### **SUPPORTING INFORMATION**

# Catch and Release: Engineered Allosterically Regulated $\beta$ -Roll Peptides Enable On/Off Biomolecular Recognition

Beyza Bulutoglu, Kevin Dooley<sup>†</sup>, Géza Szilvay<sup>‡</sup>, Mark Blenner<sup>§</sup> and Scott Banta<sup>\*</sup> Department of Chemical Engineering, Columbia University, New York, New York 10027, United States

<sup>†</sup> Present address: Codiak BioSciences, Cambridge, Massachusetts 01801, United States.

<sup>‡</sup> Present address: VTT Technical Research Centre of Finland Ltd, Espoo 02044, Finland.

<sup>§</sup> Present address: Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States.

\* Corresponding Author, e-mail: sbanta@columbia.edu

### **Supplementary Figures**



**Figure S1.** Schematic of the ribosome display selection method.<sup>1</sup> After cloning the RTX library into the ribosome display vector (pRDV), the library was transcribed and translated *in vitro*. Resulting complexes were incubated with the immobilized target. The mRNA of the bound complexes was reverse transcribed and PCR amplified to serve as the input for another round of selection.



**Figure S2.** SDS-PAGE analysis of WT and mutant peptides. (A) (1) Protein ladder. (2) WT β-roll: 15.9 kDa. (3) P101: 16 kDa. (4) PN206: 16.0 kDa. (5) PN406: 15.8 kDa. (6) PN715: 15.9 kDa. (B) (1) Protein ladder. (2) WT-WT: 32.7 kDa (3) PN206-PN406: 32.7 kDa. (4) PN406-PN406: 32.6 kDa. (5) PN406-PN206: 32.7 kDa. (6) PN406-PN715: 32.5 kDa. (7) PN715-PN406: 32.5 kDa. (8) PN406-PN406-PN406: 49.2 kDa. (9) WT/PN406: 16.0 kDa. (10) PN406/PN406: 15.9 kDa. We have previously shown that β-rolls run artificially large on SDS-PAGE.<sup>2</sup> In addition, peptide hydrophobicity has been shown to result in gel shifting, which can cause the differences in the apparent molecular weights of different mutants.<sup>3</sup>



**Figure S3.** Exemplary ITC analysis of (A) wild-type  $\beta$ -roll, (B) PN406 and (C) PN406-PN406 in the presence of 10 mM MgCl<sub>2</sub>.



**Figure S4.** Exemplary ITC analysis of PN316 and PN708 in the presence of 10 mM  $CaCl_2$ . (A) PN316 did not demonstrate an affinity for the target. (B) PN708 bound lysozyme with affinity of the same order compared to wild-type  $\beta$ -roll.



**Figure S5.** Amino acid frequencies among the single RTX mutants (P101, PN206, PN406 and PN715) at the randomized positions.



**Figure S6.** Activity assay of the eluted lysozyme. (A) Lysozyme eluted off the MBP-PN406-PN406/Ca<sup>++</sup> column. The decrease in the absorbance at 450 nm indicates the activity of the enzyme. (B) Lysozyme eluted off the MBP-PN406-PN406/Ca<sup>++</sup> column, which was co-loaded with *E. coli* crude cell lysate. The decrease in the absorbance at 450 nm indicates the activity of the enzyme.

## Supplementary Tables

| Mutant | Amino acids at randomized positions | Frequency |
|--------|-------------------------------------|-----------|
| P101   | WFLEATDA                            | 4/6       |
| P105   | L Y R Q A T D A                     | 1/6       |
| P106   | V P E G S P V P                     | 1/6       |

