Supporting Information:

Quantitative Solid-State NMR Study on Ligand–Surface Interaction in

Cysteine-capped CdSe Magic-Sized Clusters

Takuya Kurihara, Yasuto Noda,* and K. Takegoshi

Division of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku,

Kyoto 606-8502, Japan

Contents

- 1. Synthesis and Solidification of CdSe-Cys
- 2. Experimental conditions of UV-Vis
- 3. Experimental conditions of solid-state NMR
- 4. ${}^{15}N-{}^{113}Cd J-1QF$ experiment
- 5. ¹⁵N–¹¹³Cd REDOR experiment
- 6. Figures
- 7. References

1. Synthesis and Solidification of CdSe-Cys

Cadmium (foil, ¹¹³Cd 93.35%) and L-cysteine (¹⁵N 98%) were purchased from ISOFLEX USA and Cambridge Isotope Laboratories, respectively. Selenium (powder, 99%), sodium sulfite (Na₂SO₃) (97%), sodium hydrate (NaOH) (93%), nitric acid (60–61%) and acetone (99.5%) were obtained from Wako Pure Chemicals. All chemicals were used as received.

CdSe-Cys aqueous solution was synthesized by the method of Park et al.^{1,2} with some modifications. Se precursor, sodium selenosulfite (Na_2SeSO_3) solution, was prepared by stirring 50 mg of selenium powder, 290 mg of Na₂SO₃, and 12.5 ml of distilled H₂O at 950 rpm in a brown grass vial at 105°C overnight. 10 mg/ml Cd²⁺ solution was obtained by dissolving more than 50 mg of cadmium shot in nitric acid, and then 5 ml of the Cd²⁺ solution was transferred to a centrifuge tube. Cadmium hydroxide (Cd(OH)₂) was precipitated by adding about 10 ml of 5 M NaOH to the Cd²⁺ solution, and collected by centrifugation at 10,000 rpm for 5 min. Cd precursor, cadmium-cysteine complex solution, was produced by dissolving the Cd(OH)₂ in basic cysteine solution composed of 1.78 ml of 1 M L-cysteine and 8 ml of 1 M NaOH. The Cd precursor and 4.45 ml of the Se precursor cooled down to room temperature were mixed in the centrifuge tube. The reaction mixture, which molar ratio of Cd : Se : cysteine was 1 : 0.5 : 4 and pH was about 13, was pale yellow at first, and as the reaction progressed, the color became deeper. The reaction progress was monitored by UV-Vis absorption spectra. After about 24 h, the stabilization of the position and intensity of the absorption peak was observed, and then, 7.5 ml of acetone was added to the mixture to precipitate yellow CdSe-Cys. CdSe-Cys were collected by centrifugation at 10,000 rpm for 5 min, and finally obtained after vacuum drying.

2. Experimental conditions of UV-Vis

UV-Vis absorption spectrum of as-prepared CdSe-Cys aqueous solution was measured on a U-2800M double beam spectrometer (Hitachi High-Tech Science). The CdSe-Cys solution was made by diluting 20 μ l of CdSe-Cys solution just before solidification in 3 ml of distilled H₂O, to avoid saturation of the spectral peak intensity.

3. Experimental conditions of solid-state NMR

All solid-state NMR experiments were performed in a 9.4 T magnet (¹H 400.23 MHz, ¹¹³Cd 88.82 MHz, and ¹⁵N 40.56 MHz) with a 3.2 mm T3 HXY triple-tuned MAS probe (Chemagnetics) on an OPENCORE spectrometer.³ To tune ${}^{1}H^{-113}Cd^{-15}N$ triple resonance, a homemade plug-in was used for the probe. ${}^{15}N{}^{1}H{}$ and ¹¹³Cd{¹H} CP/MAS spectra were acquired at spinning speeds of 10 kHz, under ¹H two pulse phase modulation (TPPM) decoupling⁴ with radio-frequency (rf) irradiation strength of 100 kHz. The pulse sequences for ¹⁵N-¹¹³Cd J-1QF and REDOR experiments are shown in Figure S1 and S3. In our REDOR sequence, 180° pulses used in the original paper were substituted by 60°-300°-60° composite 180° pulses⁵ with XY-8 phase cycling to compensate for the resonance offset caused by the broadness of ¹¹³Cd peak (See Figure S4). Both experiments were done at a spinning speed of 10 kHz using a 180° pulse length of 10.6 μ s for ¹⁵N and ¹H TPPM decoupling with rf irradiation strength of 100 kHz. For ¹¹³Cd, a 90° pulse length of 4 μ s was used in J-1QF experiment, and 60° and 300° pulse lengths of 2.55 and 13.5 μ s were in REDOR experiments. The chemical shifts of ¹H, ¹⁵N, and ¹¹³Cd were corrected by referencing TMS at 0 ppm, NH₄Cl at 39.3 ppm relative to NH₃ liquid,⁶ and Cd(ClO₄)₂·6H₂O at 0 ppm, respectively.

