Photoaffinity Labeling of the Human A_{2A} Adenosine Receptor and Cross-link Position Analysis by Mass Spectrometry

Hideyuki Muranaka,^{*} Takaki Momose, Chiaki Handa, Tomonaga Ozawa

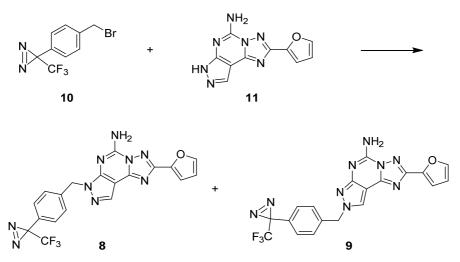
Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1 Kashiwabara, Hotaka, Azumino, Nagano 399-8304, Japan

*Phone, +81-263-82-8820; Fax, +81-263-82-8827; E-mail, hideyuki_muranaka@pharm.kissei.co.jp

Supporting Information 1

Experimental procedures and spectral characterization data

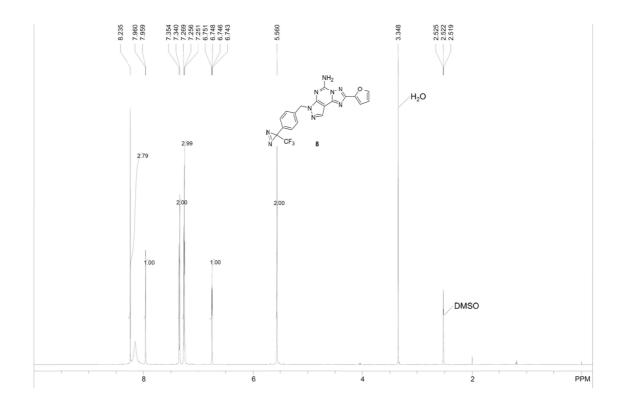
Contents:

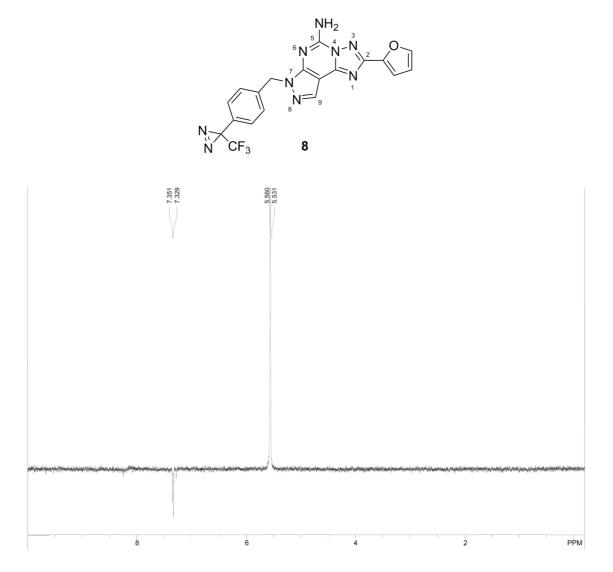

1.	Materials and instruments	S1-2
2.	Synthesis and spectral characterization data	S1-3–S1-18
3.	HPLC assessment of compound purity	S1-19–S1-23
4.	Protein expression and purification	S1-24–S1-25
5.	Fluorescence polarization experiments	S1-26–S1-29
6.	Photoaffinity labeling and in-solution digestion	S1-30
7.	LC-MS and LC-MS/MS analysis conditions	S1-31–S1-32
8.	LC-MS and LC-MS/MS results	S1-33–S1-42
9.	Docking study	S1-43
10	. References	S1-43

1. Materials and instruments.

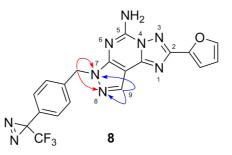
All reagents and solvents were purchased from commercial sources and used without further purification. Flash column chromatography was performed on a Flash Master Personal equipped with GradMaster (Biotage, Charlotte, NC, USA). Reverse phase preparative HPLC was performed by using a preparative HPLC system (Gilson, Middleton, WI, USA). Analytical HPLC was performed on a LC-VP series instrument (Shimadzu, Kyoto, Japan). Melting points were determined on a MP-J3 micro melting point apparatus (Yanaco Co., Ltd., Kyoto, Japan). ¹H, ¹³C and ¹⁵N NMR spectra were recorded on an AV600 spectrometers (Bruker, Billerica, MA, USA). Chemical shifts are reported in δ units (ppm) relative to sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4 (TSP) in D₂O or tetramethylsilane (TMS) in DMSO-d6 as internal standards for ¹H NMR spectra. The central peak of the DMSO-d6 multiplet at 39.52 ppm was used as an internal reference for ¹³C NMR spectra and nitromethane was used as an external standard for ¹⁵N NMR spectra. Coupling constants (J) are reported in hertz (Hz). Characterization data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = singlet) triplet, q = quartet, br s = broad singlet, m = multiplet), coupling constants, number of protons. Mass spectra were recorded on a 6520 Accurate-Mass Q-TOF instrument with a 1200 series HPLC (Agilent Technologies, Santa Clara, CA, USA). The internal standards at m/z = 121.050873 and 922.009798 in positive ion mode, while m/z = 112.985587 and 966.000725 in negative ion mode, were sprayed with a separate nebulizer. Fluorescence polarization (FP) experiments were performed with an Infinite M1000 plate reader (TECAN, Morrisville, NC, USA). Photoaffinity labeling was performed with a model B-100A UV lamp (UVP, Upland, CA, USA). The intensity of UV light was measured by a UV-37SD digital radiometer equipped with a UVA sensor (CUSTOM, Tokyo, Japan). Assay plates were prepared with a mosquito HTS liquid handler (TTP LabTech, Melbourn, UK).

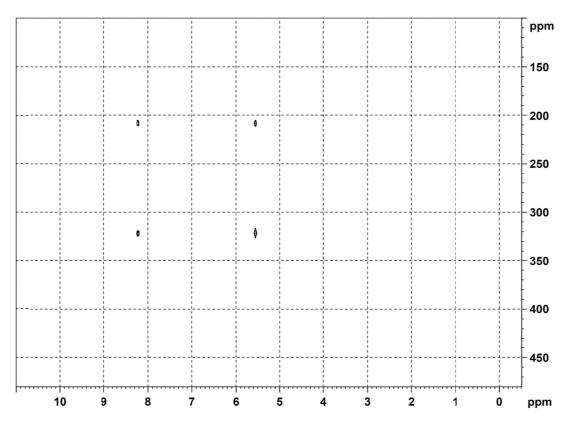
2. Synthesis and spectral characterization data.


2.1 Synthesis of photoaffinity probes 8 and 9.

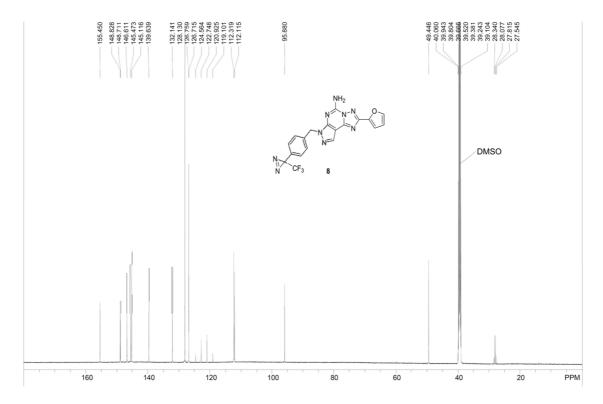

A mixture of a commercially available 3-(4-bromomethylphenyl)-3-(trifluoromethyl)-3*H*-diazirine **10** (245 mg, 0.88 mmol , TCI, Tokyo, Japan), 2-(2-furanyl)-7*H*-pyrazolo[4,3-*e*][1,2,4]triazolo[1,5*c*]pyrimidin-5-amine **11** (193 mg, 0.80 mmol)¹ and potassium carbonate (166 mg, 1.20 mmol) in dry DMF (4.0 mL) was stirred at room temperature for 6 h. The mixture was diluted with ethyl acetate and washed with water and brine. The organic layer was dried over anhydrous MgSO₄, filtered and evaporated with amino-silica gel powder. The adsorbed gel was packed into a pre-column cartridge and assembled with a Hi-Flash column cartridge (L, Amino, Yamazen, Osaka, Japan). The column was eluted with a linear gradient of ethyl acetate in *n*-hexane (20–100%) to obtain N^7 -isomers **8** (139 mg, 39.6%) and N^8 -isomers **9** (68 mg, 19.4%) as a white powder after washing with a small amount of dichloromethane, respectively.

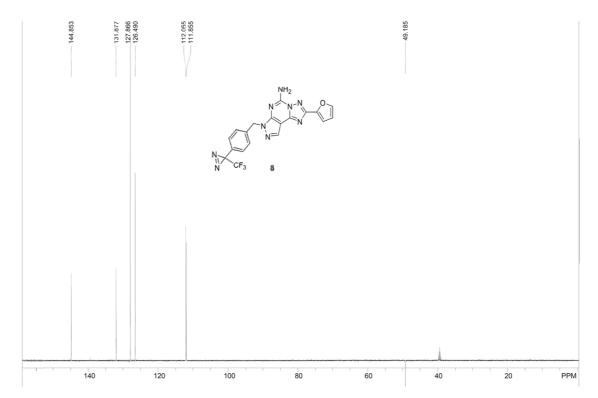
Spectral characterization of 7-({4-[3-(trifluoromethyl)-3*H*-diazirin-3-yl]phenyl}methyl)-2-(2furanyl)-7*H*-pyrazolo[4,3-*e*][1,2,4]triazolo[1,5-*c*]pyrimidin-5-amine (8) mp: 190–191 °C.

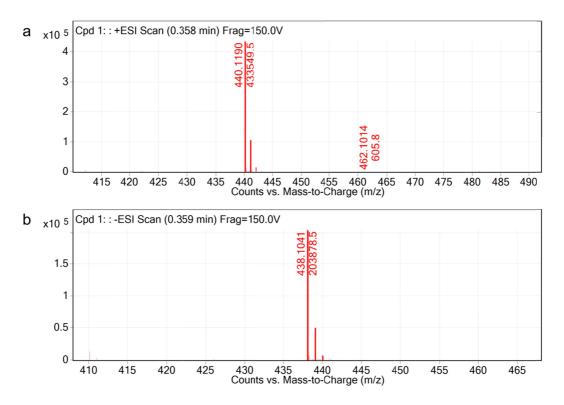

¹H NMR (600 MHz, DMSO-*d*6, δ): 5.56 (s, 2H), 6.73–6.77 (m, 1H), 7.23–7.29 (m, 3H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.93–7.98 (m, 1H), 8.15 (br s, 2H), 8.24 (s, 1H).

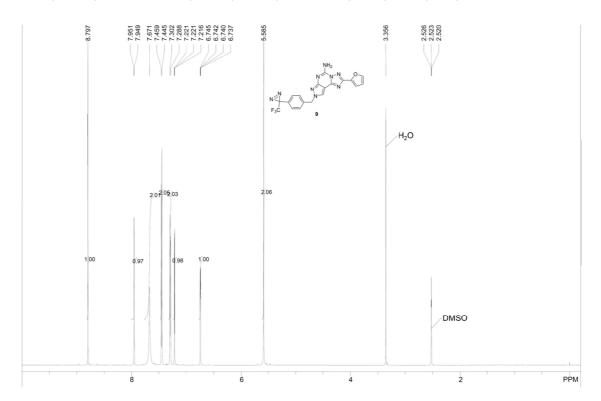


¹H NOE (600 MHz, DMSO-*d*6). No clear ¹H NOE was observed between methylene protons (δ 5.56, s) and H-9 (δ 8.24, s).

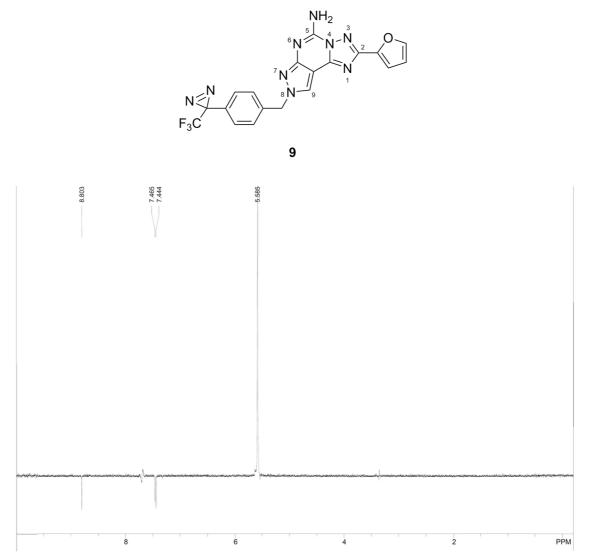



¹H–¹⁵N HMBC (600MHz, DMSO-*d*6). Two-bond correlation (${}^{2}J_{\text{HN}}$) and three-bond correlation (${}^{3}J_{\text{HN}}$), denoted by the red arrowed lines, were observed from CH₂ (δ 5.56, s) to the pyrazolo-triazolo-pyrimidine (PTP) N-7 (δ 208.7 ppm) and N-8 (δ 321.8 ppm). Two-bond correlation (${}^{2}J_{\text{HN}}$) and three-bond correlation (${}^{3}J_{\text{HN}}$), denoted by the blue arrowed lines, were also observed from H-9 (δ 8.24, s) to the pyrazolo-triazolo-pyrimidine (PTP) N-8 (δ 321.8 ppm) and N-7 (δ 208.7 ppm).

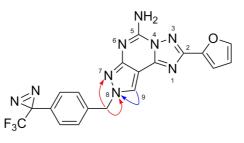

¹³C NMR (600 MHz, DMSO-*d*6, δ): 27.9 (q, *J* = 39.5 Hz, diazirine-C), 49.5, 95.9, 112.1, 112.3, 121.8 (q, *J* = 275.7 Hz, CF₃), 126.7, 126.8, 128.1, 132.1, 139.6, 145.1, 145.5, 146.6, 148.7, 148.8, 155.5.

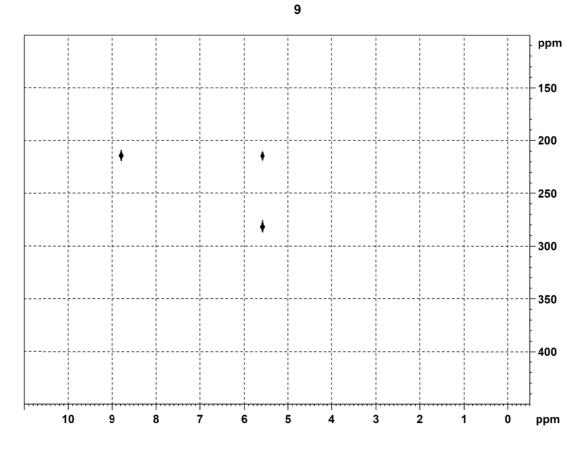

¹³C DEPT NMR (600 MHz, DMSO-*d*6, δ): 49.2, 111.9, 112.1, 126.5, 127.9, 131.9, 144.9.

(a) HRMS–ESI (*m*/*z*): [M + H]⁺ calcd for C₁₉H₁₃F₃N₉O, 440.1190; found 440.1190.
(b) HRMS–ESI (*m*/*z*): [M − H]⁻ calcd for C₁₉H₁₁F₃N₉O, 438.1044; found 438.1041.