**Table S1.** Sequencing results of the positive selections.

| Mutant | Amino acids at the randomized positions |
|--------|-----------------------------------------|
| PN101  | G M G W G N V W                         |
| PN105  | PTSPREHS                                |
| PN112  | V L G V Q D Q A                         |
| PN118  | A R A V A D T A                         |
| PN206  | V R W W V C S R                         |
| PN211  | W A P W R G C R                         |
| PN301  | G I L V P G R H                         |
| PN307  | G Q L R T H P A                         |
| PN311  | VERAERTV                                |
| PN312  | R F S R R R P R                         |
| PN316  | A R R V E R T V                         |
| PN402  | S C A D P P A A                         |
| PN406  | S V L L V D R V                         |
| PN505  | C E R K G M A P V                       |
| PN508  | N Q A P E D N L                         |
| PN603  | C W R Q P S R R                         |
| PN605  | G R P R A W A G                         |
| PN607  | V C R W R H P C                         |
| PN610  | G C A G G R P R                         |
| PN612  | H R A R C S A H                         |
| PN613  | SETPPRQV                                |
| PN614  | ESLLCSGG                                |
| PN616  | R A A T A P P R                         |
| PN619  | R M P A P P T A                         |
| PN621  | WFLERSAP                                |
| PN702  | S N A Q V G S D                         |
| PN703  | W M R M R H R G                         |
| PN708  | R R G V T D R A                         |
| PN710  | T W R T R A T P                         |
| PN711  | C L W R N T T P                         |
| PN714  | R E Q R P A R R                         |
| PN715  | V E H V Y C A S                         |
| PN721  | G P W G T T H A                         |
| PN722  | W V V W T P D I                         |

 Table S2. Sequencing results of the positive/negative selections

| Mutant | Amino acids at the randomized positions |
|--------|-----------------------------------------|
| PN101  | G M G W G N V W                         |
| PN112  | V L G V Q D Q A                         |
| PN118  | ARAVADTA                                |
| PN206  | V R W W V C S R                         |
| PN311  | VERAERTV                                |
| PN316  | ARRVERTV                                |
| PN406  | S V L L V D R V                         |
| PN614  | ESLLCSGG                                |
| PN708  | R R G V T D R A                         |
| PN715  | V E H V Y C A S                         |

 Table S3. Selected mutants of the positive/negative selections

| Peptide           | $\Delta G$ (kcal/mol) * |
|-------------------|-------------------------|
| WT                | $-6.2 \pm 0.3$          |
| PN101             | $-7.5 \pm 0.2$          |
| PN206             | $-7.2 \pm 0.4$          |
| PN406             | $-7.7 \pm 0.2$          |
| PN715             | $-7.2 \pm 0.6$          |
| WT-WT             | $-8.1 \pm 0.5$          |
| PN206-PN406       | $-8.6 \pm 0.3$          |
| PN406-PN206       | $-9.5 \pm 0.5$          |
| PN406-PN406       | $-10.1 \pm 0.8$         |
| PN406-PN715       | $-8.0 \pm 0.1$          |
| PN715-PN406       | $-8.2 \pm 0.2$          |
| PN406-PN406-PN406 | $-9.4 \pm 0.3$          |
| PN406/PN406       | $-7.5 \pm 0.1$          |
| WT/PN406          | $-6.2 \pm 0.3$          |

**Table S4.** The changes in the Gibbs free energy upon interaction with lysozyme

\* The values are reported as mean  $\pm$  SD (*n*=3).

