Supporting Information

High-affinity RGD-knottin peptide as a new tool for rapid evaluation of the binding strength of unlabeled RGD-peptides to $\alpha_v\beta_3$, $\alpha_v\beta_5$, and $\alpha_5\beta_1$ integrin receptors

D.Bernhagen^a, L. De Laporte^b, P. Timmerman^{a,c*}

a: Pepscan Therapeutics, Zuidersluisweg 2, 8243 RC Lelystad, The Netherlands b: DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany c: Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Sciencepark 904 XH Amsterdam, The Netherlands

Table of contents

S-2 :	General Information
	Synthesis protocol for biotinylated peptides 1a-c
	Synthesis protocol for peptides 2a-c
S-3 :	UPLC/MS spectrum of purified knottin-RGD peptide 1a (Figure S-1)
S-4 :	UPLC/MS spectrum of purified cyclic-RGD peptide 2a (Figure S-2)
S-5:	Protocol for ELISA experiments
	Schematic setup of binding and competition ELISA (Figure S-3)

S-6: Exemplary binding ELISA results (Figure S-4)
Exemplary competition ELISA results (Figure S-5)

General

UPLC analysis was performed on a Waters Acquity Ultra Performance LC System, equipped with a Waters Acquity UPLC BEH130 C18 1.7 μ m column. A linear gradient of 5-55% ACN (0.05% TFA) in H₂O (0.05% TFA) was used. Peptides were purified by preparative HPLC (Waters Prep LC) on an RP-C18 column (Reprosil-Pur 120 C18-AQ 150x20 mm, Dr. Maisch GmbH, Ammerbuch, Germany) using an ACN/H₂O gradient (5-65%) including 0.05% TFA.

Synthesis protocol for biotinylated peptides 1a-c

Biotinylated peptides **1a-c** were synthesized in two steps. First, the linear peptide was synthesized via Fmoc-based solid-phase peptide synthesis (SPPS) on a Rink-amide resin using standard protocols. Second, linear peptide was folded using following protocol (example): Linear precursor of **1a** (20 mg, 5.2 μ mol) was dissolved at 0.1 μ M in miliQ water containing 2.2 M guanidinium hydrochloride (GuHCl), further referred to as peptide solution. Folding buffer (twice the volume of peptide solution) was made by dissolving cysteine (55.8 mg, 460 μ mol) and cystine (13.4 mg, 55.7 μ mol) in 1 M GuHCl and 25 mM Tris buffer (pH 8). After sonication and filtration, peptide solution was slowly added and reacted 24 h at r.t. without stirring. The reaction was quenched with 10% TFA solution until pH < 4 and the oxidized product subsequently purified via HPLC. [M+3H]³⁺ calculated for **1a**: 1269.18, found: 1270.26 (Figure S1).

Synthesis protocol for peptides 2a-c

Peptides **2a-c** were synthesized via Fmoc-based solid-phase peptide synthesis (SPPS) on a 2-chlorotrityl resin using standard protocols, starting with coupling of Gly to prevent racemization in backbone cyclization. For **2a+b**, a lysine residue that carried an Fmoc-protected side chain and an ivDde-protected *N*-terminus was used. After Fmoc-deprotection, subsequent linker coupling, and biotinylation of the lysine side chain, the ivDde group was removed using 2% hydrazine in DMF, and the remaining amino acids were coupled. Then, the peptide was cleaved with 2% TFA/DCM and isolated as a fully side-chain protected peptide, which was then backbone-cyclized using the following protocol: to a solution of fully side-chain protected peptide in DCM (0.3 mM) was added PyBop (2 eq) and after 20 min *N*,*N*-diisopropylethylamine (10 eq). After reaction overnight at room temperature, solvent was removed in vacuum and 1.5 mL per 40 μmol peptide of 95% TFA were added to fully deprotect the cyclized peptide. After 2h, peptide was precipitated 2 times with 1:1 Ether/*N*-pentane, and after lyophilization, the peptide was purified via HPLC. *m/z* calculated for **2a**: 1119.54, found: 1119.48 (Figure S2).

Spectra



Figure S-1. UPLC/MS spectrum of purified knottin-RGD peptide **1a** (top: UV detection at 215 nm, middle/bottom: ESI-MS detection).