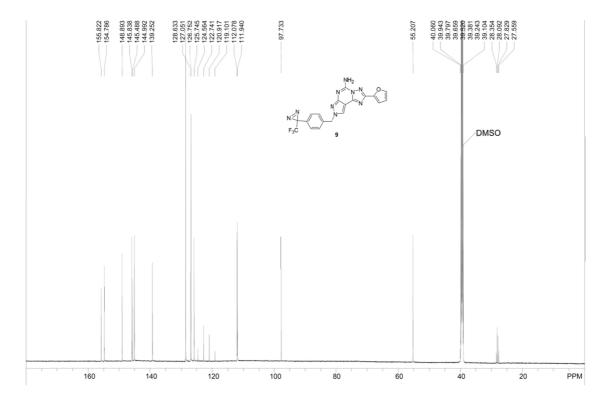


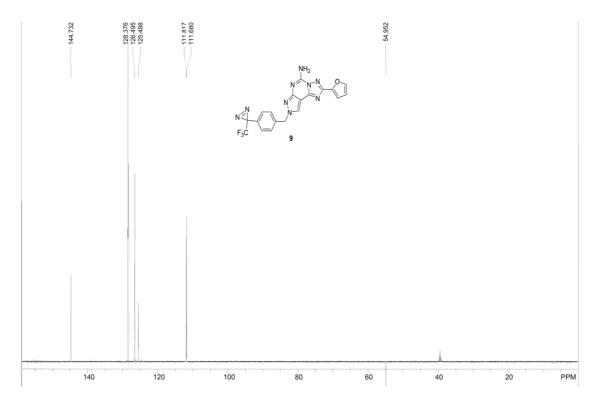
Spectral characterization of 8-({4-[3-(trifluoromethyl)-3*H*-diazirin-3-yl]phenyl}methyl)-2-(2furanyl)-8*H*-pyrazolo[4,3-*e*][1,2,4]triazolo[1,5-*c*]pyrimidin-5-amine (9) mp: 207–208 °C.

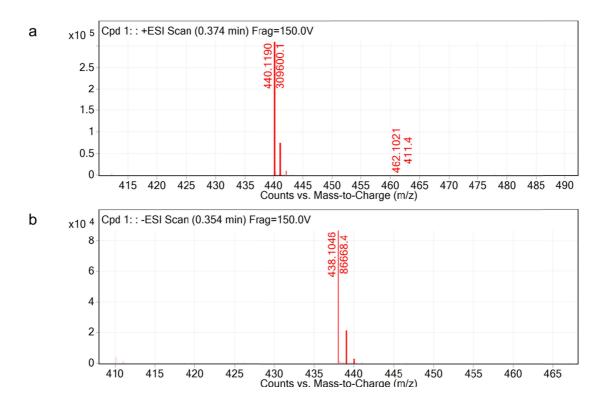

¹H NMR (600 MHz, DMSO-*d*6, δ): 5.59 (s, 2H), 6.72–6.77 (m, 1H), 7.19–7.24 (m, 1H), 7.30 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.67 (br s, 2H), 7.92–7.98 (m, 1H), 8.80 (s, 1H).

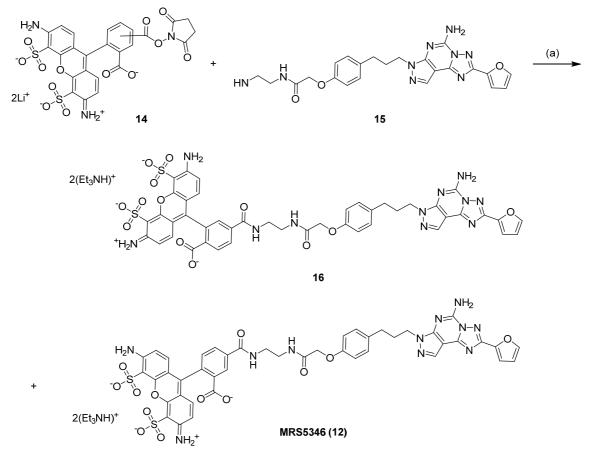


¹H NOE (600 MHz, DMSO-*d*6). ¹H NOE was observed between methylene protons (δ 5.59, s) and H-9 (δ 8.80, s) of compound **9**.




¹H–¹⁵N HMBC (600MHz, DMSO-*d*6). Two-bond correlation (${}^{2}J_{\text{HN}}$) and three-bond correlation (${}^{3}J_{\text{HN}}$), denoted by the red arrowed lines, were observed from CH₂ (δ 5.59, s) to the pyrazolo-triazolo-pyrimidine (PTP) N-8 (δ 214.5 ppm) and N-7 (δ 282.0 ppm) respectively. Two-bond correlation (${}^{2}J_{\text{HN}}$), denoted by the blue arrowed line, was observed from H-9 (δ 8.80, s) to the pyrazolo-triazolo-pyrimidine (PTP) N-8 (δ 214.5 ppm).

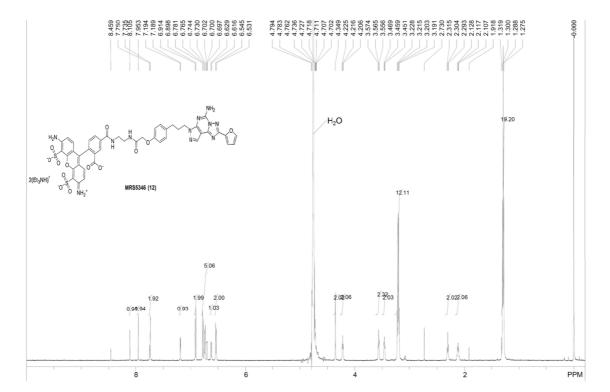

¹³C NMR (600 MHz, DMSO-*d*6, δ): 28.0 (q, *J* = 40.2 Hz, diazirine-C), 55.2, 97.7, 111.9, 112.1, 121.8 (q, *J* = 274.6 Hz, CF₃), 125.8, 126.8, 127.1, 128.6, 139.3, 145.0, 145.5, 145.8, 148.9, 154.8, 155.8.



¹³C DEPT NMR (600 MHz, DMSO-*d*6, δ): 55.0, 111.7, 111.8, 125.5, 126.5, 128.4, 144.7.

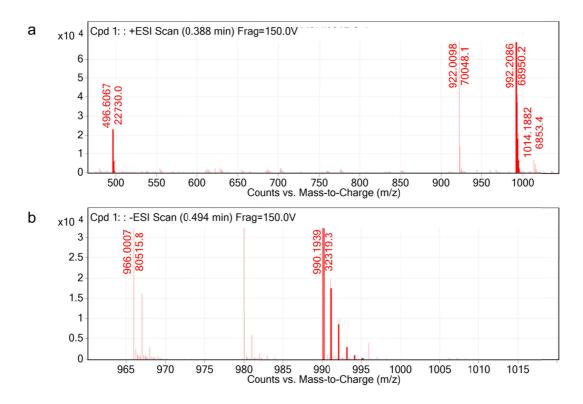
(a) HRMS–ESI (*m*/*z*): [M + H]⁺ calcd for C₁₉H₁₃F₃N₉O, 440.1190; found 440.1190.
(b) HRMS–ESI (*m*/*z*): [M − H]⁻ calcd for C₁₉H₁₁F₃N₉O, 438.1044; found 438.1046.

2.2 Synthesis of a fluorescent tracer MRS5346 (12).


To the mixture of Alexa Fluor 488 carboxylic acid–succinimidyl ester **14** (2.9 mg, 4.5 μ mol; Thermo Fisher Scientific Inc., Waltham, MA, USA) and amine **15** (2.3 mg, 4.8 μ mol)² in dry DMF (150 μ L) was added triethylamine (1.4 μ L, 9.9 μ mol) and the mixture was stirred at room temperature for overnight. The mixture was purified with reverse-phase preparative HPLC to give 6-isomers **16** (1.0 mg, 19%) and MRS5346 (**12**) (0.7 mg, 13%), respectively.

2.3 Reverse-phase preparative HPLC conditions.

- Column: YMC Triart C18 (20 × 50 mm, 5 μm particle size; YMC, Kyoto, Japan).
- Eluents: water (Solvent A)/0.1% triethylamine in acetonitrile (Solvent B), 0–20 min (linear gradient, A/B = 98/2 to 10/90).
- Flow rate: 30 mL/min.
- Detection wavelength: 254 nm.

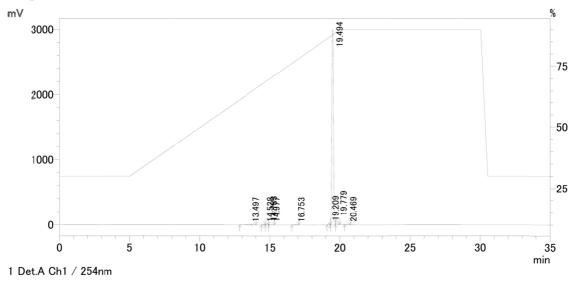

Spectral characterization of ditriethylamine $5-({2-[2-(4-{3-[5-Amino-2-(2-furanyl)-7H-pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-7-yl]propyl}phenoxy)acetamido]ethyl}carbamoyl)-2-(6-amino-3-imino-4,5-disulfonato-3H-xanthen-9-yl)benzoate (12) (MRS5346)^{2,3}$

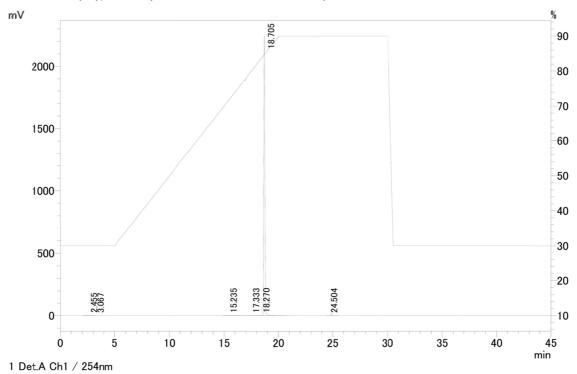
¹H NMR (600 MHz, D₂O, δ): 1.29 (t, *J* = 7.4 Hz, 18H, triethylamine-CH₃), 2.06–2.18 (m, 2H), 2.30 (t, *J* = 6.9 Hz, 2H), 3.21 (q, *J* = 7.4 Hz, 12H, triethylamine-CH₂), 3.42–3.50 (m, 2H), 3.52–3.60 (m, 2H), 4.22 (t, *J* = 5.9 Hz, 2H), 4.35 (s, 2H), 6.54 (d, *J* = 8.4 Hz, 2H), 6.62 (d, *J* = 7.9 Hz, 1H), 6.68–6.72 (m, 1H), 6.74 (d, *J* = 8.4 Hz, 2H), 6.77 (d, *J* = 9.3 Hz, 2H), 6.91 (d, *J* = 9.3 Hz, 2H), 7.19 (d, *J* = 3.5 Hz, 1H), 7.70–7.78 (m, 2H), 7.95 (s, 1H), 8.11 (s, 1H).

(a) HRMS–ESI (m/z): $[M + H]^+$ calcd for $C_{44}H_{38}N_{11}O_{13}S_2$ 992.2086, found 992.2086; $[M + 2H]^{2+}$ calcd for $C_{44}H_{39}N_{11}O_{13}S_2$ 496.6080, found 496.6067.



3. HPLC assessment of compound purity.

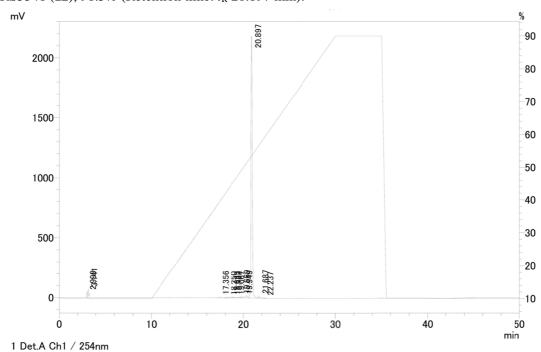

All compounds including compounds **8**, **9**, MRS5346 (12), and SCH442416 $(13)^4$ with a purity of >90% were used for the FP and photoaffinity labeling experiments.


- 3.1 Analytical HPLC conditions for compounds 8, 9 and SCH442416 (13).
- Column: InertSustain C18 (4.6 × 250 mm, 5 µm particle size, GL Sciences Inc., Tokyo, Japan).
- Column temperature: 35 °C.
- Eluent: 10 mM aqueous ammonium acetate (solvent A)/acetonitrile (solvent B), 0-5 min (A/B = 70/30), 5–20 min (linear gradient A/B = 70/30 to 10/90), 20–30 min (A/B = 10/90).
- Flow rate: 1.0 mL/min.
- Detection wavelength: 254 nm.

Compound 8, 91.8% (Retention time: t_R 21.193 min).

Compound **9**, 95.4% (Retention time: $t_{\rm R}$ 19.494 min).

SCH442416 (**13**), 98.9% (Retention time: *t*_R 18.705 min).


3.2 Analytical HPLC conditions for MRS5346 (12).

• Analytical column: InertSustain C18 (4.6 \times 250 mm, 5 μm particle size, GL Sciences Inc., Tokyo, Japan).

• Column temperature: 35 °C.

• Eluent: 10 mM aqueous ammonium acetate (solvent A)/acetonitrile (solvent B), 0-10 min (A/B = 100/0), 10-30 min (linear gradient, 100/0 to 10/90), 30-35 min (10/90).

- Flow rate: 1.0 mL/min.
- Detection wavelength: 254 nm.

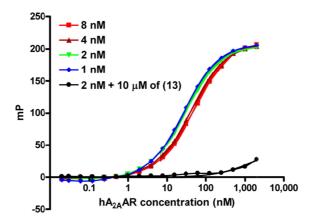
MRS5346 (12), 91.5% (Retention time: *t*_R 20.897 min).

4. Protein expression and purification.

4.1 Protein expression.

The cDNA encoding the C-terminal-truncated human A_{2A} adenosine receptor (1–316) with a C terminal 10× His tag followed by a 1D4 tag was kindly provided by Dr. I. Shimada (University of Tokyo) and subcloned into the pPinkα-HC expression vector (Thermo Fisher Scientific Inc., Waltham, MA, USA) downstream of the yeast α -mating factor secretion signal sequence. The resulting plasmid was linearized with PmeI and transformed into the P. pastoris strain PichiaPink Strain 1 (Thermo Fisher Scientific Inc., Waltham, MA, USA) by electroporation. Transformants harboring the receptor sequence were selected on SD (-Ade) ager plate. A single colony of transformants was grown into 10 ml of BMGY medium [1% (w/v) yeast extract, 2% (w/v) peptone, 1.34% (w/v) yeast nitrogen base without amino acids, 0.00004% (w/v) biotin, 1% (v/v) glycerol, 0.1 M phosphate buffer at pH 6.0] to saturation at 30 °C, and then transferred to 1 L of BMGY medium. After the culture was grown to an OD 600 over 15 h at 29 °C, cells were harvested by centrifugation and resuspended into 1 L of BMMY medium [1% (w/v) yeast extract, 2% (w/v) peptone, 1.34% (w/v) yeast nitrogen base without amino acids, 0.00004% (w/v) biotin, 1% (v/v) methanol, 0.1 M phosphate buffer at pH 6.0] containing 2.5% (v/v) DMSO and 10 mM theophylline. The culture was further grown for 24-36 h at 22 °C to induce receptor expression. Cells were harvested by centrifugation and resuspended in a buffer containing 20 mM Tris-HCl (pH 7.4), 150 mM NaCl.

