Palladium-Catalyzed C(sp ${ }^{2}$)-H Acetoxylation via Electrochemical Oxidation

Yi-Qian Li, ${ }^{\dagger, \ddagger}$ Qi-Liang Yang, ${ }^{\ddagger}$ Ping Fang, ${ }^{\ddagger}$ Tian-Sheng Mei ${ }^{*, \ddagger}$ and Dayong Zhang ${ }^{*, \dagger}$
${ }^{\dagger}$ Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing, P. R. China.
${ }^{\ddagger}$ State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China.

Supporting Information

Table of Contents

1. General Methods.. 2
2. General Procedure for the Synthesis of Oximes .. 3
3. General Procedures for the Optimization of Reaction Conditions..................................... 9
4. General Procedure for $\mathrm{Pd}(\mathrm{OAc})_{2}$-catalyzed Acetoxylation via Electrochemical oxidation 14
5. Characterization of All Products.. 15
6. Kinetic Isotope Effects Studies ... 20
7. References ... 22
8. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19} \mathrm{~F}$ NMR spectra .. 23

I. General Methods

All the electrochemical oxidation was performed in an H-type divided cell equipped with two platinum electrodes $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$. The two compartments were separated by an anion exchange membrane. Solvents and commercially available reagents were used without purification. Column chromatography was performed using either 100-200 Mesh or 300-400 Mesh silica gel. Visualization of spots on TLC plate was accomplished with UV light (254 nm) and staining over I_{2} chamber.

All commercial reagents were purchased from TCI, Sigma-Aldrich, Adamas-beta, 9-Ding chemistry and Energy Chemical of the highest purity grade. They were used without further purification unless specified. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Agilent AV 400, Varian Inova $400(400 \mathrm{MHz}$ and 100 MHz , respectively). ${ }^{19}$ F NMR spectra were recorded on Agilent AV 400, Varian Inova 400 (376 MHz) instrument and are reported relative to the CFCl_{3} as the internal standard. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal. The following abbreviations were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and $\mathrm{br}=$ broad. Infrared spectra were obtained on a Bio-Rad FTS-185 instrument. High resolution mass spectra were recorded at the Center for Mass Spectrometry, Shanghai Institute of Organic Chemistry. Analytical and spectral data of all those known compounds are exactly matching with the reported values. Melting points were recorded on WRS-2 microcomputer melting point device.

2. General Procedures for the Synthesis of Oximes

2.1 Scope of Starting Substrates

 1a	 1b	 1c	 1d
 $1 e$	 $1 f$	 1g	 1h
 $1 i$	 1j	 1k	 11
 1m	 1n	 10	 1p
 19	 1r	 1s	 1t

2.2 General Procedure for the Synthesis of the substrates

All the oxime derivatives were synthesized according to literature ${ }^{1}$. To a 50 mL round bottom flask equipped with a stir bar was combined ketone ($1.7 \mathrm{mmol}, 1$ equiv), $\mathrm{MeONH}_{2} \mathrm{HCl}$ ($380 \mathrm{mg}, 4.6 \mathrm{mmol}, 2.7$ equiv), $\mathrm{NaOAc}(610 \mathrm{mg}, 7.5 \mathrm{mmol}, 4.4$ equiv), $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$, and $\mathrm{EtOH}(5 \mathrm{~mL})$. The flask was equipped with a reflux condenser and heated at $70{ }^{\circ} \mathrm{C}$ for 2 h . After cooling to room temperature, the mixture was extracted with EtOAc ($3 \times 15 \mathrm{~mL}$). The organic layers were combined, dried with MgSO_{4}, and concentrated to yield the crude product. The crude product was purified by column chromatography on silica gel to get the substrates.