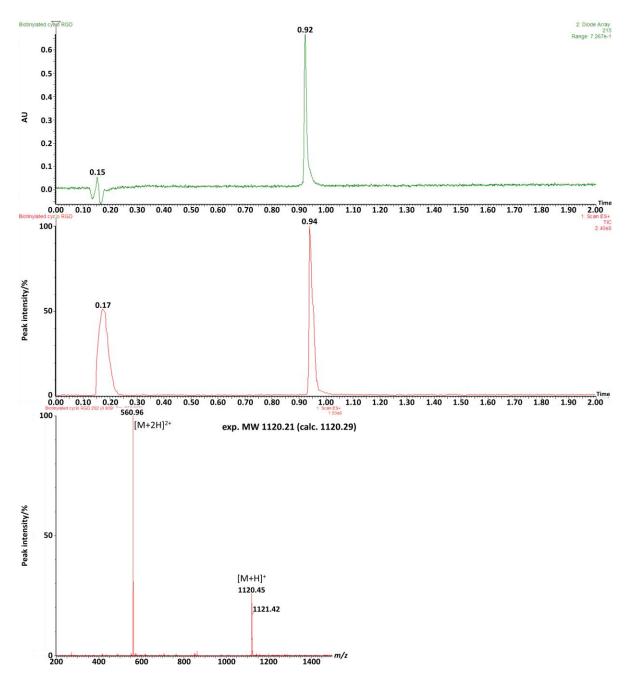


Figure S-2. UPLC/MS spectrum of purified cyclic-RGD peptide **2a** (top: UV detection at 215 nm, middle/bottom: ESI-MS detection).

ELISA

All integrins were dissolved according to manufacturer's protocol and stored in 25 μ L aliquots of 100 μ g/mL in PBS. For coating of one 96 well plate, 2 aliquots were thawed and dissolved in 9.95 mL of cold coating buffer for a 0.5 μ g/mL solution. After coating, the plates were subsequently sealed and stored at 4 °C overnight. Integrin was removed and plates were blocked with 150 μ L 1% I-Block solution for 1h at room temperature. The following washing and incubation steps were performed according to manuscript. ABTS substrate buffer was prepared by mixing substrate buffer pH 4, 20 g/L ABTS and 3% H₂O₂ in the volumetric ratio 10/0.25/0.02. A schematic setup of the binding ELISA and competition ELISA is shown in Figure S3. Exemplary ELISA experiment results are shown in Figures S4 (binding ELISA) and S5 (competition ELISA).

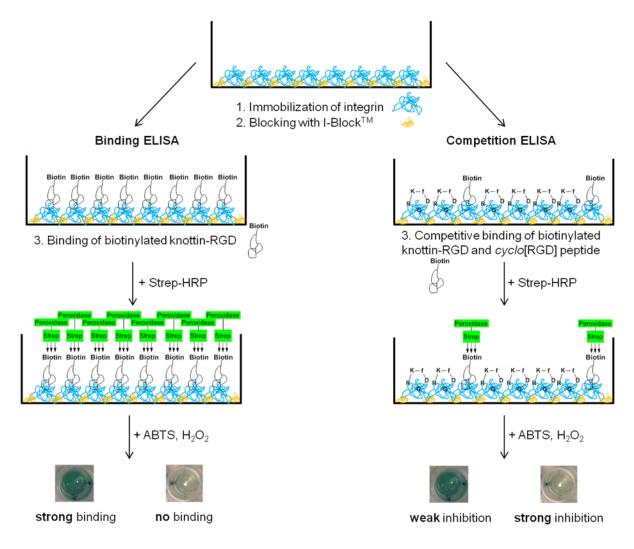


Fig. S-3. Schematic setup of the direct binding ELISA (left) and competition ELISA (right). Color change is induced by biotin-bound streptavidin-horseradish peroxidase ("Peroxidase-Strep").