4.2 Protein purification.

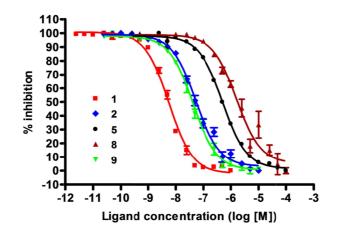

Receptor expressed cells were disrupted using 0.5 mm glass or zirconia beads. Undisrupted cells and cell debris were removed by centrifugation at 1,500 g for 5 min and at 10,000 g for 30 min. Cell membranes were isolated by ultracentrifugation at 100,000 g for 30 min and resupended in a buffer containing 20 mM Tris-HCl (pH 7.4), 150 mM NaCl. 10% DDM (*n*-dodecyl-β-D-maltoside)/2% CHS (cholesteryl hemisuccinate) stock solution was added to the membrane suspension to give a final concentration of 2% DDM/0.4% CHS. After overnight incubation at 4 °C, the solubilized membrane was separated by ultracentrifugation at 100,000 g for 30 min. Resulting supernatant was batch bound with TALON resin (Clontech Laboratories, Inc., Palo Alto, CA, USA) in a chromatography column for 2 h at 4 °C. After washing the resin with 10 bed volume of a buffer containing 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 200 mM Imidazole, 0.05% DDM, and 0.01% CHS, Finally, the eluted receptor was concentrated by centrifugal filter device and buffer was exchanged into 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 0.05% DDM and 0.01% CHS by a PD-10 column (GE

Healthcare, Milwaukee, WI, USA).

5. Fluorescence polarization experiments.

5.1 Saturation binding expetiments.

Saturation binding expetiments were performed in triplicate in black, non-binding 384 well plates (Greiner; cat. no. 784900). To each well, four concentrations of the tracer **12** (final concentration: 1, 2, 4, and 8 nM) and increasing concentrations of hA_{2A}AR (final concentration: 0–2000 nM) were added to a final volume 20 μ L in the assay buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.05% DDM, 0.01% CHS). To confirm the specific binding, another saturation binding experiment was performed with 2 nM (final concentration) of the tracer **12** in the presence of 10 μ M (final concentration) of SCH442416 (**13**). The plate was incubated at room temperature for 1 h to reach equilibrium. The polarization values were measured at an excitation wavelength at 470 nm (5 nm bandwidth) and an emmission wavelength at 520 nm (20 nm bandwidth) using an Infinite M1000 plate reader. The compound concentration (*K*_d) at which 50% of the tracer **12** bound was dertermined using PRISM (version 4.03, GraphPad Software, La Jolla, CA, USA).


Figure S1-1. FP saturation binding experiments on solubilized $hA_{2A}AR$ with the tracer **12** at different concentrations: **a**, 8 nM; **a**, 4 nM; **v**, 2 nM; **b**, 1 nM; **b**, 2 nM in the presence of 10 μ M of SCH442416 (**13**). Data is shown as mean \pm SEM; N = 3.

Concentration of tracer 12	$K_{\rm d}$ (nM)
8 nM	49.5 ± 0.3
4 nM	42.4 ± 0.6
2 nM	30.8 ± 0.5
1 nM	29.0 ± 0.6

Table S1-1. K_d values of the tracer 12 caliculated in different concentrations.

5.2 Competitive binding experiments.

Competitive binding experiments were performed in triplicate in black, non-binding 384-well plates (Greiner; cat. no. 784900). Two-fold serial dilutions of compounds ZM241385 (1), XAC (2), NECA (5), compounds 8, and 9 were prepared as $100 \times$ solution in anhydrous DMSO and spotted into plate (200 nL) by a mosquito HTS liquid handler. 20 µL of the pre-mix solution of hA_{2A}AR (final concentration, 25 nM) and the tracer 12 (final concentration, 2 nM) in assay buffer (20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.05% DDM, 0.01% CHS) was added to the plate. The plate was incubated at room temperature for 1 h to reach equilibrium. The polarization values were measured as described above. Each plate included positive controls (corresponding to 100% inhibition) with only tracer 12 in assay buffer and negative controls (corresponding to 0% inhibition) containing tracer 12 and the hA_{2A}AR in assay buffer to calcurate minimum and maximum binding. IC₅₀ values were determined from the plot using non linear least squares analysis. K_i values of test compounds were calucurated using the Cheng-Prusoff equation. The curve fitting was performed by PRISM (version 4.03, GraphPad Software, La Jolla, CA, USA).

Figure S1-2. Normalized FP competitive binding experiments: **a**, ZM241385 (1); \diamondsuit , XAC (2); **b**, NECA (5); \bigstar , compound **8**; \checkmark , compound **9**. Data is shown as mean ± SEM; *N* = 3.

Compounds	Ki	Lit K_i^5
ZM241385 (1)	$5.3\pm0.03\ nM$	$3.3\pm0.6\ nM$
XAC (2)	$50.1\pm0.03~nM$	$43.9\pm0.4\ nM$
NECA (5)	$481\pm0.02~nM$	$1.3\pm0.3\;\mu M$
Compound 8	$1520\pm0.06~nM$	
Compound 9	$39.7\pm0.03~nM$	

Table S1-2. *K*_i values of the adenosine antagonists and agonist together with photoaffinity probes.

6. Photoaffinity labeling and in-solution digestion.

6.1 Photoaffinity labeling.

The mixtures of the hA_{2A}AR (75 µg, 2 nmol, final concentration 10 µM) and compound **9** (final concentration 20 µM) with/without ZM241385 (**1**) (final concentration 100 µM) in reaction buffer (200 µL, 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 0.05% DDM, 0.01% CHS) were incubated at 30 °C for 30 min. Final DMSO concentration of mixtures were 1.0%. The each reaction mixtures were irradiated with a model B-100A UV lamp from a distance of 5 cm for 30 min on ice (measured light intensity: 5 mW/cm²). Peak wavelength of the UV lamp was 365 nm and bandwidth was approximately 50 nm.

6.2 In-solution digestion.

The photolabeling samples were treated with 10% (v/v) TCA on ice for 25 min and sedimented at 12,000 × g for 5 min. The supernatants were discarded and suspended in 100 mM Tris-HCl (pH 8.0) and sedimented at $12,000 \times g$ for 5 min. This washing step was repeated again. The supernatants were discarded and the pellet was suspended in buffer containing 10 mM CaCl₂, 0.05% CYMAL-5 (Anatrace, Maumee, OH, USA), 0.1% Rapigest (Waters, Milford, MA, USA) in 100 mM Tris-HCl (pH 8.0). The mixture was lysed by sonication in a Bioruptor UCD-200T sonicator (Toso, Tokyo, Japan) for 3 min under ice cooling. The samples were treated with 10% (v/v) of 50 mM TCEP-HCl (pH 7.0) and incubated at 30 °C for 1 h. After addition of 10% (v/v) of 500 mM iodoacetamide, the mixtures were incubated in darkness at room temperature for 1 h. Alkylation was stopped by the addition of 14% (v/v) of 500 mM DTT solution. The pH was adjusted (> 7.0) with addition of 11% (v/v) of 100 mM Tris-HCl (pH 8.0). To the mixture was added sequencing grade chymotrypsin (Promega, Madison, WI, USA) at a ratio of 1:20 chymotrypsin/hA2AAR and incubated at 25 °C for 13 h. Digestion was stopped by the acidification with 5% (v/v) of an acidic aqueous solution containing 10% trifluoroacetic acid and 40% acetonitrile in water, and incubated for 20 min at 37 °C. The pH was adjusted to pH 6 with 1 M Tris-HCl (pH 8.0) and the mixture was centrifuged at $12,000 \times g$ for 5 min. The supernatants were subjected to LC-MS/MS analysis. The same procedure was performed to prepare tryptic peptides by using the sequencing grade trypsin instead of chymotrypsin (Promega, Madison, WI, USA).

7. LC-MS and LC-MS/MS analysis conditions.

7.1 LC-MS analysis of intact hA_{2A}AR samples.

Purified and photolabeled $hA_{2A}AR$ samples were analyzed by a 6520 Accurate-Mass Q-TOF instrument with a 1200 series HPLC. The measurement conditions were described as follows.

LC-MS analysis conditions.

• Analytical column: PLRP-S (4.6 × 100 mm, 300 Å pore size, 5 µm particle size, Agilent)

• Column temperature: 60 °C

• First gradient: flow rate, 0.5 mL/min; eluent A (0.1% formic acid in water) and eluent B (0.1% formic acid in acetonitrile), 0–1 min (linear gradient, A/B = 70/30 to 0/100), 1–5 min (100% B).

• Second gradient: flow rate, 0.4 mL/min; eluent A (0.1% formic acid in water) and eluent B (0.1% formic acid in isopropyl alcohol), 0-1 min (linear gradient, A/B = 70/30 to 0/100), 1-5 min (100% B). The column was regenerated by repeated washing with both gradient conditions.

• MS parameters: Ion source, electron spray ionization (positive); drying gas temperature, 300 °C; drying gas flow, 13 L/min; nebulizer pressure, 60 psi; VCap, 3500 V; fragmentor, 200 V.

7.2 LC-MS/MS analysis of digested peptide samples.

Digested peptide samples from in-solution digestion with chymotrypsin and trypsin were analyzed by the same Q-TOF instruments. The measurement conditions were described as follows.

LC-MS/MS analysis conditions.

• Analytical column: XBridge BEH C18 column (2.1 \times 100 mm, 130 Å pore size, 3.5 μ m particle size, Waters).

• Column temperature: 60 °C.

• Flow rate: 0.5 mL/min.

• Gradient condition: eluent A (0.1% formic acid in water) and eluent B (0.1% formic acid in acetonitrile), $0-2 \min (A/B = 98/2)$, 2–60 min (linear gradient, A/B = 98/2 to 30/70), 60–60.1 min (linear gradient, A/B = 30/70 to 10/90), 60.1–65 min (A/B = 10/90).

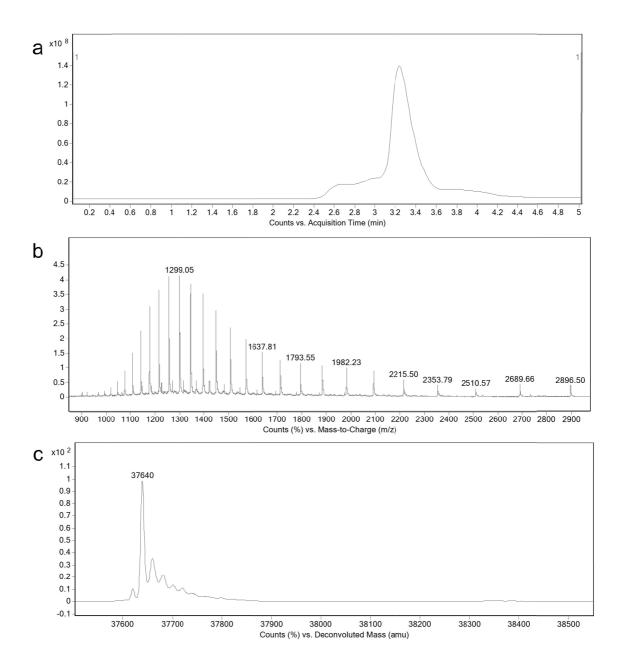
• MS parameters: Ion source, ESI-positive; drying gas temperature, 300 °C; drying gas flow, 12 L/min; nebulizer pressure, 50 psig; VCap, 3500 V; fragmentor, 150 V.

• MS/MS parameters: MS scan rate, (3 spectra/sec, m/z = 100-2000); intensity threshold, 1000; max precursors per cycle, 10; isolation width, Medium; MS/MS scan rate, (2 spectra/sec, m/z = 50-3000).

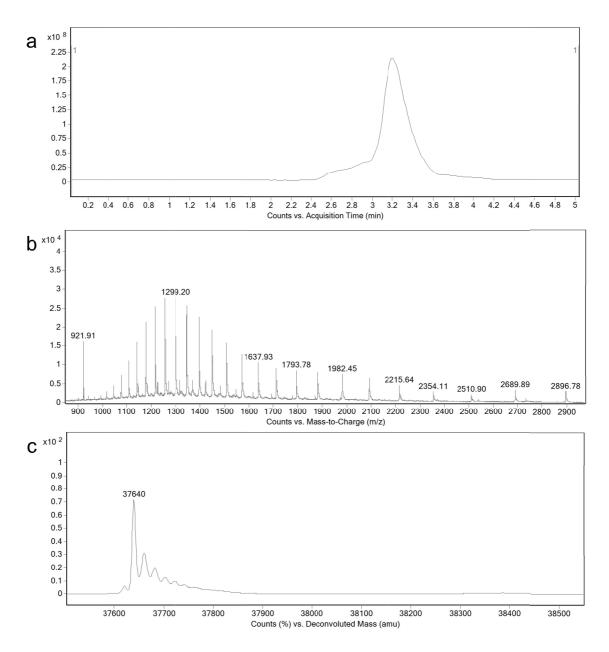
Charge	Slope	Offset
z = 1	3.1	6.7
<i>z</i> = 2	3.1	6.7
<i>z</i> = 3	3.6	-4.8
z > 3	3.6	-4.8

Table S1-3. Collision energy ramp settings for auto MS/MS.

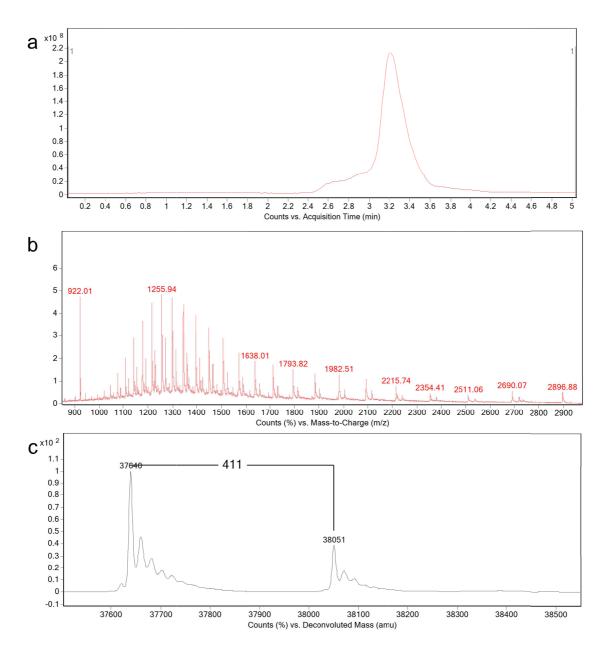
7.3 LC-MS/MS analysis for the target peptide.


The target peptide (m/z = 913.9227, z = 4) detected from chymotryptic digests was analyzed by the same measurement conditions as 7.2 except for MS/MS parameters as follows.

• MS/MS parameters: target mass (m/z = 913.9226, z = 4); retention time, 35.7 min; delta retention time, 5 min; isolation width, medium; collision energy, (31, 34, and 37 V); acquisition time, 1500 ms/spec.


