0.11} (Io	D ₃) ₄
W (g mol ⁻¹)	862.42	862.54	862.65	862.77	
nace group	$C_{\rm C}$ (No. 9)	$C_{\rm C}$ (No. 9)	$C_{\rm C}$ (No. 9)	$C_{\rm C}$ (No. 9)	
(λ)	21741(7)	31 740(0)	21722(2)	21.724(10)	
(A)	51./41(/)	51./40(9)	51./52(2)	51./24(10)	
(A)	5.6944(13)	5.6941(15)	5.6919(4)	5.6893(18)	
(A)	12.929(3)	12.928(4)	12.9223(9)	12.917(4)	
(°)	90.6839(16)	90.6910(17)	90.6960(10)	90.6964(1)	
$V(Å^3)$	2336.7(16)	2336.4(19)	2333.8(5)	2331(2)	
	8	8	8	8	
A range $\begin{pmatrix} 0 \\ \end{pmatrix}$	15 70	15 70	15 110	15 70	
.o range ()	13-70	13-70	13-110	13-70	
p	9.30	9.41	4.50	9.17	
wp	12.36	12.46	6.17	12.43	
₹ _{exp}	11.63	11.83	4.10	11.55	
2	1.178	1.158	2.313	1.208	
Goodness of fit	1 09	1.08	1 52	1 10	
ce sumos of he	,	1.00	1.0=		
-					
rormula	$NaLa_{0.88}Sm_{0.12}(IO_3)_4$	$NaLa_{0.87}Sm_{0.13}(IO_3)_4$	$NaLa_{0.80}Sm_{0.20}(IO_3)_4$	NaLa _{0.70} Sm _{0.30} (IO	J ₃) ₄
FW (g mol ⁻¹)	862.88	863.00	863.80	864.94	
Space group	<i>Cc</i> (No. 9)	Cc (No. 9)	Cc (No. 9)	<i>Cc</i> (No. 9)	
(Å)	31 718(13)	31 715(10)	31 703(11)	31 6610(24)	
(Λ)	5 680(2)	5 6875(19)	5 6835(20)	5 6727(4)	
(A)	J.009(2)	5.06/5(16)	3.0833(20) 12.809(5)	3.0/3/(4)	
: (A)	12.915(5)	12.910(4)	12.898(5)	12.86/4(10)	
3 (°)	90.698(2)	90.7115(18)	90.735(2)	90.7653(10)	
V (Å ³)	2330(3)	2329(2)	2324(3)	2311.2(5)	
<u>z</u> `´	8	8	8	8	
$\frac{1}{2}$ θ range (°)	15-70	15-70	15-70	15-110	
	10.02	0.00	0.02	4.02	
'p	10.02	0.07	9.05	4.03	
(_{wp}	13.50	11.82	11.90	5.18	
Rexp	12.12	11.18	11.44	4.00	
²	1.293	1.166	1.128	1.710	
Goodness of fit	1.14	1.08	1.06	1.31	
Correction	Nala See (IO)	Nala Sm (IO)	Nala Sm (IO)	Nala Sm (IO)	Sm(IO) J
$\frac{1}{2}$	$\frac{1NaLa_{0.60}Sm_{0.40}(1O_3)_4}{966.00}$	$\frac{1 \text{NaLa}_{0.50} \text{Sm}_{0.50} (\text{IO}_3)_4}{9.77.22}$	$1NaLa_{0.30}Sm_{0.70}(1U_3)_4$	INALA0.105M0.90(IU3)4	$Sm(1O_3)_3$:La
w (g mol ')	800.09	867.23	809.52	8/1.81	> 0/3.07"
space group	<i>Cc</i> (No. 9)	<i>Cc</i> (No. 9)	<i>Cc</i> (No. 9)	<i>Cc</i> (No. 9)	$P2_1/a$ (No. 14
ı (Å)	31.637(16)	31.583(3)	31.529(3)	31.465(5)	31.67(9)
(Å)	5.665(3)	5.6546(6)	5.6417(6)	5.6239(10)	8.72(6)
(Å)	12 844(6)	12 8100(13)	12 7663(14)	12 718(2)	7 29(5)
(1)	00.804(2)	12.0100(13)	12.7003(17)	12.710(2)	(1.2)(3)
	90.804(3)	90.8387(14)	90.8952(12)	90.945(2)	99.94(S)
V (A ³)	2302(3)	2287.5(7)	2270.6(7)	2250.4(12)	855(17)
A range (°)	8	8	8 15 110	8 15 110	4
o range (*)	15-70	15-110	15-110	13-110	
ł	9.08	3.80	4.67	4.78	
ζ _{wp}	11.87	4.87	6.01	6.27	
Cexp	10.94	3.95	3.75	3.73	
22	1 229	1 556	2 633	2,633	
loodnoss of fit	1.11	1.000	1.62	1.70	
Joodness of fit	1.11	1.23	1.02	1./0	
$1/33/2 = f(V_{\text{res}}/1/2)$					