													Peptide 2b [μM]		
Plate A			c _{comp. Peptide} [μM]	10			1			0.1			A: 10, B: 1, C: 0.1, D: 0		
Integrin	Washing	Peptide	Polysorp	1	2	3	4	5	6	7	8	9	10	11	12
$α_{\rm s}β_{\rm 1}$ (0.5 μg/mL)		1a	Α	1.39	1.29	1.12	0.77	0.93	0.92	0.44	0.47	0.44	0.19	0.18	0.18
	with	1b	В	0.33	0.27	0.28	0.20	0.20	0.21	0.16	0.19	0.20	0.18	0.15	0.17
	Ca,Mg	1c	С	0.29	0.24	0.24	0.18	0.19	0.19	0.20	0.19	0.19	0.19	0.16	0.18
		2a	D	0.38	0.35	0.30	0.27	0.25	0.26	0.19	0.20	0.18	0.18	0.17	0.17
		1a	E	0.73	0.68	0.62	0.40	0.42	0.39	0.22	0.25	0.25	0.14	0.17	0.16
	without	1b	F	0.25	0.22	0.29	0.18	0.18	0.17	0.18	0.16	0.15	0.15	0.16	0.16
	Ca,Mg	1c	G	0.25	0.22	0.24	0.13	0.15	0.17	0.18	0.19	0.16	0.16	0.13	0.14
		2a	Н	0.30	0.31	0.29	0.22	0.24	0.23	0.17	0.16	0.15	0.14	0.16	0.14

Figure S-4. Absorbances determined in a binding ELISA experiment. Background colors range from white (O.D. 0) to green (O.D. 4). The data show that only knottin-RGD peptide **1a** clearly binds to integrin $\alpha_5\beta_1$.

PLATE A		c _{comp. Peptide} [μΜ]	30	10	3.3333	1.1111	0.3704	0.1235	0.0412	0.0137	0.0046	0.0015	0.0005	0.0002
Integrin	comp. Peptide	Polysorp	1	2	3	4	5	6	7	8	9	10	11	12
α _ν β ₃ (0.5 μg/mL)	1d	Α	0.18	0.19	0.18	0.23	0.73	1.48	1.70	1.82	1.74	1.68	1.73	1.85
		В	0.18	0.17	0.17	0.21	0.63	1.31	1.58	1.53	1.56	1.58	1.63	1.58
		С	0.21	0.14	0.17	0.21	0.59	1.23	1.49	1.54	1.47	1.64	1.64	1.69
	2 c	D	0.20	0.19	0.25	0.40	0.63	0.99	1.21	1.30	1.43	1.62	1.58	1.66
		E	0.18	0.20	0.25	0.40	0.65	0.97	1.27	1.33	1.36	1.59	1.64	1.75
		F	0.18	0.20	0.27	0.39	0.73	1.10	1.36	1.44	1.51	1.58	1.62	1.82
	no peptide	G	1.83	1.78	1.69									
PLATE B		c _{comp. Peptide} [μM]	30	10	3.3333	1.1111	0.3704	0.1235	0.0412	0.0137	0.0046	0.0015	0.0005	0.0002
Integrin Peptide		Polysorp	1	2	3	4	5	6	7	8	9	10	11	12
	GRGDS	Α	0.42	0.72	1.22	1.46	1.69	1.72	1.75	1.72	1.63	1.75	1.72	2.45
$α_v β_3$ (0.5 μg/mL)		В	0.41	0.65	1.06	1.29	1.45	1.50	1.55	1.52	1.52	1.62	2.69*	2.24
		С	0.45	0.76	0.98	1.27	1.44	1.54	1.57	1.55	1.56	1.52	3.17	2.15
	cylcoFYFDLRK	D	1.81	1.69	1.67	1.61	1.56	1.54	1.58	1.53	1.42	1.48	1.67	1.93
		E	1.79	1.64	1.73	3.28 [*]	1.57	1.59	1.60	1.62	1.70	1.71	1.59	1.76
		F	1.84	1.67	1.71	1.66	1.64	1.66	1.67	1.58	1.70	1.72	1.63	1.73

Figure S-5. Absorbances determined in a competition ELISA experiment with integrin $\alpha_v \beta_3$. Background colors range from white (O.D. 0) to green (O.D. 4) and depend on the peptide and its concentration.* Those values were not considered for IC₅₀ calculation.