 Table S5. PCR primers for cloning experiments

| Cloning<br>Experiment                                                                                                                    | Primer                           | Sequence                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Library Design                                                                                                                           | Swiss9<br>Forward                | 5' TCGCGGCCCAGCCGGCCATGGCGGGTTCTGCACGCG<br>ACGATGTGCTGATCGGCGACGCGGGTGCGAATNNKCTGN<br>NKGGCCTGGCTGGTAACGACGTCTTGTCTGGTGGTGCGGG<br>CGATGATNNKCTGNNKGGTGACGAGGGCTCCGATCTGCT<br>GAGCGGTGATGCCGGCAACGAC 3' |
|                                                                                                                                          | Swiss9<br>Reverse                | 5' TTCGGCCCCCGAGGCCCCGCCACGGATCGTGTCATG<br>GCCACCACCGGACTCMNNAATMNNGTCGTGACCATAACC<br>AACACCGAACAGGTAGGTATCGTCGCCCTGACCGCCMNN<br>CAAMNNGTCGTTGCCGGCATCACCGCTCAGCAGATCGGA<br>GCCCTCGTCACC 3'            |
|                                                                                                                                          | β-roll/Cap<br>Overlap<br>Forward | 5' GTGGCCATGACACGATCCGTATCAACGC<br>GGGGGCGGACCA 3'                                                                                                                                                     |
|                                                                                                                                          | β-roll/Cap<br>Overlap<br>Reverse | 5' TGGTCCGCCCCGCGTTGATACGGATCG<br>TGTCATGGCCAC 3'                                                                                                                                                      |
| RTX Library<br>into pRDV                                                                                                                 | Swiss9<br>pRDV<br>Forward        | 5' AATAATGGATCCGGTTCTGCACGCGACGATGTGC 3'                                                                                                                                                               |
|                                                                                                                                          | Swiss9<br>pRDV<br>Reverse        | 5' TAATAAAAGCTTGTCCGGATACTGCGCCATTGCCTC 3'                                                                                                                                                             |
| RTX Library<br>for <i>in vitro</i><br>transcription<br>and translation<br>P101, PN206,<br>PN406 and<br>PN715 into<br>pMAL-c4e-<br>intein | T7B                              | 5' ATACGAAATTAATACGACTCACTATAGGGAGAC<br>CACAACGG 3'                                                                                                                                                    |
|                                                                                                                                          | tolAK                            | 5' CCGCACACCAGTAAGGTGTGCGGTTTCAGTTG<br>CCGCTTTCTTTCT 3'                                                                                                                                                |
|                                                                                                                                          | Forward                          | 5' AATAATGGTACCGGGTTCTGCACGCGACGATGTGC 3'                                                                                                                                                              |
|                                                                                                                                          | Reverse                          | 5' TAATAAAAGCTTTTAGTCCGGATACTGCGCCATTGCC 3'                                                                                                                                                            |
|                                                                                                                                          | $Forward_1$                      | 5' ATTATAGGTACCGGGCAGCGCG 3'                                                                                                                                                                           |
| WT-WT<br>into<br>pMAL-c4e-<br>intein                                                                                                     | Reverse <sub>1</sub>             | 5' TTAAATAAGCTTGTCCGGGTATTGTGCCATTGCTTC 3'                                                                                                                                                             |
|                                                                                                                                          | Forward <sub>2</sub>             | 5' ATTATAAAGCTTGGCGGTGGCGGTAGCGGCGGTGGCG<br>GTTCTGGCAGCGCGCGTGATGAC 3'                                                                                                                                 |
|                                                                                                                                          | Reverse <sub>2</sub>             | 5' TTAAATAAGCTTTTAGTCCGGGTATTGTGCCATT 3'                                                                                                                                                               |
| Concatemer<br>cloning<br>into<br>pMAL-c4e-                                                                                               | Forward <sub>1</sub>             | 5' ATTATAGGTACCGGGTTCTGCACGCG 3'                                                                                                                                                                       |
|                                                                                                                                          | Reverse <sub>1</sub>             | 5' TTAAATAAGCTTGTCCGGATACTGCGCCATTGCC 3'                                                                                                                                                               |
|                                                                                                                                          | Forward <sub>2</sub>             | 5' ATTATAAAGCTTGGCGGTGGCGGTAGCGGCGGTGGC                                                                                                                                                                |

| intein                                            |                      | GGTTCTGGTTCTGCACGCGACGATGTG 3'                                              |
|---------------------------------------------------|----------------------|-----------------------------------------------------------------------------|
|                                                   | Reverse <sub>2</sub> | 5' TTAAATAAGCTTTTAGTCCGGATACTGCGCC 3'                                       |
| PN406 into<br>pMAL-c4e-<br>intein-PN406-<br>PN406 | Forward              | 5' ATTATAGGTACCGGGTTCTGCACGCG 3'                                            |
|                                                   | Reverse              | 5' TTAAATGGTACCGGAGAACCGCCACCGCCGCTACCG<br>CCACCGCCGTCCGGATACTGCGCCATTGC 3' |
| WT-WT<br>in fusion<br>with MBP                    | Forward <sub>1</sub> | 5' ATTATACTCGGGGGGCAGCGCGCGTGATGAC 3'                                       |
|                                                   | Reverse <sub>1</sub> | 5' TTAAATGAATTCGTCCGGGTATTGTGCCATTGCTTCA 3'                                 |
|                                                   | Forward <sub>2</sub> | 5' ATTATAGAATTCGGCGGTGGCGGTAGCGGCGGTGGC<br>GGTTCTGGCAGCGCGCGTGATGAC 3'      |
|                                                   | Reverse <sub>2</sub> | 5' TTAAATGGATCCTTAGTCCGGGTATTGTGCCATTGCT 3'                                 |
| PN406-PN406<br>in fusion with                     | Forward              | 5' ATTATACTCGGGGGGTTCTGCACGCGACGATGTG 3'                                    |
| MBP                                               | Reverse              | 5' TTAAATGAATTCTTAGTCCGGATACTGCGCCATTGC 3'                                  |