^{*a*} FW of $Sm(IO_3)_3$.

Compounds	NaLa(IO ₃) ₄	NaCe(IO ₃) ₄	NaSm(IO ₃) ₄	NaEu(IO ₃) ₄
Ln	1.0	1.0	1.0	1.0
Na	1.2	1.1	0.9	0.8
Ι	3.8	4.0	3.9	4.1
0	11.5	11.1	11.4	11.2

Table S3. Atomic ratios for $NaLn(IO_3)_4$ (Ln = La, Ce, Sm, and Eu) determined by EDX analyses.

Table S4. Bond-valence sum calculations for $NaLn(IO_3)_4$ (Ln = La, Ce, Sm, and Eu).

	NaLa(IO ₃) ₄	NaCe(IO ₃) ₄	NaSm(IO ₃) ₄	NaEu(IO ₃) ₄	
Na(1)	0.93	0.93	0.94	1.02	
Na(2)	0.90	0.89	1.00	0.97	
Ln(1)	3.35	3.26	3.22	3.13	
Ln(2)	3.47	3.38	3.24	3.29	
I(1)	5.08 (5.54) ^{<i>a</i>}	$4.96(5.39)^a$	$5.05(5.50)^a$	4.98 (5.44) ^a	
I(2)	$4.93(5.37)^a$	$5.02(5.42)^a$	$4.82(5.22)^a$	5.12 (5.54) ^{<i>a</i>}	
I(3)	$5.09(5.33)^a$	$5.08(5.30)^a$	5.11 (5.37) ^{<i>a</i>}	$4.90(5.15)^a$	
I(4)	$5.16(5.33)^{a}$	$5.15(5.32)^{a}$	$5.06(5.29)^a$	$5.04(5.25)^{a}$	
I(5)	$4.98(5.45)^a$	$4.99(5.47)^a$	$5.04(5.54)^a$	4.97 (5.51) ^{<i>a</i>}	
I(6)	5.01 (5.49) ^{<i>a</i>}	$4.94(5.41)^a$	5.23 (5.72) ^a	4.91 (5.41) ^{<i>a</i>}	
I(7)	$4.99(5.22)^a$	$5.19(5.42)^a$	5.12 (5.37) ^{<i>a</i>}	$5.27(5.53)^a$	
I(8)	4.81 (5.21) ^{<i>a</i>}	5.01 (5.46) ^{<i>a</i>}	4.79 (5.29) ^{<i>a</i>}	$4.88(5.39)^a$	

^a also consideration of I···O interaction with the bond length of 2.48-3.16 Å.

Table S5. Calculated dipole moments for LnO_8 and IO_3 polyhedra for $NaLn(IO_3)_4$ (Ln = La, Ce, Sm, and Eu).