8. LC-MS and LC-MS/MS results.

8.1 LC-MS results of intact hA_{2A}AR.


All LC–MS data aquired by Q-TOF instrument were processed by Agilent MassHunter Workstation Software Qualitative Analysis with BioConfirm Software (Version B.06.00). MS spectrum was obtained by manual integration of the main peak in the total ion chromatogram (TIC). The multiply charged ions produced by ESI were deconvoluted to zero-charge molecular mass values by means of the Maximum Entropy deconvolution algorithm.

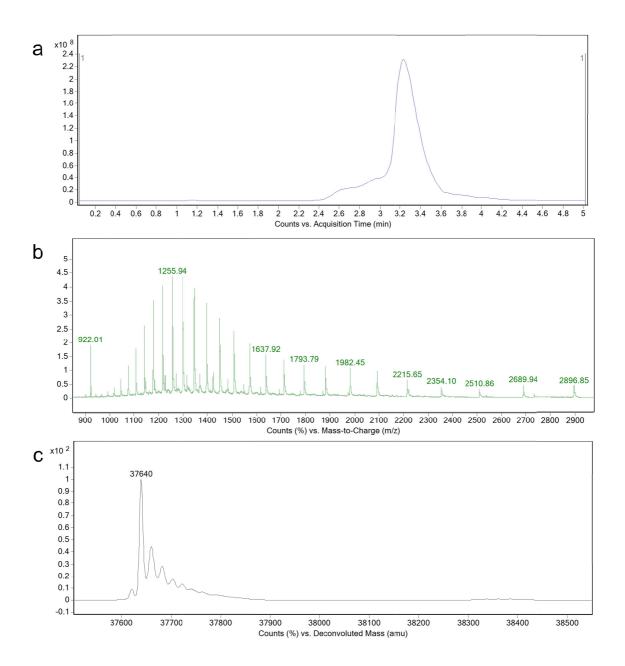
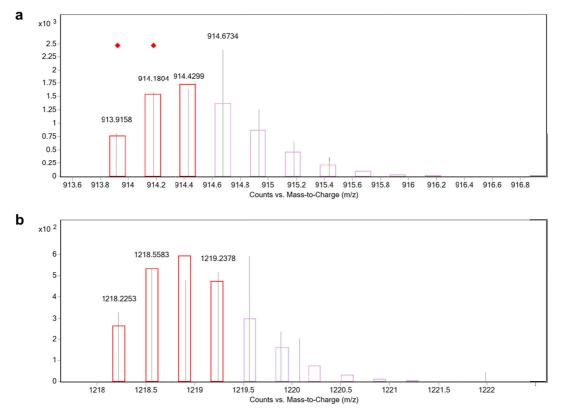

Figure S1-3. LC–MS results of purified $hA_{2A}AR$. (a) TIC of the second gradient. (b) An averaged mass spectrum (3.1–3.5 min). (c) Deconvoluted mass spectrum.

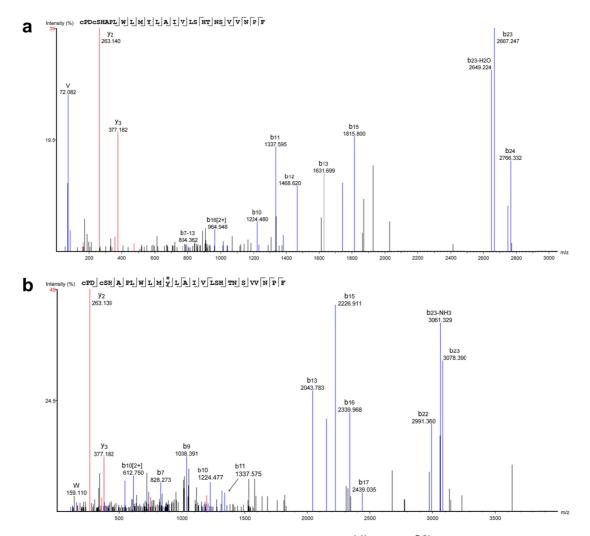
Figure S1-4. LC–MS results of the $hA_{2A}AR$ in DMSO control after UV irradiation. (a) TIC of the second gradient. (b) An averaged mass spectrum (3.1–3.5 min). (c) Deconvoluted mass spectrum.

Figure S1-5. LC–MS results of the $hA_{2A}AR$ with compound **9** after UV irradiation. (a) TIC of the second gradient. (b) An averaged mass spectrum (3.1–3.5 min). (c) Deconvoluted mass spectrum.

Figure S1-6. LC–MS results of the hA_{2A}AR with compound **9** in the presence of a 5-fold molar excess of ZM241385 (**1**) after UV irradiation. (a) TIC of the second gradient. (b) An averaged mass spectrum (3.1–3.5 min). (c) Deconvoluted mass spectrum.


8.2 LC-MS/MS results of the digested peptides (peptide mapping).

Raw data were processed with PEAKS Studio (version 7.5, Bioinformatics Solutions Inc., Waterloo, Canada). Data refinement was done using following parameters: merge scans, 1.0 min, 5 ppm; correct precursor mass option, enabled; precursor charge states, minimum z = 1 and maximum z = 8. The following parameters were used for the PEAKS search: parent mass error tolerance, 10 ppm; fragment mass error tolerance, 0.05 Da; fixed modification, carbamidomethylation. The chymotrypsin cleavage sites were used with default settings at C-terminal side of F, L, M, W, Y (not before P) and maximum missed cleavages per peptides were set to 8. The trypsin cleavage sites were also used with default settings at C-terminal side of K, R (not before P) and allowed for up to 2 missed cleavage sites. The results of peptide mapping were shown in supporting information 2.


8.3 LC-MS/MS results of the digested peptides (cross-linked peptide search).

The personal compound database and library (PCDL) comprising theoretical digested-peptides formulae with fixed modification of cysteine carbamidomethylation (C₂H₃NO) and one molecule of compound **9** with a loss of N₂ (C₁₉H₁₂F₃N₇O) was created by in-house software. The chymotrypsin and trypsin cleavage sites were defined the same as described in section 8.2. Raw data were searched for potential matches against the PCDL database with Agilent MassHunter Find-by-Formula (FBF) algorithm with a 10 ppm mass tolerance. Isotopic distribution pattern and the presence of other multiplycharged ions were visually inspected. As a result of the search, tertiary charged peptide ions with m/z =913.9158 (calcd for m/z = 913.9226, z = 4) together with triply charged peptide ions with m/z =1218.2253 (calcd for m/z = 1218.2278, z = 3) that corresponded to the single cross-linked peptide (Cys259^{6.61}–Phe286^{7.51}) located near the extracellular start of TM7 were detected (Figure S1-7).

An additional LC–MS/MS analysis targeted to the quadruply charged cross-link peptide ion (m/z = 913.9226, z = 4) was carried out to determine the cross-link position. MS/MS spectra for the unlabeled Cys259^{6.61}–Phe286^{7.51} chymotryptic peptide were also acquired. Spectrum comparisons are shown in Figure S1-8. The same fragment ions (b11 and some smaller b-series ions) were observed in both spectra. On the other hand, similar patterns of fragment ions with a mass shift of compound 9 with a loss of N₂ (b13 and some larger b-series ions)were observed in the labeled peptides. These results supported the cross-link position of Tyr271^{7.36} for the hA_{2A}AR.

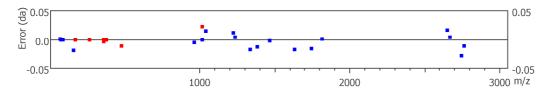

Figure S1-7. Results of FBF search. Both ions correspond to the Cys259^{6.61}–Phe286^{7.51} peptide labeled with one molecule of compound **9** with a loss of N₂ (C₁₆₆H₂₃₃F₃N₄₄O₄₁S₃). (a) Quadruply charged peptide ions with m/z = 913.9158 (calcd for m/z = 913.9226, z = 4). (b) Triply charged peptide ions with m/z = 1218.2278, z = 3). The numbering of amino acids is based on the human A_{2A} adenosine receptor.

Figure S1-8. Comparison of MS/MS spectra of the Cys259^{6.61}–Phe286^{7.51} chymotryptic peptides. (a) Unlabeled and (b) labeled with photoaffinity probe **9** with a loss of N₂. Carbamidomethylcysteines are designated in lower case. The asterisk indicates the cross-link position (Tyr271^{7.36}). The numbering of amino acids is based on the human A_{2A} adenosine receptor.

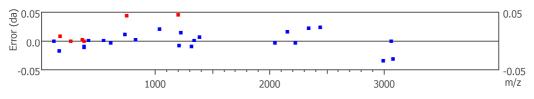

				the engine	ou j pue	pepulae c	·	1 110200	(uma)	cica).			
#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	У	y-H2O	y-NH3	y (2+)	#		
1	133.043	161.038	143.028	144.011	81.019	C(+57.02)					28		
2	70.064	258.091	240.081	241.064	129.546	Р	3081.532	3063.522	3064.505	1541.266	27		
3	88.040	373.118	355.108	356.091	187.059	D	2984.480	2966.469	2967.453	1492.740	26		
4	133.043	533.149	515.138	516.122	267.074	C(+57.02)	2869.453	2851.442	2852.426	1435.226	25		
5	60.045	620.181	602.170	603.154	310.590	S	2709.422	2691.412	2692.395	1355.211	24		
6	110.072	757.240	739.229	740.213	379.120	Н	2622.390	2604.380	2605.363	1311.695	23		
7	44.050	828.277	810.266	811.250	414.638	A	2485.331	2467.321	2468.304	1243.166	22		
8	70.066	925.330	907.319	908.303	463.165	Р	2414.294	2396.283	2397.267	1207.647	21		
9	86.097	1038.398	1020.403	1021.387	519.707	L	2317.241	2299.231	2300.214	1159.121	20		
10	159.111	1224.480	1206.483	1207.466	612.747	W	2204.157	2186.147	2187.130	1102.579	19		
11	86.097	1337.595	1319.567	1320.550	669.289	L	2018.078	2000.067	2001.051	1009.539	18		
12	104.053	1468.620	1450.607	1451.591	734.809	М	1904.994	1886.983	1887.967	952.997	17		
13	136.076	1631.699	1613.670	1614.654	816.340	Y	1773.953	1755.943	1756.926	887.477	16		
14	86.097	1744.781	1726.754	1727.738	872.882	L	1610.890	1592.880	1593.863	805.945	15		
15	44.050	1815.800	1797.792	1798.775	908.401	Α	1497.806	1479.795	1480.779	749.403	14		
16	86.097	1928.886	1910.876	1911.859	964.948	I	1426.769	1408.758	1409.742	713.884	13		
17	72.082	2027.955	2009.944	2010.928	1014.477	V	1313.685	1295.674	1296.658	657.342	12		
18	86.097	2141.039	2123.028	2124.011	1071.019	L	1214.616	1196.606	1197.589	607.808	11		
19	60.045	2228.071	2210.060	2211.043	1114.535	S	1101.532	1083.522	1084.505	551.266	10		
20	110.072	2365.130	2347.119	2348.103	1183.065	Н	1014.477	996.490	997.473	507.750	9		
21	74.061	2466.177	2448.167	2449.150	1233.583	Т	877.441	859.431	860.414	439.221	8		
22	87.056	2580.220	2562.210	2563.193	1290.610	N	776.394	758.383	759.367	388.697	7		
23	60.045	2667.247	2649.224	2650.225	1334.126	S	662.351	644.340	645.324	331.675	6		
24	72.081	2766.332	2748.339	2749.293	1383.673	V	575.319	557.308	558.292	288.159	5		
25	72.081	2865.389	2847.378	2848.362	1433.194	V	476.262	458.240	459.223	238.625	4		
26	87.056	2979.432	2961.421	2962.405	1490.216	N	377.182	359.170	360.159	189.091	3		
27	70.066	3076.485	3058.474	3059.458	1538.742	Р	263.140	245.128	246.112	132.069	2		
28	120.081					F	166.086	148.076	149.059	83.543	1		

Table S1-4. MS/MS ion table of the chymotryptic peptide Cys259^{6.61}–Phe286^{7.51} (unlabeled).

											· · · ·
#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	у	y-H2O	y-NH3	y (2+)	#
1	133.043	161.038	143.028	144.011	81.019	C(+57.02)					28
2	70.066	258.091	240.081	241.064	129.546	Р	3492.638	3474.627	3475.611	1746.819	27
3	88.040	373.128	355.108	356.091	187.059	D	3395.585	3377.575	3378.558	1698.293	26
4	133.043	533.149	515.138	516.122	267.074	C(+57.02)	3280.558	3262.548	3263.531	1640.779	25
5	60.045	620.181	602.170	603.154	310.590	S	3120.528	3102.517	3103.500	1560.764	24
6	110.073	757.240	739.229	740.213	379.132	Н	3033.496	3015.485	3016.469	1517.248	23
7	44.050	828.273	810.266	811.250	414.636	Α	2896.437	2878.426	2879.410	1448.718	22
8	70.066	925.330	907.319	908.303	463.165	Р	2825.400	2807.389	2808.373	1413.200	21
9	86.097	1038.391	1020.403	1021.387	519.707	L	2728.347	2710.336	2711.320	1364.673	20
10	159.110	1224.477	1206.491	1207.466	612.750	W	2615.263	2597.252	2598.236	1308.131	19
11	86.097	1337.575	1319.577	1320.550	669.289	L	2429.183	2411.173	2412.156	1215.092	18
12	104.053	1468.618	1450.607	1451.591	734.796	М	2316.099	2298.089	2299.072	1158.550	17
13	547.180	2042.790	2024.776	2025.759	1021.893	Y(+411.11)	2185.059	2167.048	2168.032	1093.029	16
14	86.097	2155.852	2137.860	2138.843	1078.435	L	1610.890	1592.880	1593.863	805.945	15
15	44.050	2226.911	2208.897	2209.880	1113.954	A	1497.806	1479.795	1480.779	749.358	14
16	86.097	2339.968	2321.981	2322.965	1170.496	Ι	1426.769	1408.758	1409.742	713.884	13
17	72.081	2439.035	2421.050	2422.033	1220.030	V	1313.685	1295.674	1296.658	657.342	12
18	86.097	2552.144	2534.134	2535.117	1276.572	L	1214.616	1196.559	1197.589	607.808	11
19	60.045	2639.176	2621.166	2622.149	1320.088	S	1101.532	1083.522	1084.505	551.266	10
20	110.072	2776.235	2758.225	2759.208	1388.609	Н	1014.500	996.490	997.473	507.750	9
21	74.061	2877.283	2859.272	2860.256	1439.141	Т	877.441	859.431	860.414	439.221	8
22	87.056	2991.360	2973.315	2974.299	1496.163	N	776.394	758.383	759.367	388.697	7
23	60.045	3078.390	3060.347	3061.329	1539.679	S	662.351	644.340	645.324	331.675	6
24	72.081	3177.426	3159.416	3160.399	1589.213	V	575.319	557.308	558.292	288.159	5
25	72.081	3276.494	3258.484	3259.467	1638.747	V	476.250	458.240	459.223	238.625	4
26	87.056	3390.537	3372.527	3373.510	1695.769	N	377.182	359.167	360.155	189.091	3
27	70.066	3487.590	3469.580	3470.563	1744.295	Р	263.139	245.128	246.112	132.069	2
28	120.081					F	166.077	148.076	149.059	83.543	1
		1	1					1	1		L

Table S1-5. MS/MS ion table of the chymotryptic peptide Cys259^{6.61}–Phe286^{7.51} (labeled with probe 9).