2.3 Characterization of starting substrates

1-Phenylethan-1-one \boldsymbol{O}-methyl oxime (1a). Acetophenone was subjected to the standard procedure to yield O-methyl oxime as a colorless oil ($215 \mathrm{mg}, 85 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 3 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3$ H). Spectral data matched those previously reported. ${ }^{1}$

1-(4-Methoxyphenyl)ethan-1-one \boldsymbol{O}-methyl oxime (1b). 4-Methyl-acetophenone was subjected to the standard procedure to yield O-methyl oxime as a white solid (246.6 $\mathrm{mg}, 81 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.87(\mathrm{~m}, 2 \mathrm{H}), 3.98$ $(\mathrm{s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$. Spectral data matched those previously reported. ${ }^{2}$

1-(4-(Tert-butyl)phenyl)ethan-1-one O-methyl oxime (1c). 4-Tert-Butylacetophenone was subjected to the standard procedure to yield O-methyl oxime as a colorless oil ($279 \mathrm{mg}, 80 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.56$ (m, 2 H), 7.40$7.37(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.60,152.19,133.82,125.74,125.34,61.84,34.65,31.23,12.64$. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+} 206.1539$, found 206.1540.

1-(4-Fluorophenyl)ethan-1-one \boldsymbol{O}-methyl oxime (1d). 4-Fluoro-acetophenone was subjected to the standard procedure to yield O-methyl oxime as a light yellow oil (213 $\mathrm{mg}, 75 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 2 \mathrm{H}), 3.99$ $(\mathrm{s}, 3 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H})$. Spectral data matched those previously reported. ${ }^{3}$

1-(4-Chlorophenyl)ethan-1-one \boldsymbol{O}-methyl oxime (1e). 4-Chloro-acetophenone was subjected to the standard procedure to yield O-methyl oxime as a colorless oil (236.5 $\mathrm{mg}, 76 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 153.47, 135.00, 134.96,
128.55, 127.26, 62.02, 12.44. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$ 184.0524, found 184.0525 .

1-(4-Bromophenyl)ethan-1-one \boldsymbol{O}-methyl oxime (1f). 4-Bromo-acetophenone was subjected to the standard procedure to yield O-methyl oxime as a yellow oil (320.3 mg , 83%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54-7.47(\mathrm{~m}, 4 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H})$. Spectral data matched those previously reported. ${ }^{1}$

1-(4-Iodophenyl)ethan-1-one \boldsymbol{O}-methyl oxime (1g). 4-Iodo-acetophenone was subjected to the standard procedure to yield O-methyl oxime as a yellow solid (388 mg , 83%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2$ $\mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.61,137.47,136.04$, 127.69, 95.14, 62.07, 12.32. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{INO}[\mathrm{M}+\mathrm{H}]^{+}$ 275.9880 , found 275.9878 . m.p. $=42-43{ }^{\circ} \mathrm{C}$

1-([1,1'-Biphenyl]-4-yl)ethan-1-one \boldsymbol{O}-methyl oxime (1h). 4-Acetylbiphenyl subjected to the standard procedure to yield O-methyl oxime as a white solid (317.6 mg , 83%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 4$ H), $7.45(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.28,141.73,140.47,135.47,128.79,127.51,127.06$, 127.02, 126.40, 61.95, 12.57. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$ 226.1226, found 226.1229. m.p. $=115-116^{\circ} \mathrm{C}$

Methyl-4-(1-(methoxyimino)ethyl)benzoate (1i). 4-Acetylbenzoic acid was subjected to the standard procedure to yield O-methyl oxime as a white solid (292.2 mg , 83%) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.03(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2$ H), $4.02(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$. Spectral data matched those previously reported. ${ }^{1}$

1-(4-(Trifluoromethyl)phenyl)ethan-1-one O-methyl oxime (1j). 4-(Trifluoromethyl)-acetophenone was subjected to the standard procedure to yield Omethyl oxime as a colorless oil ($280.4 \mathrm{mg}, 76 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.76$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.61 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.02 (s, 3 H), 2.24 (s, 3 H). Spectral data matched those previously reported. ${ }^{1}$

4-(1-(Methoxyimino)ethyl)benzonitrile (1k). 4-Acetylbenzonitrile was subjected to the standard procedure to yield O-methyl oxime as a white solid ($219 \mathrm{mg}, 74 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.75$ (m, 2 H), 7.67-7.63 (m, 2 H), 4.03 (s, 3 H), 2.22 (s, 3 H). Spectral data matched those previously reported. ${ }^{1}$

1-(4-Nitrophenyl)ethan-1-one \boldsymbol{O}-methyl oxime (11). 4-Nitro-acetophenone was subjected to the standard procedure to yield O-methyl oxime as a light yellow solid ($247.4 \mathrm{mg}, 75 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.22(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}$), 7.83 (d, $J=$ $8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.05(\mathrm{~s}, 3 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H})$. Spectral data matched those previously reported. ${ }^{2}$