 Table S6. PCR primers for site-directed mutagenesis experiments

| Construct   | Primer | Sequence                                   |
|-------------|--------|--------------------------------------------|
| WT/PN406    | 1      | 5' CGCGCGTGATGACTCGCTGGTCGGCGACGCAGG 3'    |
|             | 2      | 5' GCGGGCAACGACTTGCTGTTAGGCGGCGCTGGC 3'    |
|             | 3      | 5' CGGGCAGGGCGATGATAGGTATCTGTTCGGGGT 3'    |
|             | 4      | 5' GAGGGCTCGGACGTGCTCGACGGCGATGCGGG 3'     |
|             | 5      | 5' CGCGCGTGATGACTCGCTGGTCGGCGACGCAGG 3'    |
|             | 6      | 5' GGCGGGCAGGGCGATGATAGGTATGTGTTCGGGGT 3'  |
| PN406/PN406 | 1      | 5' GGGTTCTGCACGCGACGATTCGCTGGTCGGCGACGC 3' |
|             | 2      | 5' GGCTGGTAACGACCTCTTGTTAGGTGGTGCGGGGCG 3' |
|             | 3      | 5' GACGAGGGCTCCGATGTGCTGGACGGTGATGCCGG 3'  |
|             | 4      | 5' CGGTCAGGGCGACGATAGGTACCTGTTCGGTG 3'     |
|             | 5      | 5' GGTCAGGGCGACGATAGGTACGTGTTCGGTGTTGG 3'  |
|             | 6      | 5' GGCTGGTAACGACCTCTTGTTAGGTGGTGCGGGCG 3'  |

 Table S7. Protein primary sequences

| Construct       | Sequence <sup>*</sup>                                                                                                                                                                                                                                                                                                                            |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| WT              | GSARDDVLIGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGNDDL<br>FGGQGDDTYLFGVGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRILGT<br>DDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD                                                                                                                                                                                 |
| P101            | GSARDDVLIGDAGANWLFGLAGNDVLSGGAGDDLLEGDEGSDLLSGDAGNDAL<br>TGGQGDDTYLFGVGYGHDDIAESGGGHDTIRINAGADQLWFARQGNDLEIRILGT<br>DDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD                                                                                                                                                                                 |
| PN206           | GSARDDVLIGDAGANVLRGLAGNDVLSGGAGDDWLWGDEGSDLLSGDAGNDV<br>LCGGQGDDTYLFGVGYGHDSIRESGGGHDTIRINAGADQLWFARQGNDLEIRILG<br>TDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD                                                                                                                                                                                 |
| PN406           | GSARDDVLIGDAGANSLVGLAGNDVLSGGAGDDLLLGDEGSDLLSGDAGNDVLD<br>GGQGDDTYLFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEIRILGTD<br>DALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD                                                                                                                                                                                 |
| PN715           | GSARDDVLIGDAGANVLEGLAGNDVLSGGAGDDHLVGDEGSDLLSGDAGNDYL<br>CGGQGDDTYLFGVGYGHDAISESGGGHDTIRINAGADQLWFARQGNDLEIRILGT<br>DDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD                                                                                                                                                                                 |
| WT-WT           | GSARDDVLIGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGNDDL<br>FGGQGDDTYLFGVGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRILGT<br>DDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDKLGGGGSGG<br>GGSGSARDDVLIGDAGANVLNGLAGNDVLSGGAGDDVLLGDEGSDLLSGDAGN<br>DDLFGGQGDDTYLFGVGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRI<br>LGTDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD |
| PN206-<br>PN406 | GSARDDVLIGDAGANVLRGLAGNDVLSGGAGDDWLWGDEGSDLLSGDAGNDV<br>LCGGQGDDTYLFGVGYGHDSIRESGGGHDTIRINAGADQLWFARQGNDLEIRILG<br>TDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDKLGGGGSG<br>GGGSGSARDDVLIGDAGANSLVGLAGNDVLSGGAGDDLLLGDEGSDLLSGDAGN<br>DVLDGGQGDDTYLFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEIRI<br>LGTDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD |
| PN406-<br>PN206 | GSARDDVLIGDAGANSLVGLAGNDVLSGGAGDDLLLGDEGSDLLSGDAGNDVLD<br>GGQGDDTYLFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEIRILGTD<br>DALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDKLGGGGSGGG<br>GSGSARDDVLIGDAGANVLRGLAGNDVLSGGAGDDWLWGDEGSDLLSGDAGN<br>DVLCGGQGDDTYLFGVGYGHDSIRESGGGHDTIRINAGADQLWFARQGNDLEIRI<br>LGTDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD |
| PN406-<br>PN406 | GSARDDVLIGDAGANSLVGLAGNDVLSGGAGDDLLLGDEGSDLLSGDAGNDVLD<br>GGQGDDTYLFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEIRILGTD<br>DALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDKLGGGGSGGG<br>GSGSARDDVLIGDAGANSLVGLAGNDVLSGGAGDDLLLGDEGSDLLSGDAGNDV<br>LDGGQGDDTYLFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEIRILG<br>TDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD |

| PN406-<br>PN715           | GSARDDVLIGDAGANSLVGLAGNDVLSGGAGDDLLLGDEGSDLLSGDAGNDVLD<br>GGQGDDTYLFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEIRILGTD<br>DALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDKLGGGGSGGG<br>GSGSARDDVLIGDAGANVLEGLAGNDVLSGGAGDDHLVGDEGSDLLSGDAGND<br>YLCGGQGDDTYLFGVGYGHDAISESGGGHDTIRINAGADQLWFARQGNDLEIRIL<br>GTDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD                                                                                                                                                                                 |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PN715-<br>PN406           | GSARDDVLIGDAGANVLEGLAGNDVLSGGAGDDHLVGDEGSDLLSGDAGNDYL<br>CGGQGDDTYLFGVGYGHDAISESGGGHDTIRINAGADQLWFARQGNDLEIRILGT<br>DDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDKLGGGGSGG<br>GGSGSARDDVLIGDAGANSLVGLAGNDVLSGGAGDDLLLGDEGSDLLSGDAGND<br>VLDGGQGDDTYLFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEIRIL<br>GTDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD                                                                                                                                                                                 |
| PN406-<br>PN406-<br>PN406 | GSARDDVLIGDAGANVLEGLAGNDVLSGGAGDDHLVGDEGSDLLSGDAGNDYL<br>CGGQGDDTYLFGVGYGHDAISESGGGHDTIRINAGADQLWFARQGNDLEIRILGT<br>DDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDGGGGSGGGG<br>SGTGSARDDVLIGDAGANSLVGLAGNDVLSGGAGDDLLLGDEGSDLLSGDAGND<br>VLDGGQGDDTYLFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEIRIL<br>GTDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPDKLGGGGS<br>GGGGSGSARDDVLIGDAGANSLVGLAGNDVLSGGAGDDLLLGDEGSDLLSGDAG<br>NDVLDGGQGDDTYLFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEI<br>RILGTDDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD |
| WT/<br>PN406              | GSARDDSLVGDAGANVLNGLAGNDLLLGGAGDDVLLGDEGSDVLDGDAGNDDL<br>FGGQGDDRYVFGVGYGHDTIYESGGGHDTIRINAGADQLWFARQGNDLEIRILGT<br>DDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD                                                                                                                                                                                                                                                                                                                                                                 |
| PN406/<br>PN406           | GSARDDSLVGDAGANSLVGLAGNDLLLGGAGDDLLLGDEGSDVLDGDAGNDVL<br>DGGQGDDRYVFGVGYGHDRIVESGGGHDTIRINAGADQLWFARQGNDLEIRILGT<br>DDALTVHDWYRDADHRVEIIHAANQAVDQAGIEKLVEAMAQYPD                                                                                                                                                                                                                                                                                                                                                                 |

<sup>\*</sup> Blue and black residues represent the  $\beta$ -roll domain and the capping group respectively. Red residues represent the residues on the  $\beta$ -roll faces. Light gray residues represent the linker.

#### References

(1) Dreier, B., and Plückthun, A. (2012) In *Ribosome Display and Related Technologies: Methods and Protocols*, pp 261–286, Springer, New York.

(2) Dooley, K., Bulutoglu, B., and Banta, S. (2014) Doubling the cross-linking interface of a rationally designed beta roll peptide for calcium-dependent proteinaceous hydrogel formation. *Biomacromolecules 15*, 3617–3624.

(3) Shi, Y., Mowery, R. A., Ashley, J., Hentz, M., Ramirez, A. J., Bilgicer, B., Slunt-Brown, H., Borchelt, D. R., and Shaw, B. F. (2012) Abnormal SDS-PAGE migration of cytosolic proteins can identify domains and mechanisms that control surfactant binding. *Protein Science 21*, 1197–1209.