9. Docking study.

The coordinates of $hA_{2A}AR$ for the docking study of compound **9** were prepared from the X-ray structure complexed with ZM241385 (PDB code: 3EML). The crystal water (HOH-565) was kept in the calculations. For the protein and water, hydrogen atoms were added using the Discovery Studio (version 4.5, BIOVIA, San Diego, CA, USA) with default settings (Glu and Asp are negatively charged, Arg and Lys are positively charged, and the other amino acids and water are neutral). Three-dimensional conformations of compound **9** were generated by OMEGA (version 3.141592-1.23.2.3, OpenEye Scientific Software, Santa Fe, NM, USA), and the docking was performed using FRED (version 3.0.1, OpenEye Scientific Software) with default settings, respectively. The displayed docking model was selected based on the position and orientation of compound **9** which were similar to ZM241385 (1).

10. References.

- Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Pineda de las Infantas y Villatoro, M. J.; Zocchi, C.; Dionisotti, S.; Ongini, E. Pyrazolo[4,3-*e*]-1,2,4-triazolo[1,5-*c*]pyrimidine Derivatives: Potent and Selective A_{2A} Adenosine Antagonists. *J. Med. Chem.* 1996, *39*, 1164–1171.
- Kumar, T. S.; Mishra, S.; Deflorian, F.; Yoo, L. S.; Phan, K.; Kecskés, M.; Szabo, A.; Shinkre, B.; Gao, Z. G.; Trenkle, W.; Jacobson, K. A. Molecular Probes for the A_{2A} Adenosine Receptor Based on a pyrazolo[4,3-*e*][1,2,4]triazolo[1,5-*c*]pyrimidin-5-amine Scaffold. *Bioorg. Med. Chem. Lett.* 2011, 21, 2740–2745.
- (3) Kvach, M. V.; Tsybulsky, D. A.; Ustinov, A. V.; Stepanova, I. A.; Bondarev, S. L.; Gontarev, S. V.; Korshun, V. A.; Shmanai, V. V. 5(6)-Carboxyfluorescein Revisited: New Protecting Group, Separation of Isomers, and their Spectral Properties on Oligonucleotides. *Bioconjugate Chem.* 2007, 18, 1691–1696.
- (4) Todde, S.; Moresco, R. M.; Simonelli, P.; Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Varani, K.; Monopoli, A.; Matarrese, M.; Carpinelli, A.; Magni, F.; Kienle, M. G.; Fazio, F. Design, Radiosynthesis, and Biodistribution of a New Potent and Selective Ligand for in Vivo Imaging of the Adenosine A_{2A} Receptor System Using Positron Emission Tomography. *J. Med. Chem.* 2000, *43*, 4359–4362.
- (5) Fraser, N. J. Expression and Functional Purification of a Glycosylation Deficient Version of the Human Adenosine 2a Receptor for Structural Studies. *Protein Expression Purif.* 2006, 49, 129–137.

Photoaffinity Labeling of the Human A_{2A} Adenosine Receptor and Cross-link Position Analysis by Mass Spectrometry

Hideyuki Muranaka,^{*} Takaki Momose, Chiaki Handa, Tomonaga Ozawa

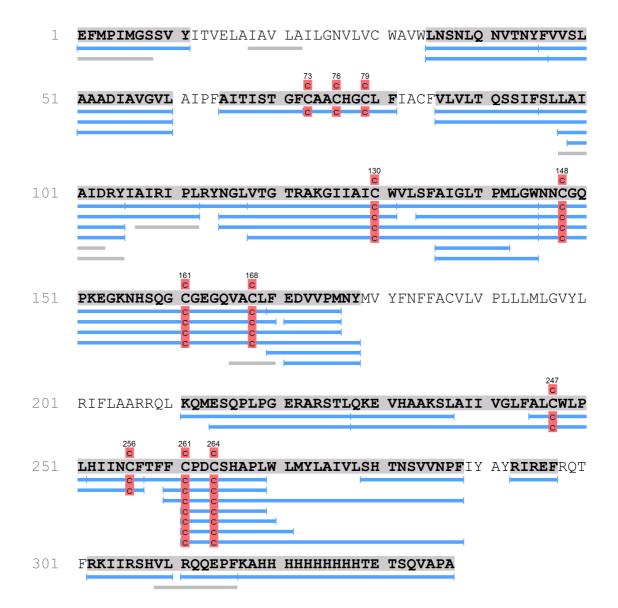
Central Research Laboratories, Kissei Pharmaceutical Co., Ltd., 4365-1 Kashiwabara, Hotaka, Azumino, Nagano 399-8304, Japan

*Phone, +81-263-82-8820; Fax, +81-263-82-8827; E-mail, hideyuki_muranaka@pharm.kissei.co.jp

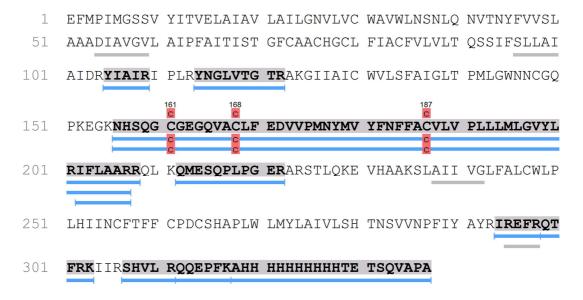
Supporting Information 2

Sequence coverage and MS/MS spectra of proteolytic digests of hA_{2A}AR

Contents:


1. Supplementary Figures

5.	Reference		S2-81
4.	MS/MS Spec	etra for tryptic peptides	S2-68–S2-81
3.	MS/MS Spec	etra for chymotryptic peptides	S2-7–S2-67
	Table S2-2.	A list of tryptic peptides	S2-6
	Table S2-1.	A list of chymotryptic peptides	S2-6
2.	Supplementa	ary Tables	
	Figure S2-4.	Combined sequence coverage map	S2-5
	Figure S2-3.	Sequence coverage map for tryptic peptides	S2-4
	Figure S2-2.	Sequence coverage map for chymotryptic peptides	S2-3
	Figure S2-1.	Amino acid sequence of $hA_{2A}AR$ in this study	S2-2


1. Supplementary Figures.

1	EF MPIMGSS <mark>V</mark>	YITVELAIAV	LAILGNVLVC	WAVW LNSNLQ	NVTN YFVVSL	50
extra	a amino acids	т	M1			
51	AAADIAVGVL	AIPFAITI ST	GFCAACHGC <mark>L</mark>	FIACFVLVLT	QSSIFSLLAI	100
	TM2			тм	3	
101	AI DRYIAIRI	PLRYNGLVTG	TR AKGIIAIC	WVLSFAIGLT	PMLGW NNCGQ	150
	_			TM4		
151	PKEGKNHSQG	CGEGQVACLF	EDVVP mnymv	YFNFFACVLV	PLLLMLGVYL	200
				TM5		
201	RIFLAARRQL	KQMESQPLPG	ERARSTLQKE	VHAAKS LAII	VGLFALCWLP	250
					TM6	
251	LHIINCFTFF	CPDCSHAP LW	LMYLAIVLSH	TNSVVNPFIY	Ay rirefrqt	300
			TM	7		
301	FRKIIRSHVL	RQQEPFKA hh	нннннннте	TSQVAPA-33	7	
		1	0x His-tag 1	D4 tag		

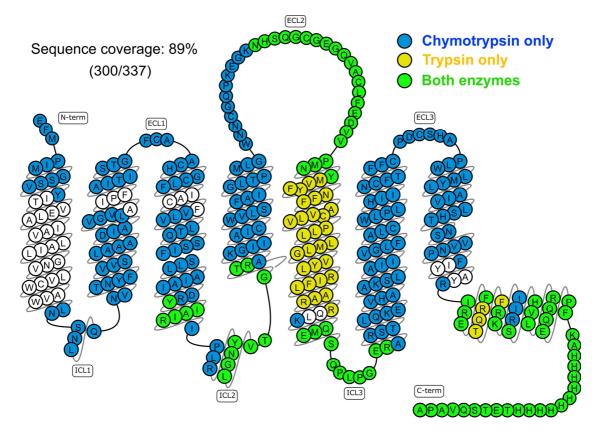

Figure S2-1. Amino acid sequence of C-terminal truncated $hA_{2A}AR$ (1–337) used in this study. Transmembrane domains (TMs) are red, bolded and underlined. Two extra amino acids (Glu, Phe) at the N-terminus and a 10× His-tag followed by a 1D4 tag at the C-terminal are black, bolded and underlined. The numbering of amino acids in supporting information 2 follows this sequence number.

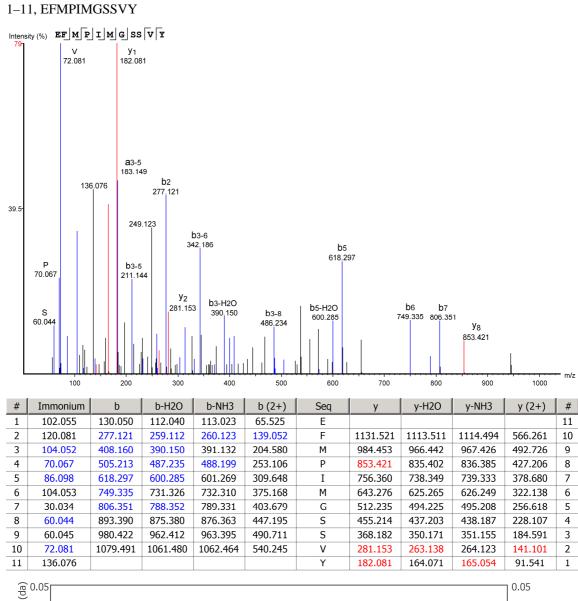
Figure S2-2. Sequence coverage map for chymotryptic peptides of hA_{2A}AR obtained from LC–MS/MS and PEAKS Studio search.

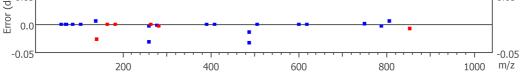
Figure S2-3. Sequence coverage map for tryptic peptides of hA_{2A}AR obtained from LC–MS/MS and PEAKS Studio search.

Figure S2-4. Combined sequence coverage map shown on a snake diagram of the $hA_{2A}AR$ taken from GCPRdb.¹ Amino acids are colored to indicate the enzyme used in their identification: blue, chymotrypsin; yellow, trypsin; green, both enzymes. The 37 amino acids in white were not identified. Chymotryptic sequence coverage was 79% (266 / 337) and tryptic sequence coverage was 35% (119 / 337) of the entire sequence respectively. The combined sequence coverage was as high as 89% (300 / 337).

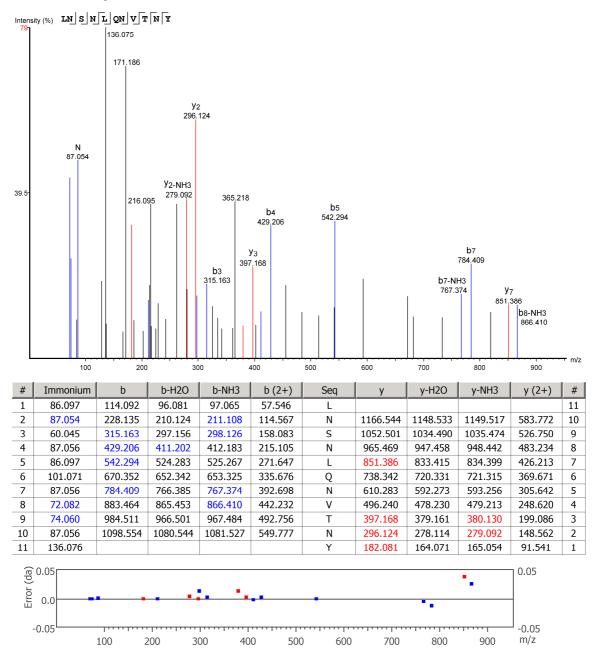
2. Supplementary Tables.

Table S2-1. A list of chymotryptic peptides of $hA_{2A}AR$ identified by PEAKS Studio search.