Methyl-3-(1-(methoxyimino)ethyl)benzoate (1m). 3-Acetylbenzoic acid was subjected to the standard procedure to yield O-methyl oxime as a colorless oil (292.2 $\mathrm{mg}, 83 \%$) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{td}, J=1.8,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02$ (ddd, $J=$ $7.7,1.7,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.88 (ddd, $J=7.9,1.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.44 (td, $J=7.8,0.6 \mathrm{~Hz}, 1$ H), $4.01(\mathrm{~s}, 3 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.82$, 153.68, 136.94, 130.34, 130.29, 130.01, 128.50, 127.17, 62.09, 52.24, 12.56. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$208.0968, found 208.0967.

1-(3-Chlorophenyl)ethan-1-one \boldsymbol{O}-methyl oxime (1n). 3-Chloro-acetophenone was subjected to the standard procedure to yield O-methyl oxime as a colorless oil (220.9 $\mathrm{mg}, 71 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-$ $7.27(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.30$, 138.35, 134.42, 129.60, 128.98, 126.11, 124.12, 62.10, 12.48. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{ClNO}[\mathrm{M}+\mathrm{H}]^{+}$184.0524, found 184.0521 .

1-(3-Bromophenyl)ethan-1-one \boldsymbol{O}-methyl oxime (10). 3-Bromo-acetophenone was subjected to the standard procedure to yield O-methyl oxime as a colorless oil (320.3 $\mathrm{mg}, 83 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.81(\mathrm{t}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dt}, J=7.9,1.3$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.48 (ddd, $J=8.0,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.20,138.59,131.90,129.88,129.00$, 124.58, 122.61, 62.12, 12.49. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$ 228.0019 , found 228.0017 .

1-(3-(Trifluoromethyl)phenyl)ethan-1-one O-methyl oxime (1p). 3-(Trifluoromethyl)-acetophenone was subjected to the standard procedure to yield Omethyl oxime as a colorless oil ($265.7 \mathrm{mg}, 72 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92$ (s, 1 H), 7.83 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.61 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}$), $7.49(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.02(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 153.13$, 137.35, $130.80(\mathrm{q}$, $J=32.3 \mathrm{~Hz}), 129.15,128.85,125.58,125.53(\mathrm{q}, J=3.8 \mathrm{~Hz}), 122.79(\mathrm{q}, J=3.9 \mathrm{~Hz})$, $124.00(\mathrm{q}, J=273.8 \mathrm{~Hz}), 62.16,12.41$. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~F}_{3} \mathrm{NO}$ $[\mathrm{M}+\mathrm{H}]^{+} 218.0787$, found 218.0785 .

1-(2-fluorophenyl)ethan-1-one \boldsymbol{O}-methyl oxime (1q). 2-Fluoroacetophenone was subjected to the standard procedure to yield O-methyl oxime as a colorless oil (218.7 $\mathrm{mg}, 77 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.48(\mathrm{td}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.37-7.30(\mathrm{~m}$, $1 \mathrm{H}), 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (400 MHz , CDCl_{3}) $\delta 161.79,159.30,153.26,130.59,130.51,129.58,129.55,125.40,125.27$, $124.17,124.13,116.19,115.97,61.96,15.48,15.43 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ -114.75--114.83. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{FNO}[\mathrm{M}+\mathrm{H}]^{+} 168.0819$, found 168.0821 .

1-Phenylpentan-1-one \boldsymbol{O}-methyl oxime (1r). 1-Phenyl-1-pentanone was subjected to the standard procedure to yield O-methyl oxime as a colorless oil $(246.9 \mathrm{mg}, 76 \%){ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.63-7.61$ (m, 2 H), 7.38-7.34 (m, 3 H), 3.97 ($\mathrm{s}, 3 \mathrm{H}$), 2.75$2.71(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. Spectral data matched those previously reported. ${ }^{4}$

Diphenylmethanone \boldsymbol{O}-methyl oxime (1s). Diphenyl ketone was subjected to the standard procedure to yield O-methyl oxime as a white solid ($283.5 \mathrm{mg}, 79 \%$) ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.30(\mathrm{~m}, 10 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H})$. Spectral data matched those previously reported. ${ }^{5}$