Compounds	NaLa(IO ₃) ₄	NaCe(IO ₃) ₄	NaSm(IO ₃) ₄	NaEu(IO ₃) ₄
$Ln(1)O_8$	1.60	1.86	1.88	1.82
$Ln(2)O_8$	0.94	0.94	0.97	1.08
I(1)O ₃	17.0	16.6	16.3	16.7
I(2)O ₃	14.4	14.6	13.6	15.2
I(3)O ₃	14.7	14.6	15.4	14.0
I(4)O ₃	15.0	15.1	14.8	15.1
I(5)O ₃	16.5	16.5	16.9	16.5
I(6)O ₃	15.2	15.3	16.8	15.1
I(7)O ₃	14.2	15.3	14.6	16.2
I(8)O ₃	15.5	16.3	14.8	15.9

Compounds	Anionic groups	Direction of Dipole moments			Dinala momenta (Dahya)	Approximate direction	
compounds		X	у	Z	Dipole moments (Debye)	Approximate direction	
NaLa(103)4	I(1)03	16.497	-4.029	0.694	17.0	[1-10]	
	I(2)03	13.069	4.802	3.807	14.4	[130]	
	I(3)03	1.450	14.623	1.035	14.7	[010]	
	I(4)03	13.365	2.178	-6.535	15.0	[11-1]	
	I(5)03	-16.113	3.457	0.019	16.5	[-1 1 0]	
	I(6)03	-13.142	-6.986	-3.198	15.2	[-1-3-1]	
	I(7)03	-0.668	-14.203	-0.595	14.2	[0-10]	
	I(8)03	0.104	-2.726	-15.284	15.5	[0-1-2]	
	La(1)08	1.158	0.314	-1.066	1.60	[12-3]	
	La(2)08	-0.807	0.456	-0.169	0.94	[-1 3 -1]	
	Total	14.914	-2.114	-21.292	26.1	[1-1-4]	
NaCe(103)4	I(1)03	16.224	-3.650	0.786	16.6	[1-10]	
	I(2)03	12.808	5.366	4.410	14.6	[130]	
	I(3)03	1.521	14.495	0.517	14.6	[010]	
	I(4)03	13.391	2.458	-6.549	15.1	[11-1]	
	I(5)03	-16.164	3.246	0.275	16.5	[-1 1 0]	
	I(6)03	-13.283	-6.790	-3.506	15.3	[-1-3-1]	
	I(7)03	-0.626	-15.179	-1.612	15.3	[0-10]	
	I(8)03	0.430	-2.489	-16.074	16.3	[0-1-2]	
	Ce(1)08	1.382	0.719	-1.041	1.87	[12-3]	
	Ce(2)08	-0.821	0.444	0.201	0.95	[-13-1]	
	Total	14.861	-1.378	-22.593	27.1	[1-1-4]	
NaSm(IO3)4	I(1)03	15.899	-3.551	0.619	16.3	[1-10]	
	I(2)03	11.674	5.539	4.174	13.6	[130]	
	I(3)03	2.256	15.197	0.703	15.4	[010]	
	I(4)03	12.835	2.234	-7.064	14.8	[11-1]	
	I(5)03	-16.573	3.023	1.052	16.9	[-1 1 0]	
	I(6)03	-14.387	-7.678	-4.185	16.8	[-1-3-1]	
	I(7)03	-1.251	-14.446	-1.875	14.6	[0-10]	
	I(8)03	0.971	-2.360	-14.574	14.8	[0-1-3]	
	Sm(1)08	1.214	0.699	-1.254	1.88	[12-3]	
	Sm(2)08	-0.808	0.463	0.052	0.93	[-13-1]	
	Total	11.829	-0.880	-22.353	25.3	[1-0-5]	
NaEu(IO3)4	I(1)03	16.346	-3.251	0.135	16.7	[1-10]	
	I(2)03	13.122	5.982	4.871	15.2	[130]	
	I(3)03	0.761	13.919	0.762	14.0	[010]	
	I(4)03	13.132	2.741	-6.842	15.1	[11-1]	
	I(5)03	-16.095	3.413	-0.246	16.5	[-1 1 0]	
	I(6)03	-13.462	-5.941	-3.402	15.1	[-1-3-1]	
	I(7)03	-1.731	-15.851	-2.691	16.2	[0-10]	
	I(8)03	0.709	-2.828	-15.605	15.9	[0 -1 -2]	
	Eu(1)08	0.608	0.809	-1.528	1.83	[12-3]	
	Eu(2)08	-0.951	0.437	-0.279	1.08	[-13-1]	
	Total	12.439	-0.570	-24.824	27.8	[1-0-5]	

