## Orientation control of two-dimensional perovskites by incorporating carboxylic acid moieties

Ryosuke  $ARAI^a$ ,  $Masahiro\ YOSHIZAWA-FUJITA^a$ ,  $Yuko\ TAKEOKA^a*$  and  $Masahiro\ RIKUKAWA^a$ 

<sup>a</sup> Faculty of Science and Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan.

## Elemental analysis data of compounds

Elemental analysis data for  $[HOOC(CH_2)_{n-1}NH_3I]_2PbI_4$  (n = 3),  $C_6H_{16}N_2PbI_6$ ; Calc. C 8.05, H 1.80, N 3.13, I 56.72%, Exp. C 8.40, H 1.69, N 3.20, I 54.70%.

Elemental analysis data for  $[HOOC(CH_2)_{n-1}NH_3I]_2PbI_4$  (n = 4),  $C_8H_{20}N_2PbI_6$ ; Calc. C 10.41, H 2.18, N 3.03, I 54.99%, Exp. C 10.46, H 1.62, N 2.99, I 55.69%.

Elemental analysis data for  $[HOOC(CH_2)_{n-1}NH_3I]_2PbI_4$  (n = 7),  $C_{14}H_{32}N_2PbI_6$ ; Calc. C 16.69, H 3.20, N 2.78, I 50.40%, Exp. C 16.52, H 2.80, N 2.69, I 50.79%.

Elemental analysis data for  $[CH_3(CH_2)_{n-1}NH_3I]_2PbI_4$  (n = 3),  $C_6H_{20}N_2PbI_6$ ; Calc. C 8.63, H 2.41, N 3.35, I 60.79%, Exp. C 7.99, H 1.71, N 3.04, I 59.74%.

Elemental analysis data for  $[CH_3(CH_2)_{n-1}NH_3I]_2PbI_4$  (n = 4),  $C_8H_{24}N_2PbI_6$ ; Calc. C 11.13, H 2.80, N 3.25, I 58.81%, Exp. C 10.80, H 2.58, N 3.11, I 57.78%.

Elemental analysis data for  $[CH_3(CH_2)_{n-1}NH_3I]_2PbI_4$  (n = 7),  $C_{14}H_{36}N_2PbI_6$ ; Calc. C 17.75, H 3.83, N 2.96, I 53.59%, Exp. C 17.96, H 3.25, N 3.14, I 52.26%.



**Figure S1.** *D*-spacing values of (a)  $[HOOC(CH_2)_{n-1}NH_3]_2PbI_4$  and (b)  $[CH_3(CH_2)_{n-1}NH_3]_2PbI_4$  films as a function of carbon atoms in organic amines.



**Figure S2.** 2D WAXS images of (a)  $[HOOC(CH_2)_6NH_3]_2PbI_4$  and (b)  $[CH_3(CH_2)_6NH_3]_2PbI_4$  (n = 7) films.