1-(Cyclohex-1-en-1-yl)ethan-1-one \boldsymbol{O}-methyl oxime (1t). 1-Acetyl-1-cyclohexene was subjected to the standard procedure to yield O-methyl oxime as a colorless oil ($182.2 \mathrm{mg}, 70 \%$) ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.13-6.10(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 2.31-$ 2.14 (m, 4 H), 1.93 (s, 3 H), 1.68-1.56 (m, 4 H). ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.97$, 134.84, 128.92, 61.46, 25.93, 24.46, 22.42, 22.17, 10.27. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{NO}[\mathrm{M}+\mathrm{H}]^{+}$153.2207, found 153.2204 .

3. General Procedures for the Optimization of Reaction Conditions

Table S1. Screening of temperature ${ }^{\text {a }}$

${ }^{\text {a }}$ Reaction conditions: 1a $(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%),{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}(1$ equiv), acetic acid (3 mL) [anode], and ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}$ (1 equiv), acetic acid (3 mL) [cathode] in an H -type divide cell with two platinum electrodes and anion exchange membrane, 1 mA . ${ }^{\mathrm{b}}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

Table S2. Screening of substrate concentration ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Reaction conditions: 1a, $\mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%),{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}(1$ equiv), acetic acid (3 mL) [anode], and ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}(1$ equiv), acetic acid (3 mL) [cathode] in an H-type divide cell with two platinum electrodes and anion exchange membrane, 1 mA , at $40{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

Table S3. Screening of current ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Reaction conditions: $\mathbf{1 a}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%),{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}$ (1 equiv), acetic acid (3 mL) [anode], and ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}$ (1 equiv), acetic acid (3 mL) [cathode] in an H-type divide cell with two platinum electrodes and anion exchange membrane, at $40{ }^{\circ} \mathrm{C}$. ${ }^{\mathrm{b}}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

Table S4. Screening of catalyst ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Reaction conditions: $\mathbf{1 a}(0.3 \mathrm{mmol}),[\mathrm{Pd}],{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}$ (1 equiv), acetic acid (3 mL) [anode], and ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}(1$ equiv), acetic acid (3 mL) [cathode] in an H-type divide cell with two platinum electrodes and anion exchange membrane, at $40{ }^{\circ} \mathrm{C}, 1 \mathrm{~mA}$. ${ }^{\mathrm{b}}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

Table S5. Screening of electrolyte ${ }^{\text {a }}$

${ }^{\mathrm{a}}$ Reaction conditions: $\mathbf{1 a}(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(10 \mathrm{~mol} \%)$, electrolyte, acetic acid (3 mL) [anode], and electrolyte, acetic acid (3 mL) [cathode] in an H-type divide cell with two platinum electrodes and anion exchange membrane, at $40{ }^{\circ} \mathrm{C}, 1 \mathrm{~mA} .{ }^{\mathrm{b}}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. $\mathrm{ND}=$ not detected.

Table S6. Screening of solvent ${ }^{\text {a }}$

0.3 mmol

1a
cathode

2a

entry ${ }^{\mathrm{a}}$	solvent (mL)	yield(\%) ${ }^{\text {b }}$
1	DCE $(3 \mathrm{~mL})$	54
2	$\mathrm{Ac}_{2} \mathrm{O}(3 \mathrm{~mL})$	75
3	$\mathrm{AcOH}(3 \mathrm{~mL})$	78
4	$\mathrm{AcOH}(1.5 \mathrm{~mL})+\mathrm{Ac}_{2} \mathrm{O}(1.5 \mathrm{~mL})$	61
5	$\mathrm{AcOH}(1.5 \mathrm{~mL})+\mathrm{DCE}(1.5 \mathrm{~mL})$	74

${ }^{a}$ Reaction conditions: 1a $(0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{NBu}_{4} \mathrm{OAc}(1$ equiv) $(10 \mathrm{~mol} \%)$, solvent [anode], and $\mathrm{NBu}_{4} \mathrm{OAc}$ (1 equiv), acetic acid (3 mL) [cathode] in an H -type divide cell with two platinum electrodes and anion exchange membrane, at $40{ }^{\circ} \mathrm{C}, 1 \mathrm{~mA}$. ${ }^{\mathrm{b}}$ The yield was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard.