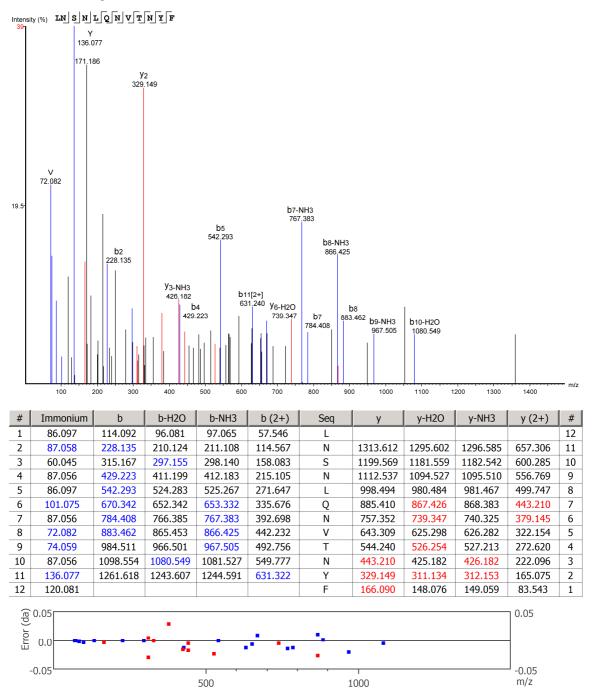

Sequence	Pantida	-10lgP	Mass	Length	nom	m/z	RT (min)
1–11	EFMPIMGSSVY	29.12	1259.5566	11	3.2	630.7876	21.96
35-45	LNSNLQNVTNY	22.12	1278.6205	11	1.2	640.3183	14.57
35-46	LNSNLQNVTNYF	17.66	1425.6888	12	4.1	713.8546	20.29
46-60	FVVSLAAADIAVGVL	20.5	1443.8336	15	-0.4	722.9238	28.42
47-60	WSLAAADIAVGVL	24.38	1296.7653	14	0.9	649.3905	25.44
51-60	AAADIAVGVL	14.34	898.5123	10	3.9	450.2652	19.61
65-72	AITISTGF	8.58	808.433	8	2	405.2246	18.13
73-81	C(+57.02)AAC(+57.02)HGC(+57.02)LF	21.2		9	0	548.212	13.23
86-112	VLVLTQSSIFSLLAIAIDRYIAIRIPL	36.12		27	4.9	1000.2786	39.38
86-95	VLVLTQSSIF	5.69	1105.6383	10	1.0	553.827	22.99
96-105	SLLAIAIDRY	17.25	1133.6444	10	1.5	567.8303	20.98
98-105		9.54	933.5283	8	3.6	312.1845	2.64
99-105	AADRY	13.96	820.4443	7	0.9	411.2298	12.66
106-112	AIRIPL	12.16	794.5378	7	6.4	398.2787	21.34
113-117	RYNGL	7.24	621.3234	5		311.6686	7.28
115-145	NGLVTGTRAKGIIAIC(+57.02)WVLSFAIGLTPMLGW	33.49		31	3	1105.9451	38.23
115-145	NGLVTGTRAKGIAIC(+57.02)W	27.04	1828.9982	17	2.1	610.6746	20.89
118-145	VTGTRAKGIIAIC(+57.02)WVLSFAIGLTPMLGW	19.18	3030.655	28		1011.2223	37.72
118-131	VTGTRAKGIAIG(+57.02)W	9.18	1544.8497	14	-0.8	515.9568	19.16
132-145	VLSFAIGLTPMLGW	7.16	1503.8159	14	1.4	752.9163	30.47
134-145	SFAIGLTPMLGW	20.97	1291.6635	12	6.4	646.8431	28.13
134-145	AIGLTPMLGW	17.45	1057.563	10	1.1	529.7894	25.66
136-142	AGLIFINLOW	6.43	701.3782	7	9.4	351.6997	16.87
146-170	NNC(+57.02)GQPKEGKNHSQGC(+57.02)GEGQVAC(+57.02)LF	43.49		, 25	1.8	926.0726	13.97
146-169	NNC(+57.02)GQPKEGKNHSQGC(+57.02)GEGQVAC(+57.02)L	39.12	2628.1228	23	0.6	877.0488	9.44
146-176	NNC(+57.02)GQPKEGKNHSQGC(+57.02)GEGQVAC(+57.02)LFEDVVPM	29.93		31	6.5	1149.5116	21.77
146-178	NNC(+57.02)GQPKEGKNHSQGC(+57.02)GEGQVAC(+57.02)LFEDVVPMNY	23.33		33	-3.9	1241.868	21.96
140-178	FEDV/PMNY	20.35		9	-3.9	557.2501	18.74
	FEDV/PM	10.84	835.3785	3 7	1.9	418.6974	17.9
	EDVVPMNY	19.11		8	3.6	483,7173	15.71
	EDVVPM	13.53		6	4.3	345.1638	13.91
	KQMESQPLPGERARSTL	5.86		o 17	4.3 2.4	643.3403	11.58
211-227	KQMESQFLFGERARSTL	98.32	1926.9945	17	2.4	482.7573	11.56
211-227	ESQPLPGERARSTL	35.95	1539.8004	14	2.0	514.2752	11.54
214-227	QKEVHAAKSL	19.36	1109.6193	10	1.3	555.8176	5.33
228-257	QKEVHAAKSLAIVGLFALC(+57.02)WLPLHIINC(+57.02)F	12.04	3460.8879	30	-3.2	693.1826	36.22
245-251	ALC(+57.02)WLPL	5.11	871.4626	30 7	-3.2	436.7397	25.6
	HINC(+57.02)F	16.35	802.3796	6	2.7	402.198	13.76
252-257	TFFC(+57.02)PDC(+57.02)SHAPL	16.8	1450.601	0 12	-1.4	726.3068	17.87
	FC(+57.02)PDC(+57.02)SHAPLWLMYLAWLSHTNSVVNPF	26.96	3387.6243	29	-1.4	1130.2139	34.35
260-288	FC(+57.02)PDC(+57.02)SHAPLWLMYLAVLSHINSVVNPF FC(+57.02)PDC(+57.02)SHAPL	10.84	1202.4849	29 10	-1.3	602.249	34.35 13.08
260-269	C(+57.02)PDC(+57.02)SHAPL C(+57.02)PDC(+57.02)SHAPLWLMYLAWLSHTNSVVNPF	50.8	3240.5559	28	1.3	811.1473	33.83
261-269	C(+57.02)PDC(+57.02)SHAPLWLMITLAIVLSHINSVVNPP C(+57.02)PDC(+57.02)SHAPL	29.44		20 9	3.1	528.7172	33.63 9.76
261-269	C(+57.02)PDC(+57.02)SHAPL C(+57.02)PDC(+57.02)SHAPLWL	29.44 5.78		9 11	3.1 4.5	678.3002	9.76 19.4
261-271	C(+57.02)PDC(+57.02)SHAPLWL C(+57.02)PDC(+57.02)SHAPLW	5.78	1354.5798	10	4.5 3.5	621.7573	19.4 14.99
201-270	LAML	5.2 13.32	1241.4957 527.3683	10 5	3.5 -0.5	528.3753	20.65
274-278	SHTNSVVNPF	44.09	1100.525	5 10	-0.5 1.9	528.3753	20.65
279-288	RIREF			10 5	1.9	360.7121	
		6.11					7.59
	RKIRSHVL	7.03		9	5.1	374.5822	8.18
311-316	RQQEPF	14.18		6	3.3	402.7049	9.17
317–337	KAHHHHHHHHHTETSQVAPA	35.94	2472.1558	21	-1.6	495.4376	23.61

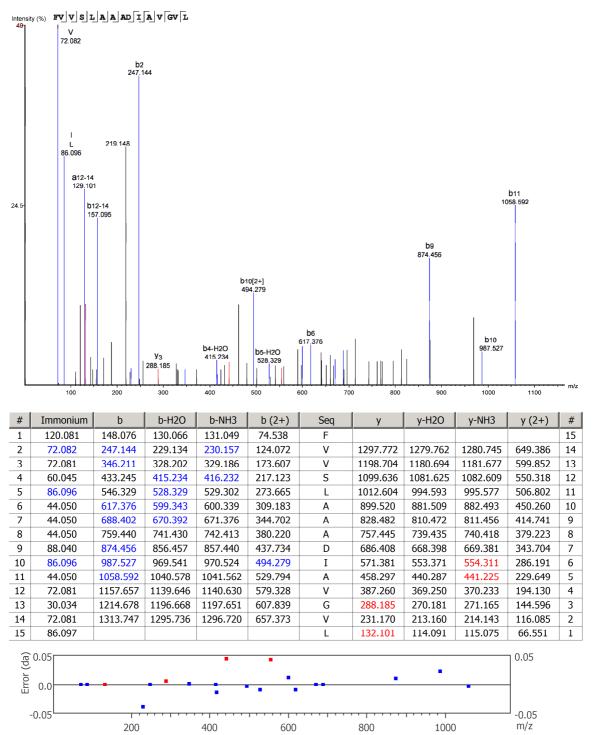

Table S2-2. A list of tryptic peptides of $hA_{2A}AR$ identified by PEAKS Studio search.

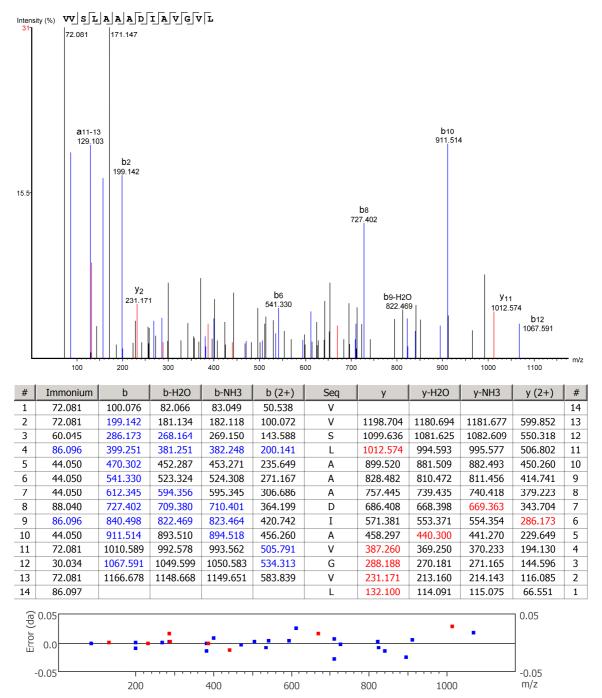
Sequence	Peptide	-10lgP	Mass	Length	ppm	m/z	RT (min)
105-109	YAR	10.62	634.3802	5	3.3	318.1985	10.31
114-122	YNGLVTGTR	38.47	979.5087	9	0.2	490.7617	10.03
156-207	NHSQGC(+57.02)GEGQVAC(+57.02)LFEDVVPMVYFNFFAC(+57.02)VLVPLLLMLGVYLRIFLAAR	101.01	6040.9824	52	-2.2	1511.2495	51.46
156-208	NHSQGC(+57.02)GEGQVAC(+57.02)LFEDVVPMNYMVYFNFFAC(+57.02)VLVPLLLMLGVYLRIFLAARR	93.74	6197.0835	53	-7	1240.4153	47.67
202-207	IFLAAR	10.72	689.4224	6	-5.1	345.7167	12.93
212-222	QMESQPLPGER	61.01	1270.5975	11	3.9	636.3085	10.38
294-298	IREFR	7.3	719.4078	5	1.2	360.7116	6.62
299-303	QTFRK	8.63	678.3813	5	5.5	340.1998	1.52
307-311	SHMLR	14.16	610.3551	5	2.6	306.1856	2
312-317	QQEPFK	21.25	775.3864	6	1.7	388.7011	7.3
318-337	AHHHHHHHHTETSQVAPA	37.18	2344.0608	20	4.7	469.8217	6.59

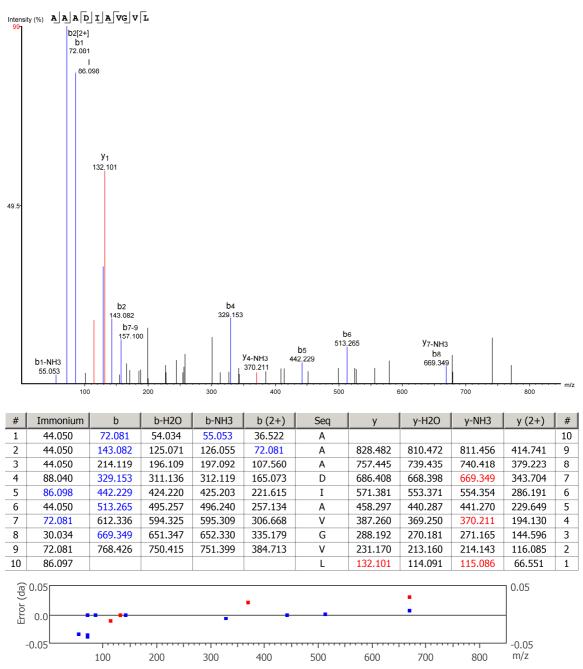

3. MS/MS Spectra for chymotryptic peptides of hA_{2A}AR.

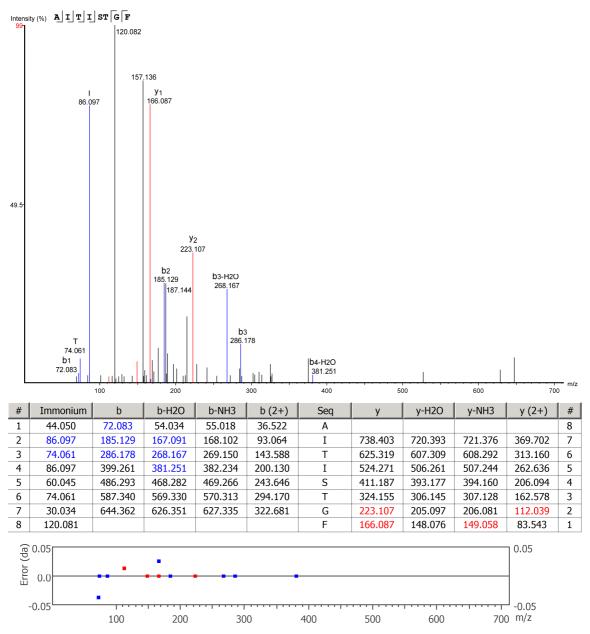
Carbamidomethylcysteines are designated in lower case in all figures.