4. ¹⁵N-¹¹³Cd J-1QF experiment

The *J*-1QF experiment (the pulse sequence is shown in Figure S1) allows us to observe only the signal of ¹⁵N having the ¹⁵N–¹¹³Cd J_{N-Cd} interaction through a chemical bond to ¹¹³Cd. In one experiment, two kinds of coherences, both of which are composed of ¹⁵N signals with and without the J_{N-Cd} interaction, are separately created during the 2 τ period by a fundamental pair of the ¹¹³Cd pulse phases (φ_{31} , φ_{32}) = (x, x) and (x, -x), and detected by a receiver which phase is set as x and –x, respectively. The peak area intensities of the two acquired signals are written as

$$I_{\rm N-Cd}\cos(2\pi J_{\rm N-Cd}\tau) + I_{\rm N}$$

and

 $-I_{\rm N-Cd} - I_{\rm N}$,

where I_{N-Cd} is the signal with the J_{N-Cd} interaction and I_N is that without the interaction. As a result of accumulation of the two signals, only the signal I_{N-Cd} is obtained, whereas I_N is cancelled out. The observed ¹⁵N signal evolves under the J_{N-Cd} interaction during the 2τ period, and by considering the T_2 relaxation time, the peak area intensity of the signal is described as Eq. (1) shown in the main article. The complete phase cycles actually used in our experiment to eliminate artifacts are described in the figure caption of Figure S1.

5. ¹⁵N-¹¹³Cd REDOR experiment

In the REDOR experiments (the pulse sequence is shown in Figure S3), two types of the experiments were conducted with and without the irradiations of ¹¹³Cd composite 180° pulses for each dipolar dephasing time, and area intensities of ¹⁵N normal spin–echo (S_0) and reduced (S_r) spectra were acquired, respectively. Experimental REDOR fractions were calculated as $\Delta S/S_0 = (S_0 - S_r)/S_0$. When a ¹⁵N peak is composed of two sites, one of which is close to the ¹¹³Cd and the other is far from, ΔS of the ¹⁵N peak can be written as

$$\Delta S = f \Delta S^{\text{close}} + (1 - f) \Delta S^{\text{far}}$$

where *f* is the ratio of the ¹⁵N close to the ¹¹³Cd. By assuming that ¹⁵N–¹¹³Cd dipolar interaction of the ¹⁵N far from the ¹¹³Cd is negligible, we can assume that ΔS^{far} is to be ~0. Therefore, the experimental REDOR fraction can be expressed as

$$\frac{\Delta S}{S_0} \sim f \frac{\Delta S^{\text{close}}}{S_0}.$$

In our work, the ratio f is estimated to be ~0.5 from the intensities of the experimental fractions. The analytical expression of theoretical REDOR function, which consists of Bessel functions of the first kind,⁷ should also be scaled by the ratio f (~0.5) and given as

$$\frac{\Delta S}{S_0} = f \left[1 - \frac{\sqrt{2\pi}}{4} J_{1/4} (\sqrt{2}D\tau_d) J_{-1/4} (\sqrt{2}D\tau_d) \right],$$

where *D* is the ¹⁵N–¹¹³Cd dipolar coupling constant (Hz) and τ_d is the dipolar dephasing time (ms). The fractions are referred to the theoretical functions calculated by using *D* as an adjustable parameter, and the best fitting value of *D* is determined. The ¹⁵N–¹¹³Cd internuclear distance *r* is finally obtained from an equation of the parameter $D = \gamma_N \gamma_{Cd} \hbar / 2\pi r^3$, where γ_N and γ_{Cd} are gyromagnetic ratios of ¹⁵N and ¹¹³Cd, respectively.

6. Figures

Figure S2. Plot of ¹⁵N major peak intensities of CdSe-Cys in ¹⁵N spin-echo experiments. The data were fitted

by $I_{\text{fullexp}}(-2\tau/T_2)$ as described in the main article.

Figure S3. (a) Pulse sequence for ¹⁵N–¹¹³Cd REDOR experiment and (b) 60°-300°-60° composite 180° pulse applied to ¹¹³Cd pulses. In this sequence, the dipolar dephasing time (τ_d) is given as (8n - 2) τ_r , where the number *n* means the loop times of the composite 180° pulse blocks and τ_r is the MAS rotor period.

Figure S4. ¹¹³Cd CP/MAS NMR spectrum of CdSe-Cys.

7. References

- Park, Y.-S.; Dmytruk, A.; Dmitruk, I.; Yasuto, N.; Kasuya, A.; Takeda, M.; Ohuchi, N.
 Aqueous-Phase Synthesis of Ultra-Stable Small CdSe Nanoparticles. *J. Nanosci. Nanotechnol.* 2007, 7, 3750–3753.
- Park, Y.-S.; Dmytruk, A.; Dmitruk, I.; Kasuya, A.; Okamoto, Y.; Kaji, N.; Tokeshi, M.; Baba, Y.
 Aqueous Phase Synthesized CdSe Nanoparticles with Well-Defined Numbers of Constituent Atoms.
 J. Phys. Chem. C 2010, *114*, 18834–18840.
- (3) Takeda, K. OPENCORE NMR: Open-Source Core Modules for Implementing an Integrated FPGA-Based NMR Spectrometer. J. Magn. Reson. 2008, 192, 218–229.
- Bennett, A. E.; Rienstra, C. M.; Auger, M.; Lakshmi, K. V; Griffin, R. G. Heteronuclear Decoupling in Rotating Solids. *J. Chem. Phys.* 1995, *103*, 6951–6958.
- (5) Shaka, A. J.; Pines, A. Symmetric Phase-Alternating Composite Pulses. J. Magn. Reson. 1987, 71, 495–503.
- Bertani, P.; Raya, J.; Bechinger, B. 15N Chemical Shift Referencing in Solid State NMR. *Solid State Nucl. Magn. Reson.* 2014, 61–62, 15–18.
- Mueller, K. T.; Jarvie, T. P.; Aurentz, D. J.; Roberts, B. W. The REDOR Transform: Direct
 Calculation of Internuclear Couplings from Dipolar-Dephasing NMR Data. *Chem. Phys. Lett.* 1995, 242, 535–542.