4. General Procedures for $\operatorname{Pd}(\mathbf{O A c})_{2}$-catalyzed Acetoxylation via Electrochemistry

The electrochemical acetoxylation was carried out in an H-type divided cell equipped with two platinum electrodes ($1.0 \times 1.0 \mathrm{~cm}^{2}$). The two compartments were separated by an anion-exchange membrane. The anodic chamber was charged with a solution of an aromatic compound (0.3 mmol), palladium acetate $(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}$, 0.1 equiv) and tetrabutylammonium acetate ($90 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv) in AcOH (3 mL). The solution of tetrabutylammonium acetate ($90 \mathrm{mg}, 0.3 \mathrm{mmol}, 1$ equiv) in AcOH $(3 \mathrm{~mL})$ was introduced into the cathodic chamber. Then the mixture in the anodic chamber was stirred at a constant current of 1 mA at $40{ }^{\circ} \mathrm{C}\left(\mathbf{1 k}, \mathbf{1 1}, \mathbf{1 t}\right.$ at $\left.60^{\circ} \mathrm{C}\right)$. After the reaction, the solution in the anodic chamber and cathodic chamber was combined and then quenched by NaHCO_{3}. The resulting mixture was extracted with EtOAc for three times. The combined organic portions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vaccum. Further purification was carried out by flash column chromatography ($\mathrm{PE}: \mathrm{EA}=20: 1$).

Procedure for a Gram-Scale Experiment

The electrochemical acetoxylation was carried out in an H-type divided cell equipped with two platinum electrodes $\left(1.0 \times 1.0 \mathrm{~cm}^{2}\right)$. The two compartments were separated by an anion-exchange membrane. The anodic chamber was charged with a solution of $1 \mathbf{1 a}(1.2 \mathrm{mmol})$, palladium acetate $(26.8 \mathrm{mg}, 0.12 \mathrm{mmol}, 0.1$ equiv) and tetrabutylammonium acetate ($360 \mathrm{mg}, 1.2 \mathrm{mmol}, 1$ equiv) in $\mathrm{AcOH}(12 \mathrm{~mL}$). The solution of tetrabutylammonium acetate ($360 \mathrm{mg}, 1.2 \mathrm{mmol}, 1$ equiv) in $\mathrm{AcOH}(12 \mathrm{~mL}$) was introduced into the cathodic chamber. Then the mixture in the anodic chamber was stirred at a constant current of 1 mA at $40{ }^{\circ} \mathrm{C}$. After the reaction, the solution in the anodic chamber and cathodic chamber was combined and then quenched by NaHCO_{3}. The resulting mixture was extracted with EtOAc for three times. The combined organic portions were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under vaccum. Further purification was carried out by flash column chromatography to afford the product 2a as yellow oil with 55% yield.

5. Characterization of all Products

2-(1-(Methoxyimino)ethyl)phenyl acetate (2a): Yellow oil ($46.6 \mathrm{mg}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.23,153.40,147.91,130.25,129.69,129.41,126.07,123.17$, $77.40,77.08,76.76,61.91,21.05,15.07$. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 208.0968$, found 208.0968 .

5-Methoxy-2-(1-(methoxyimino)ethyl)phenyl acetate (2b): Yellow oil (46.9 mg, 66%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.7,2.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 6.63 (d, $J=2.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.94 ($\mathrm{s}, 3 \mathrm{H}$), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 2.28 ($\mathrm{s}, 3 \mathrm{H}$), 2.13 ($\mathrm{s}, 3$ H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.18,160.53,153.13,148.86,130.09,122.62$, 111.89, 108.87, 61.80, 55.52, 21.10, 14.95. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{4}[\mathrm{M}+\mathrm{H}]^{+} 238.1074$, found 238.1074. m.p. $=53-54{ }^{\circ} \mathrm{C}$

5-(Tert-butyl)-2-(1-(methoxyimino)ethyl)phenyl acetate (2c): Colorless oil (53.7 mg, 68%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.27(\mathrm{dd}, J=8.2,2.0$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.08(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~s}, 9$ H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.40,153.54,153.34,147.64,128.89,127.19$, 123.18, 120.21, 61.87, 34.73, 31.09, 21.14, 14.87. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 264.1594$, found 264.1598.