Table S6. Net direction of dipole moments for IO_3 polyhedra in $NaLn(IO_3)_4$ (Ln = La, Ce, Sm, and Eu).

	NaLa _{0.9}	₃ Sm _{0.07} (IO ₃) ₄	NaLa _{0.93}	$Sm_{0.07}(IO_3)_4$	NaEu(IO ₃) ₄		
Model	Inokuti and Hirayama $I(t) = I_0 + A \exp\left[-\frac{t}{\tau_0} - a\left(\frac{t}{\tau_0}\right)^{3/s}\right]$		Second-ord	der exponential	First-order exponential $I(t) = I_0 + A \exp(-t/\tau_0)$		
Equation			$I(t) = B + A_1 \exp(t)$	$(-t/\tau_1) + A_2 \exp(-t/\tau_2)$			
Constants	I_0	10678.984	В	9850.890	I_0	2057	
	A	23732.016	A_1	14180.536	A	57938	
	а	0.472	A_2	10379.575			
Lifetime (µs)	$ au_0$	59.9	$ au_1$	17.5	$ au_0$	716	
			$ au_2$	95.7			
			$ au_{ m avg}{}^a$	80.1			

Table S7.	Fitted values	of decay	curves for	or NaLa	a 03Sm0 07	(IO ₃) ₄ a	nd NaEu(IO_3
Lable D/.	I IIIOu Vulues	or accuy		UI I JULI	40.9301110.07	(103)4 u	Ind I tullu	10314

 ${}^{a}\tau_{\rm avg} = (A_{1}\tau_{1}^{2} + A_{2}\tau_{2}^{2})/(A_{1}\tau_{1} + A_{2}\tau_{2})$

Figure S1. Rietveld plots for $NaLa(IO_3)_4$ and Sm^{3+} -doped solid solutions (observed, black cross; calculated, red line; Bragg positions, magenta or cyan bar; difference, blue line).

Figure S2. Ball-and-stick representations of (a) an asymmetric unit, (b) $La(1)O_8$, and (c) $La(2)O_8$ polyhedra in NaLa(IO₃)₄.

S10

Figure S4. Variation of the unit cell parameters (a) *a*, (b) *b*, (c) *c*, and (d) β as a function of the samarium contents for NaLa_{1-x}Sm_x(IO₃)₄.

Figure S5. PXRD patterns for NaLa_{1-x}Sm_x(IO₃)₄ and NaLa_{1-x}Eu_x(IO₃)₄ ($0 \le x \le 1$).

Figure S6. TGA diagrams for NaLn(IO₃)₄ (Ln = La, Ce, Sm, and Eu).

Figure S7. PXRD patterns of the calcined products of $NaLn(IO_3)_4$ (Ln = La, Ce, Sm, and Eu).

E(eV) Figure S8. UV-Vis diffuse reflectance spectra for $NaLn(IO_3)_4$ (Ln = La, Ce, Sm, and Eu).

Figure S9. Excitation spectra of NaLa_{0.93}Sm_{0.07}(IO₃)₄ for 598 nm (blue) and 644 nm (red) emissions.

emission).

Figure S11. Decay curves of NaLa_{0.93}Sm_{0.07}(IO₃)₄ and NaEu(IO₃)₄.