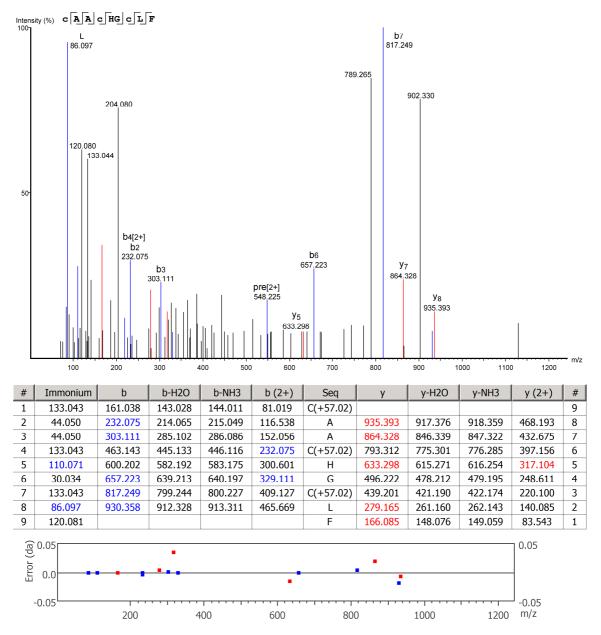


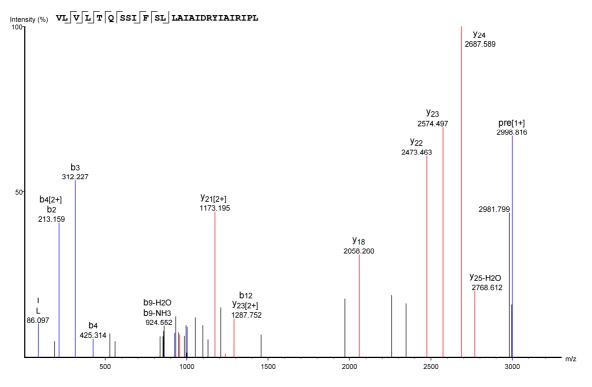


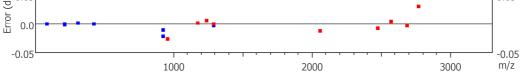

35–46, LNSNLQNVTNYF


46-60, FVVSLAAADIAVGVL

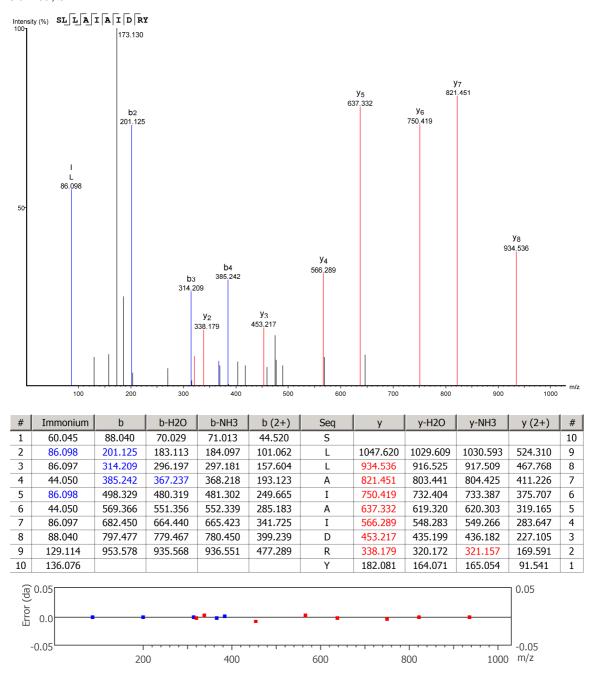

47-60, VVSLAAADIAVGVL

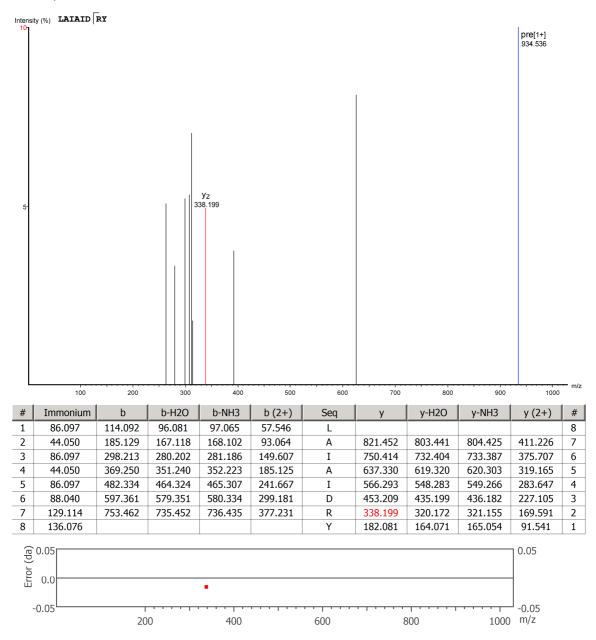


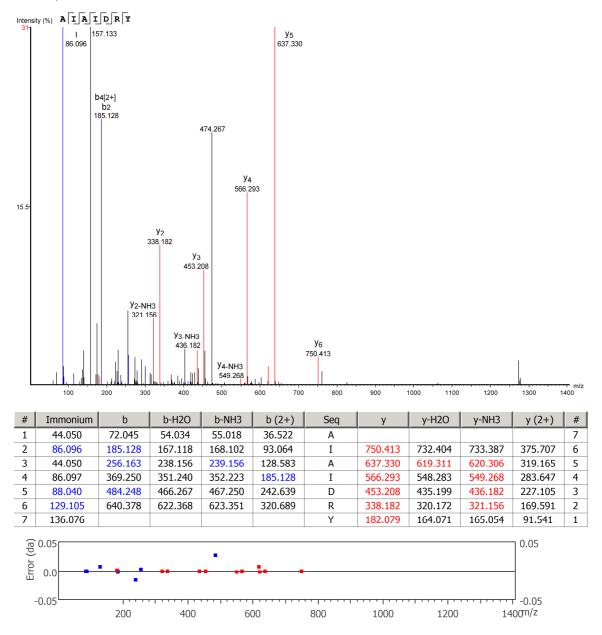


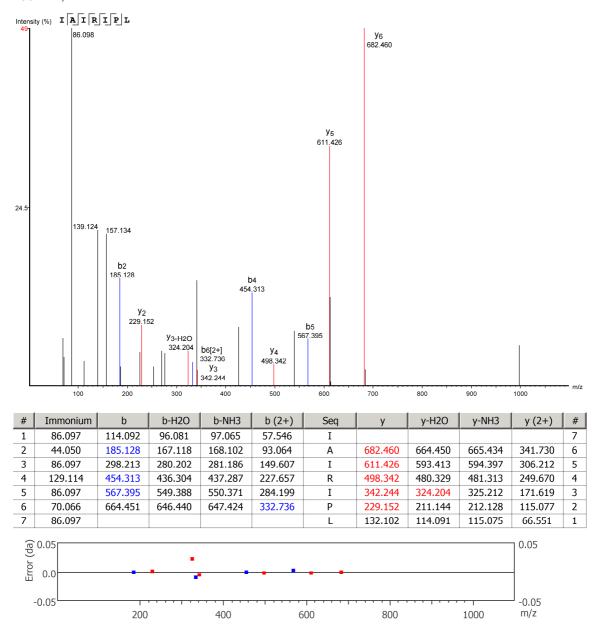

73-81, cAAcHGcLF

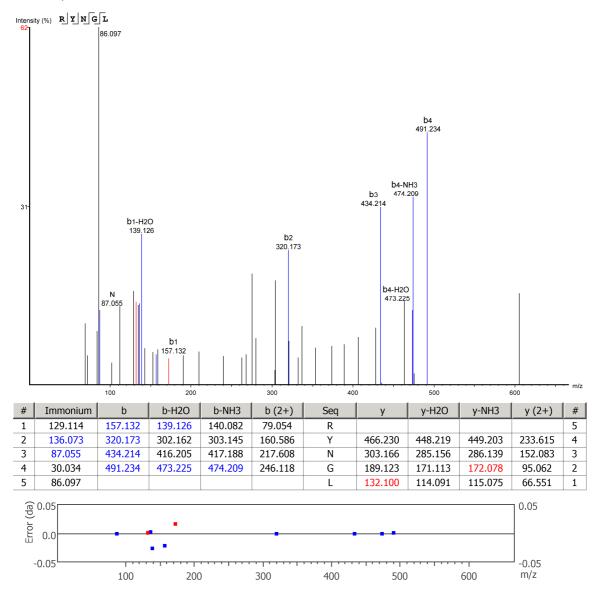

86-112, VLVLTQSSIFSLLAIAIDRYIAIRIPL

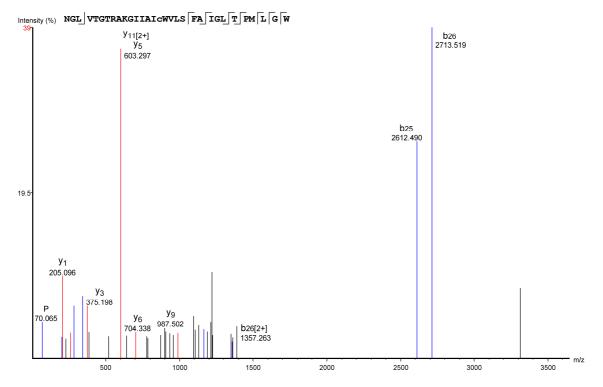

#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	у	y-H2O	y-NH3	y (2+)	#
1	72.081	100.076	82.066	83.049	50.538	V					27
2	86.097	213.159	195.150	196.133	107.080	L	2899.738	2881.728	2882.711	1450.369	26
3	72.081	312.227	294.218	295.202	156.614	V	2786.654	2768.612	2769.627	1393.827	25
4	86.097	425.314	407.302	408.286	213.159	L	2687.589	2669.575	2670.559	1344.293	24
5	74.061	526.360	508.350	509.333	263.680	Т	2574.497	2556.491	2557.475	1287.752	23
6	101.071	654.419	636.408	637.392	327.710	Q	2473.463	2455.444	2456.427	1237.220	22
7	60.045	741.451	723.440	724.424	371.226	S	2345.396	2327.385	2328.368	1173.195	21
8	60.045	828.483	810.473	811.456	414.742	S	2258.363	2240.353	2241.336	1129.682	20
9	86.097	941.567	923.579	924.552	471.284	Ι	2171.331	2153.321	2154.304	1086.166	19
10	120.081	1088.635	1070.625	1071.609	544.818	F	2058.260	2040.237	2041.220	1029.624	18
11	60.045	1175.668	1157.657	1158.641	588.334	S	1911.179	1893.168	1894.152	956.116	17
12	86.097	1288.755	1270.741	1271.725	644.876	L	1824.147	1806.136	1807.120	912.573	16
13	86.097	1401.836	1383.825	1384.809	701.418	L	1711.063	1693.052	1694.036	856.031	15
14	44.050	1472.873	1454.862	1455.846	736.936	А	1597.979	1579.968	1580.952	799.489	14
15	86.097	1585.957	1567.946	1568.930	793.478	I	1526.942	1508.931	1509.915	763.971	13
16	44.050	1656.994	1638.984	1639.967	828.997	А	1413.858	1395.847	1396.831	707.429	12
17	86.097	1770.078	1752.068	1753.051	885.539	Ι	1342.820	1324.810	1325.793	671.910	11
18	88.040	1885.105	1867.094	1868.078	943.052	D	1229.736	1211.726	1212.709	615.368	10
19	129.114	2041.206	2023.196	2024.179	1021.103	R	1114.709	1096.699	1097.682	557.855	9
20	136.076	2204.269	2186.259	2187.242	1102.635	Y	958.608	940.598	941.581	479.804	8
21	86.097	2317.354	2299.343	2300.326	1159.177	Ι	795.545	777.534	778.518	398.273	7
22	44.050	2388.391	2370.380	2371.364	1194.695	А	682.461	664.450	665.434	341.730	6
23	86.097	2501.475	2483.464	2484.448	1251.237	Ι	611.424	593.413	594.397	306.212	5
24	129.114	2657.576	2639.565	2640.549	1329.288	R	498.340	480.329	481.313	249.670	4
25	86.097	2770.660	2752.649	2753.633	1385.830	Ι	342.239	324.228	325.212	171.619	3
26	70.066	2867.713	2849.702	2850.686	1434.356	Р	229.155	211.144	212.128	115.077	2
27	86.097					L	132.102	114.091	115.075	66.551	1
27 00.057 110.073 @ 0.05 • •											



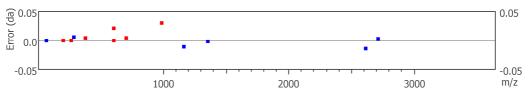

96-105, SLLAIAIDRY

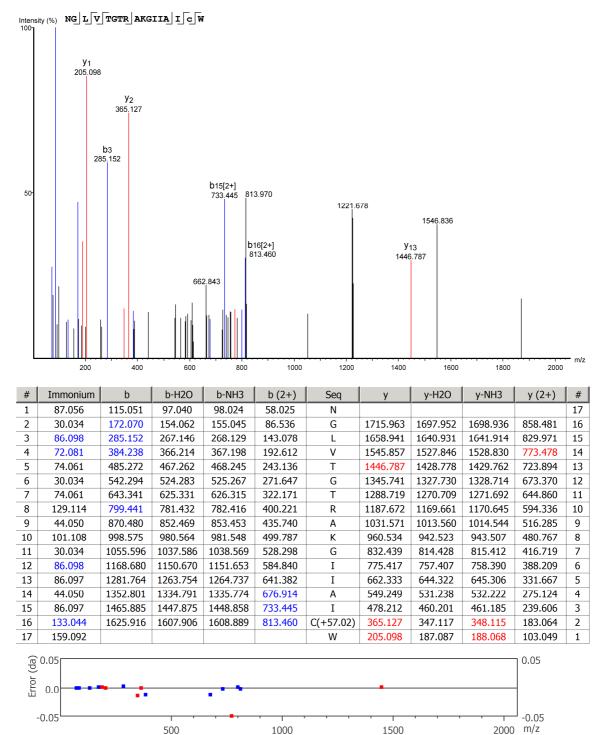

98-105, LAIAIDRY


99-105, AIAIDRY

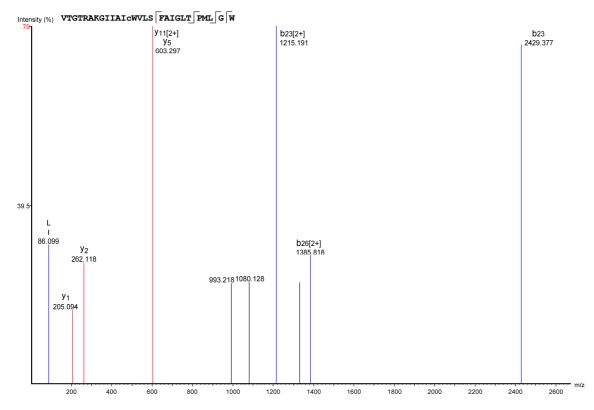


106-112, IAIRIPL

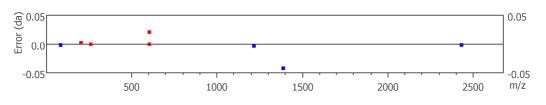

113-117, RYNGL



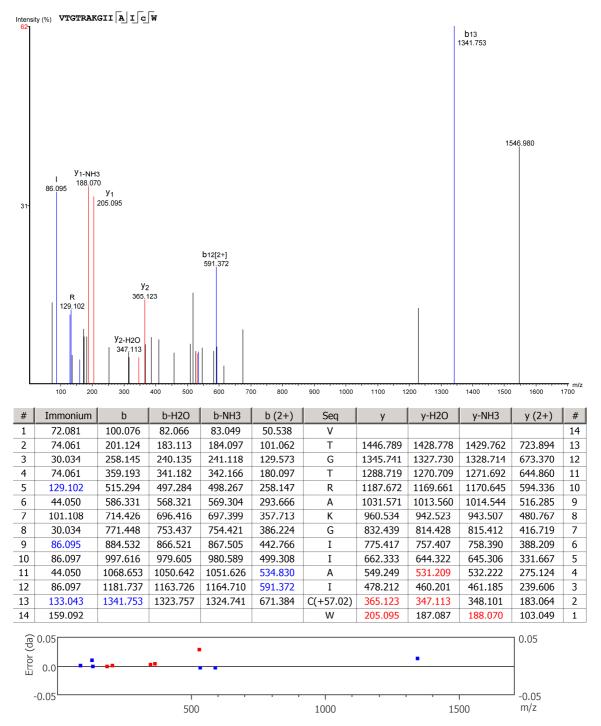
115–145, NGLVTGTRAKGIIAIcWVLSFAIGLTPMLGW


#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	у	y-H2O	y-NH3	y (2+)	#
1	87.056	115.051	97.040	98.024	58.025	N					31
2	30.034	172.072	154.062	155.045	86.536	G	3201.768	3183.757	3184.741	1601.384	30
3	86.097	285.150	267.146	268.129	143.078	L	3144.746	3126.736	3127.719	1572.873	29
4	72.081	384.225	366.214	367.198	192.612	V	3031.662	3013.652	3014.635	1516.331	28
5	74.061	485.272	467.262	468.245	243.136	Т	2932.594	2914.583	2915.567	1466.797	27
6	30.034	542.294	524.283	525.267	271.647	G	2831.546	2813.536	2814.519	1416.273	26
7	74.061	643.341	625.331	626.315	322.171	Т	2774.525	2756.514	2757.498	1387.762	25
8	129.114	799.443	781.432	782.416	400.221	R	2673.477	2655.467	2656.450	1337.239	24
9	44.050	870.480	852.469	853.453	435.740	Α	2517.376	2499.365	2500.349	1259.188	23
10	101.108	998.575	980.564	981.548	499.787	K	2446.339	2428.328	2429.312	1223.669	22
11	30.034	1055.596	1037.586	1038.569	528.298	G	2318.244	2300.233	2301.217	1159.622	21
12	86.097	1168.680	1150.670	1151.653	584.840	Ι	2261.222	2243.212	2244.195	1131.111	20
13	86.097	1281.764	1263.754	1264.737	641.382	Ι	2148.138	2130.128	2131.111	1074.569	19
14	44.050	1352.801	1334.791	1335.774	676.901	Α	2035.054	2017.044	2018.027	1018.027	18
15	86.097	1465.885	1447.875	1448.858	733.443	Ι	1964.017	1946.007	1946.990	982.509	17
16	133.043	1625.916	1607.906	1608.889	813.458	C(+57.02)	1850.933	1832.923	1833.906	925.967	16
17	159.092	1811.995	1793.985	1794.968	906.498	W	1690.902	1672.892	1673.875	845.951	15
18	72.081	1911.064	1893.053	1894.037	956.032	V	1504.823	1486.813	1487.796	752.912	14
19	86.097	2024.148	2006.137	2007.121	1012.574	L	1405.755	1387.744	1388.728	703.377	13
20	60.045	2111.180	2093.169	2094.153	1056.090	S	1292.671	1274.660	1275.644	646.835	12
21	120.081	2258.248	2240.238	2241.221	1129.624	F	1205.639	1187.628	1188.612	603.297	11
22	44.050	2329.285	2311.275	2312.258	1165.154	Α	1058.570	1040.560	1041.543	529.785	10
23	86.097	2442.369	2424.359	2425.342	1221.685	I	987.502	969.523	970.506	494.267	9
24	30.034	2499.391	2481.380	2482.364	1250.195	G	874.449	856.439	857.422	437.725	8
25	86.097	2612.490	2594.465	2595.448	1306.738	L	817.428	799.417	800.401	409.214	7
26	74.061	2713.519	2695.512	2696.496	1357.263	Т	704.338	686.333	687.317	352.672	6
27	70.065	2810.575	2792.565	2793.548	1405.788	Р	603.297	585.285	586.269	302.148	5
28	104.053	2941.616	2923.605	2924.589	1471.308	М	506.243	488.233	489.216	253.622	4
29	86.097	3054.700	3036.689	3037.673	1527.850	L	375.198	357.192	358.176	188.101	3
30	30.034	3111.721	3093.711	3094.694	1556.361	G	262.118	244.108	245.092	131.559	2
31	159.092					W	205.096	187.087	188.070	103.049	1
	0.05										