5-Fluoro-2-(1-(methoxyimino)ethyl)phenyl acetate (2d): Yellow solid (49.3 mg , 73%). ${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{dd}, J=8.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{td}, J=8.2$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}$), 6.87 (dd, $J=9.1,2.5 \mathrm{~Hz}, 1 \mathrm{H}$), $3.96(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.76,163.86,161.38,152.70,148.81(\mathrm{~d}, J=11 \mathrm{~Hz})$, $130.51(\mathrm{~d}, J=9.4 \mathrm{~Hz}), 126.55(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 113.20(\mathrm{~d}, J=21.4 \mathrm{~Hz}), 111.07(\mathrm{~d}, J=$ 24.4 Hz), 61.96, 21.00, 15.10. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.33--110.39(\mathrm{~m})$. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$226.0874, found 226.0875. m.p. $=36-38^{\circ} \mathrm{C}$

5-Chloro-2-(1-(methoxyimino)ethyl)phenyl acetate (2e): Yellow solid (47 mg, 65\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}$, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 168.78,152.53,148.33,134.84,130.23,128.88,126.34,123.72,62.02,20.98,14.93$. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$242.0578, found 242.0580. m.p. $=51-52{ }^{\circ} \mathrm{C}$

5-Bromo-2-(1-(methoxyimino)ethyl)phenyl acetate (2f): White solid (59.8 mg, 70\%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{dd}, J=8.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 3.96$ $(\mathrm{s}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.80,152.59$, $148.34,130.48,129.35,129.27,126.57,122.58,62.04,20.98,14.90$. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 286.0073$, found 286.0074. m.p. $=71-73{ }^{\circ} \mathrm{C}$

5-Iodo-2-(1-(methoxyimino)ethyl)phenyl acetate (2g): Yellow solid ($67.9 \mathrm{mg}, 68 \%$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.82,152.65,148.10,135.22,132.29,130.63,130.01,93.79,62.05,20.97$, 14.86. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{INO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 333.9935$, found 333.9934 . m.p. $=75-77{ }^{\circ} \mathrm{C}$

4-(1-(Methoxyimino)ethyl)-[1,1'-biphenyl]-3-yl acetate (2h): White solid (67.9 mg, 80%). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.58-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.40(\mathrm{~m}, 4 \mathrm{H}), 7.37-$ $7.32(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 169.31,153.17,148.23,142.94,139.48,129.76,128.90,128.86,127.93,127.10$, $124.69,121.85,62.00,21.15,14.97$. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3}$ $[\mathrm{M}+\mathrm{H}]^{+} 284.1281$, found 284.1283. m.p. $=83-85{ }^{\circ} \mathrm{C}$

Methyl-3-acetoxy-4-(1-(methoxyimino)ethyl)benzoate (2i): White solid (62 mg, 78%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.92(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.98(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.97,165.72,152.69,147.83,134.57,131.40,129.50,127.07,124.55$, 62.12, 52.36, 20.97, 14.88. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$ 266.1023, found 266.1025. m.p. $=103-104{ }^{\circ} \mathrm{C}$

2-(1-(Methoxyimino)ethyl)-5-(trifluoromethyl)phenyl acetate (2j): Colorless oil ($49.5 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 3.98$ (s, 3 H), $2.31(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 168.76, 152.35 , 148.03, 133.83, $131.72(\mathrm{q}, J=33.6 \mathrm{~Hz}), 130.08,123.83(\mathrm{q}, J=273.7 \mathrm{~Hz}), 122.83(\mathrm{q}, J$ $=3.8 \mathrm{~Hz}), 120.64(\mathrm{q}, J=3.9 \mathrm{~Hz}), 62.15,20.93,14.86 .{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $-62.82(\mathrm{~m})$. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$276.0842, found 276.0844

5-Cyano-2-(1-(methoxyimino)ethyl)phenyl acetate (2k): White solid (34.1 mg, 49\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.42(\mathrm{~m}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 168.46, 152.01, 135.09, 130.38, 129.54, 127.09, 113.19, 62.27, 20.88, 14.76. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 233.0921$, found 233.0921. m.p. $=75-76{ }^{\circ} \mathrm{C}$

