SUPPORTING INFORMATION

Contribution of Cations and Anions of Aqueous Electrolytes to the Charge Stored at the Electric Electrolyte/Electrode Interface of Carbon-Based Supercapacitors

by

Ivan Aldama¹, Violeta Barranco¹, Mirko Kunowsky², Joaquin Ibañez³ and Jose M. Rojo¹*

¹Instituto de Ciencia de Materiales de Madrid (ICMM); Consejo Superior de Investigaciones Científicas (CSIC); Sor Juana Inés de la Cruz, 3; Cantoblanco; E-28049-Madrid; Spain.

²MCMA Departamento de Química Inorgánica; Universidad de Alicante; San Vicente del Raspeig S/N; E-03080-Alicante; Spain.

³Centro Nacional de Investigaciones Metalúrgicas (CENIM); CSIC, Av. Gregorio del Amo, 8; E-28040-Madrid; Spain.

*corresponding author: jmrojo@icmm.csic.es

Table S1. Potassium content deduced from EDS for several parts of a carbon fiber. The numbers 1 and 4 stand for the outer part and inner part of the fiber, respectively.

Part of the carbon fiber	K atomic content		
	(%)		
1	$1.7{\pm}0.2$		
2	$1.7{\pm}0.2$		
3	1.7 ± 0.2		
4	1.7 ± 0.2		

Figure S1. DFT pore size distribution for the original and heat-treated carbon cloth.

Figure S2. Dependence of the specific capacitance (*C*) as a function of potential (*E*). Fittings (red lines) of the experimental C(E) data to the polynomic equation: $C=a+bE+cE^2+dE^3$, where a, b, c and d are the fitting parameters. The electrolyte used was H₂SO₄. Circles and triangles stand for the original and heattreated CC, respectively. The *PZC* was determined by solving the equation: $dC/dE = b + 2cE + 3dE^2 = 0$. For comparison, the fitting parameters a b, c and d, and the values of *PZC* and *OCP* at

For comparison, the fitting parameters a, b, c and d, and the values of *PZC* and *OCP* are shown in Table S2.

Table S2. Fitting parameters for determining the *PZC* values. The *OCP* values measured for the sulfuric acid electrolyte in presence of the two carbon cloths are also shown.

Electrode	а	b	С	d	PZC (V)	OCP (V)
Original CC	141.6 ±0.8	-386 ±20	1095 ±162	-424 ±34	0.230	0.078
Heat-treated CC	123.9 ±0.2	3.8 ±1	167 ±7	-445 ±52	-0.027	-0.010

Figure S3. Ciclyc voltammetries recorded for the Na₂SO₄ electrolyte in presence of the original CC at two voltage scan rates: 10 mV s⁻¹ (a) and 0.2 mV s⁻¹ (b). While the total potential window is 1.6 V in the former case, that is 1.2 V in the latter.

Table S3. Estimation of the pseudo capacitance, $C_+(PS)$, and double layer capacitance, $C_+(DL)$, for the cations H_3O^+ and K^+ from the H_2SO_4 and KOH electrolyte, respectively.

		Original CC		Heat-treated CC		
Electrolyte	C_+	$C_{+}(\mathrm{PS})$	$C_{+}(\mathrm{DL})$	C_+	$C_{+}(\mathrm{PS})$	$C_{+}(\mathrm{DL})$
	(Fg^{-1})	(Fg^{-1})	(Fg^{-1})	(Fg^{-1})	(Fg^{-1})	(Fg^{-1})
H_2SO_4	192	136	56	154	47	107
KOH	149	114	35	132	39	93

The pseudo capacitance was estimated according to the equations:

 C_{H3O+} (PS)=0.042 F µmolCO⁻¹ · CO*content* (µmolCO g⁻¹) and

 C_{K+} (PS)=0.035 F µmolCO⁻¹ · CO*content* (µmolCO g⁻¹)

where CO*content* is the content of oxygen groups evolved as CO in TPD measurements. The parameters 0.042 and 0.035 μ molCO⁻¹ were reported for the electrolytes H₂SO₄ and KOH, respectively, in reference 76.

The double layer capacitance was estimated for each cation according to the equation: $C_+ = C_+(DL) + C_+(PS)$

where C_+ is the experimental capacitance measured, $C_+(PS)$ is the pseudo capacitance estimated, and $C_+(DL)$ is the double layer capacitance.

Figure S4. Charge/discharge galvanostatic plots recorded at 1 mA cm⁻² on symmetric two-electrode cells having the original CC as electrodes and three electrolytes: H₂SO₄ (a), KOH (b) and Na₂SO₄ (c). The specific capacitance referred to one electrode was determined according to $C_{2E}=2\cdot I \cdot t_d/\Delta V \cdot m$; where *I* is the current applied, t_d is the discharge time, ΔV is the voltage range excluding the voltage drop due to the internal resistance (*ESR*) and *m* is the mass of one electrode only.