2-(1-(Methoxyimino)ethyl)-5-nitrophenyl acetate (21): Yellow oil (36.3 mg, 48\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.63(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 168.54,151.88,148.20,147.97,136.61,130.23,120.87,119.09,62.37,20.93$, 14.85. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+} 253.0819$, found 253.0822. m.p. $=84-85^{\circ} \mathrm{C}$

Methyl-4-acetoxy-3-(1-(methoxyimino)ethyl)benzoate (2m): Yellow solid (53.3 mg , 67%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.4,2.1$ $\mathrm{Hz}, 1 \mathrm{H}$), $7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{~s}, 3$ H). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.68,165.92,152.63,151.48,131.10,130.95$, 130.47, 127.97, 123.44, 62.06, 52.30, 21.05, 14.96. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{H}]^{+}$266.1023, found 266.1024. m.p. $=66-67^{\circ} \mathrm{C}$

4-Chloro-2-(1-(methoxyimino)ethyl)phenyl acetate (2n): Yellow oil (49.9 mg, 69\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.6,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.04(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta 168.98,152.35,146.46,131.71,131.43,129.54,129.34,124.56,62.10,21.00$, 14.91. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClNO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 242.0578$, found 242.0580

4-Bromo-2-(1-(methoxyimino)ethyl)phenyl acetate (20): Yellow oil (48.7 mg, 57\%). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{dd}, J=8.6,2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 168.81,152.24,147.05,132.50,132.25,132.12,124.88,119.08,62.09,20.97$, 14.91. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}$286.0073, found 286.0075

2-(1-(Methoxyimino)ethyl)-4-(trifluoromethyl)phenyl acetate (2p): Yellow oil (43.7 $\mathrm{mg}, 53 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.71(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}, J=8.5$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.64,152.31,150.48,131.05,128.39(\mathrm{q}, J=33.2 \mathrm{~Hz})$, $126.85(\mathrm{q}, J=3.8 \mathrm{~Hz}), 126.63(\mathrm{q}, J=3.7 \mathrm{~Hz}), 123.59(\mathrm{q}, J=273.6 \mathrm{~Hz}), 123.90,62.14$, 20.98, 14.95. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.51. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 276.0842$, found 276.0845

3-Fluoro-2-(1-(methoxyimino)ethyl)phenyl acetate (2q): Colorless oil (20.3 mg , 30%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.30(\mathrm{td}, J=8.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98$ (ddd, $J=9.4$, $8.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dt}, J=8.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{~d}, J=$ $1.8 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.95,162.05,159.57,149.14,148.87$, $148.81,129.90,129.80,119.91,119.73,118.66,118.62,113.60,113.38,62.02,20.71$, 15.76, 15.73. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.18-113.24$. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{FNO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 226.0874$, found 226.0874.

2-(1-(Methoxyimino)pentyl)phenyl acetate (2r): Colorless oil (52.3 mg, 70\%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.63(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.26(\mathrm{~m}, 5 \mathrm{H}), 0.87(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.22,157.53,148.17,129.76,129.56$, 129.46, 126.01, 123.28, 61.82, 28.53, 28.00, 22.85, 21.04, 13.77. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 250.1438$, found 250.144

2-((Methoxyimino)(phenyl)methyl)phenyl acetate (2s): Yellow oil ($65.5 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.49-7.35(\mathrm{~m}, 7 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=$ 8.1, 1.0 Hz, 1 H), $3.99(\mathrm{~s}, 3 \mathrm{H}), 1.81(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.85$, 153.87, 148.71, 133.13, 131.28, 130.20, 129.54, 129.31, 129.19, 128.02, 125.97, 123.47, 62.52, 20.32. HRMS (ESI-TOF) m / z Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 270.1125$, found 270.1127

2-(1-(Methoxyimino)ethyl)cyclohex-1-en-1-yl acetate (2t): Colorless oil (33.6 mg, 53%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.87$ (s, 3 H), $2.31-2.20(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H})$, $1.90(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.64(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.94,154.42$, 146.24, 122.19, 61.55, 27.76, 26.82, 22.37, 21.99, 20.99, 13.80. HRMS (ESI-TOF) m/z Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{H}]^{+} 212.1281$, found 212.1282

6. Kinetic Isotope Effects Studies

a) Intermolecular competition experiment:

According to the standard procedure, in an electrochemical divided cell, 1a (22.4 $\mathrm{mg}, 0.15 \mathrm{mmol}), \mathbf{1 a - D}(23.1 \mathrm{mg}, 0.15 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol})$ were dissolved in 3 mLHOAc . Electrolysis was conducted at a constant current of 1 mA with the use of ${ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}(0.1 \mathrm{M}, 90.4 \mathrm{mg})$ as supporting electrolyte at $40{ }^{\circ} \mathrm{C}$ for 6 h . The ratio of $\mathbf{2 a}$ and $\mathbf{2 a - D}$ was determined by ${ }^{1} \mathrm{H}$ NMR and a slight primary kinetic isotope effect (KIE) of $k_{H} / k_{D}=2.5$ was revealed.

Figure 1. Intermolecular competition KIE experiment.

b) Parallel experiments:

According to the standard procedure, the anodic chamber was charged with 1a $(44.6 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(6.7 \mathrm{mg}, 0.03 \mathrm{mmol}),{ }^{\mathrm{n}} \mathrm{Bu}_{4} \mathrm{NOAc}(90.4 \mathrm{mg}, 0.3 \mathrm{mmol})$
and HOAc (3 mL). Electrolysis was conducted at a constant current of 1 mA at $40^{\circ} \mathrm{C}$ and stopped respectively at $3 \mathrm{~h}, 4 \mathrm{~h}, 5 \mathrm{~h}, 6 \mathrm{~h}, 7 \mathrm{~h}$, and 8 h . In similar, substrate 1a-D $(46.2 \mathrm{mg}, 0.3 \mathrm{mmol})$ was used instead of $\mathbf{1 a}$. The yield of products was determined by ${ }^{1} \mathrm{H}$ NMR with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard and the reaction rate was obtained by plotting the percentage yield of the product versus time. The kinetic isotope effect $\left(\mathrm{k}_{\mathrm{H}} / \mathrm{k}_{\mathrm{D}}\right)$ was determined to be 1.5 .

Time (h)	3	4	5	6	7	8
Yield 2a (\%)	3.56	8.05	11.19	13.6	16.32	21.49
Yield 2a-D (\%)	1.27	2.42	4.97	6.31	7.95	13.19

Figure 2. Parallel KIE experiments.

7. References

1. Tsai, A. S.; Brasse, M.; Bergman, R. G.; Ellman, J. A. Org. Lett. 2011,13,540-542
2. Chu, Y.; Shan, Z.; Liu, D.; Sun, N. J. Org. Chem. 2006, 71, 3998-4001.
3. Yang, Y.; Zhou, B.; Li, Y. Adv. Synth. Catal. 2012, 354, 2916.
4. Miyata, O.; Koizumi, T.; Asai, H.; Iba, Ryuichi.; Naito, T. Tetrahedron. 2004, 60, 3893-3914.
5. Haines, A. S.; Dong, Xu; Thomas, C. M.; Crump, M. P. Nature. Chem. Bio. 2013, 9, 685-692.
6. ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, ${ }^{19}$ F NMR Spectra

$\stackrel{N}{\dot{j}}$

$\stackrel{\mathrm{N}}{\mathrm{N}}$
$\stackrel{8}{\circ}$

1h

1h

180	160	140	120	100	80 $\mathrm{f1}(\mathrm{ppm})$	60	40	20

1t

$\begin{array}{ll}\circ & N \\ \vdots & 0 \\ \vdots & 1 \\ \vdots\end{array}$

180	160	140	120	100	80 $\mathrm{f} 1(\mathrm{ppm})$	60	40	20

2j

50	0	-50	-100 $\mathrm{f} 1(\mathrm{ppm})$	-150	-200	-250

$\stackrel{\infty}{\stackrel{\infty}{\circ}} \stackrel{\leftrightarrow}{\dot{\circ}}$

$2 q$

	0	-50	-100 $\mathrm{f} 1(\mathrm{ppm})$	-150	-200	-250

N
O.

$\stackrel{\sim}{N}$

2s

180	160	140	120	100	80 $\mathrm{f} 1(\mathrm{ppm})$	60	40	20	0

$2 t$