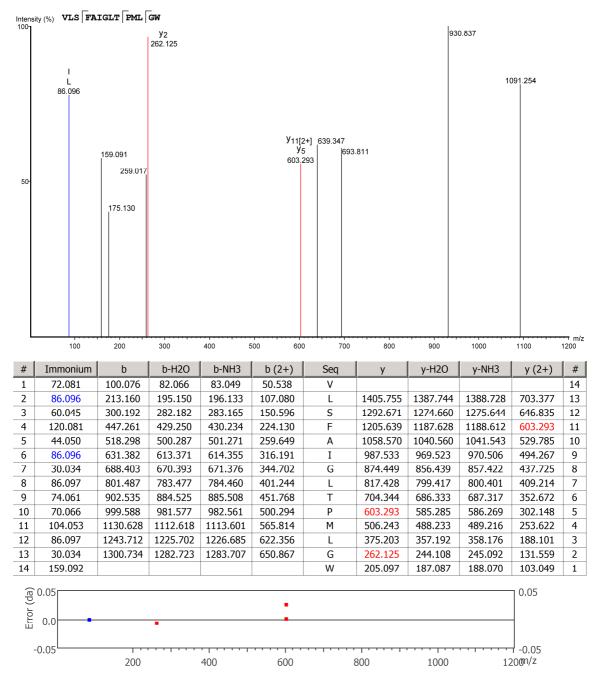
115-131, NGLVTGTRAKGIIAIcW

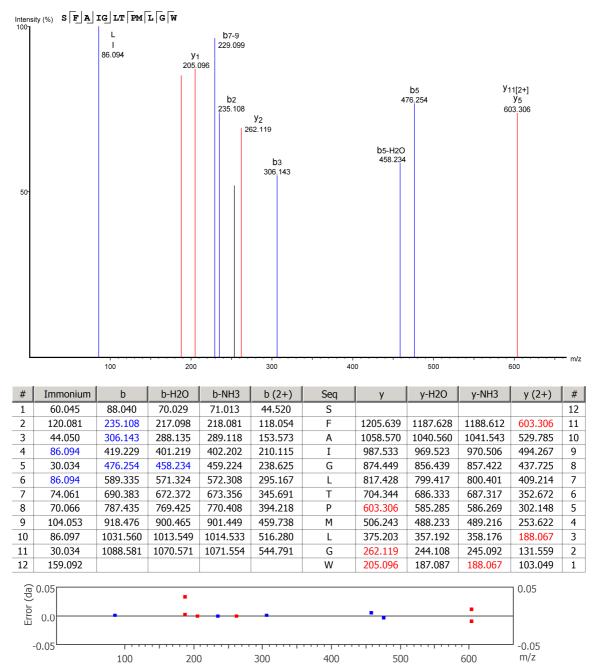


S2-25

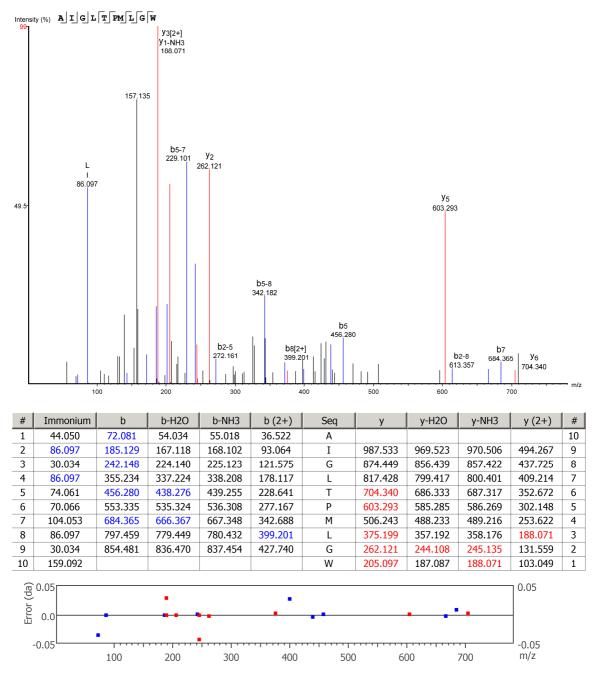


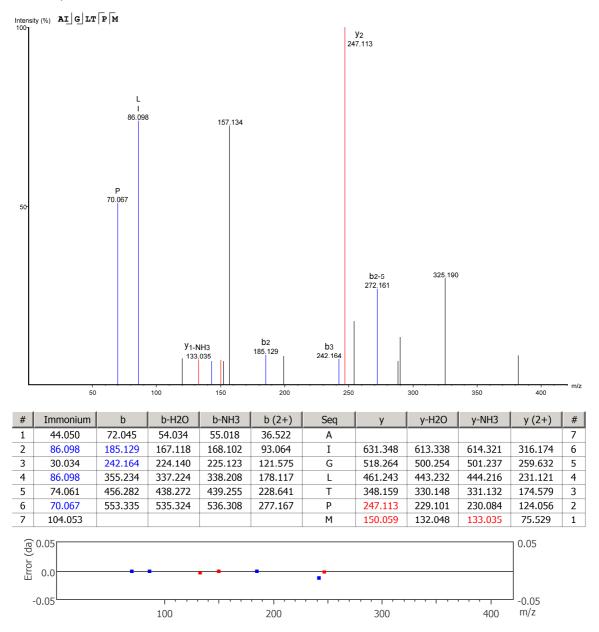
118–145, VTGTRAKGIIAIcWVLSFAIGLTPMLGW


#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	У	y-H2O	y-NH3	y (2+)	#
1	72.081	100.076	82.066	83.049	50.538	V					28
2	74.061	201.124	183.113	184.097	101.062	Т	2932.594	2914.583	2915.567	1466.797	27
3	30.034	258.145	240.135	241.118	129.573	G	2831.546	2813.536	2814.519	1416.273	26
4	74.061	359.193	341.182	342.166	180.097	Т	2774.525	2756.514	2757.498	1387.762	25
5	129.114	515.294	497.284	498.267	258.147	R	2673.477	2655.467	2656.450	1337.239	24
6	44.050	586.331	568.321	569.304	293.666	Α	2517.376	2499.365	2500.349	1259.188	23
7	101.108	714.426	696.416	697.399	357.713	K	2446.339	2428.328	2429.312	1223.669	22
8	30.034	771.448	753.437	754.421	386.224	G	2318.244	2300.233	2301.217	1159.622	21
9	86.099	884.532	866.521	867.505	442.766	Ι	2261.222	2243.212	2244.195	1131.111	20
10	86.097	997.616	979.605	980.589	499.308	I	2148.138	2130.128	2131.111	1074.569	19
11	44.050	1068.653	1050.642	1051.626	534.826	Α	2035.054	2017.044	2018.027	1018.027	18
12	86.097	1181.737	1163.726	1164.710	591.368	Ι	1964.017	1946.007	1946.990	982.509	17
13	133.043	1341.768	1323.757	1324.741	671.384	C(+57.02)	1850.933	1832.923	1833.906	925.967	16
14	159.092	1527.847	1509.836	1510.820	764.423	W	1690.902	1672.892	1673.875	845.951	15
15	72.081	1626.915	1608.905	1609.888	813.958	V	1504.823	1486.813	1487.796	752.912	14
16	86.099	1739.999	1721.989	1722.972	870.500	L	1405.755	1387.744	1388.728	703.377	13
17	60.045	1827.031	1809.021	1810.005	914.016	S	1292.671	1274.660	1275.644	646.835	12
18	120.081	1974.100	1956.089	1957.073	987.550	F	1205.639	1187.628	1188.612	603.297	11
19	44.050	2045.137	2027.126	2028.110	1023.068	Α	1058.570	1040.560	1041.543	529.785	10
20	86.097	2158.221	2140.210	2141.194	1079.610	Ι	987.533	969.523	970.506	494.267	9
21	30.034	2215.242	2197.232	2198.215	1108.121	G	874.449	856.439	857.422	437.725	8
22	86.097	2328.327	2310.316	2311.300	1164.663	L	817.428	799.417	800.401	409.214	7
23	74.061	2429.377	2411.364	2412.347	1215.191	Т	704.344	686.333	687.317	352.672	6
24	70.066	2526.427	2508.417	2509.400	1263.714	Р	603.297	585.285	586.269	302.148	5
25	104.053	2657.468	2639.457	2640.440	1329.234	М	506.243	488.233	489.216	253.622	4
26	86.097	2770.552	2752.541	2753.524	1385.818	L	375.203	357.192	358.176	188.101	3
27	30.034	2827.573	2809.562	2810.546	1414.286	G	262.118	244.108	245.092	131.559	2
28	159.092					W	205.094	187.087	188.070	103.049	1

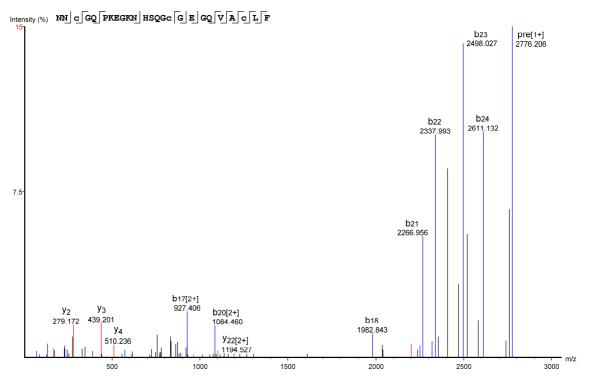


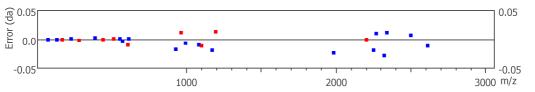
118-131, VTGTRAKGIIAIcW

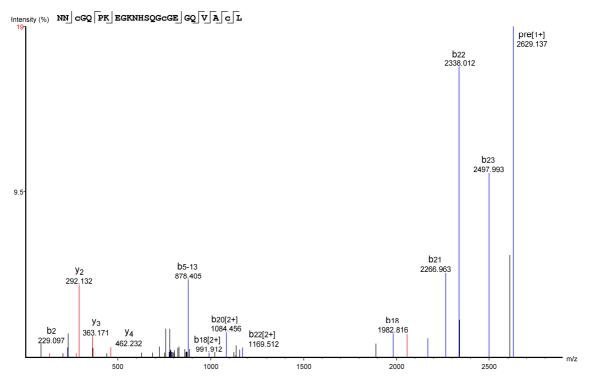


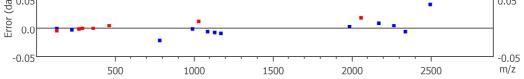


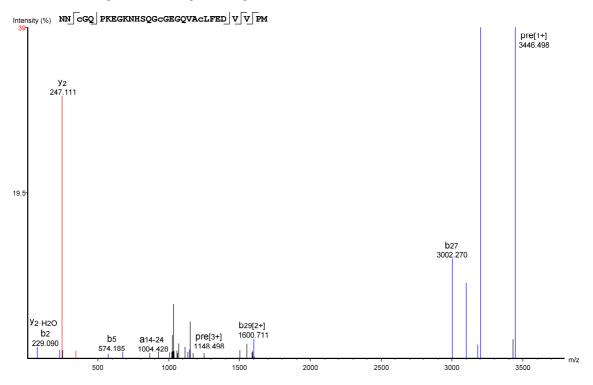
134-145, SFAIGLTPMLGW

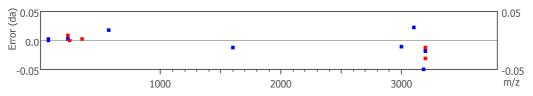

136–145, AIGLTPMLGW

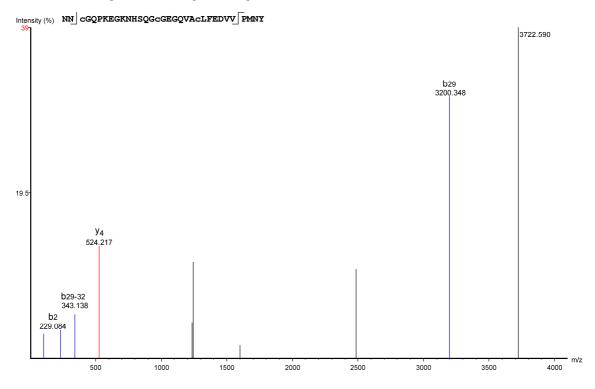

136-142, AIGLTPM

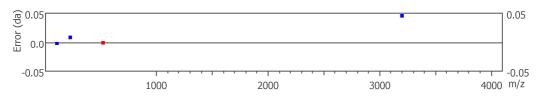

146–170, NNcGQPKEGKNHSQGcGEGQVAcLF

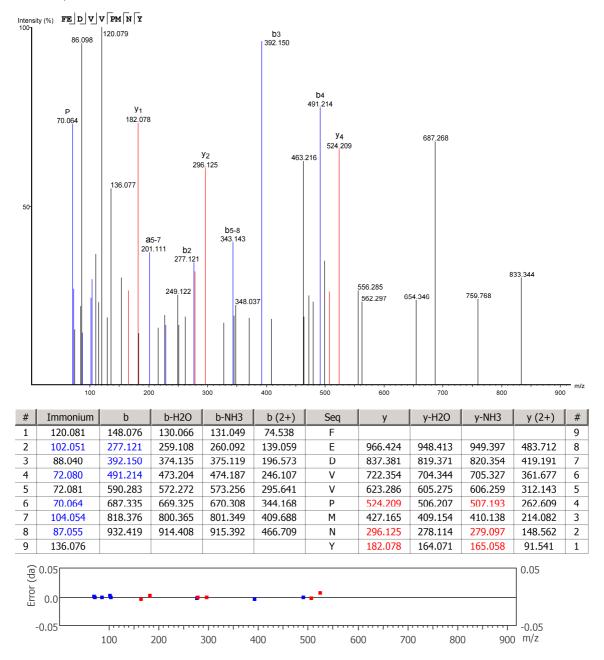

#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	у	y-H2O	y-NH3	y (2+)	#
1	87.056	115.051	97.040	98.024	58.025	N					25
2	87.056	229.092	211.083	212.067	115.047	N	2662.156	2644.145	2645.128	1331.578	24
3	133.042	389.120	371.114	372.097	195.062	C(+57.02)	2548.113	2530.102	2531.085	1274.556	23
4	30.034	446.146	428.135	429.119	223.573	G	2388.082	2370.071	2371.055	1194.527	22
5	101.071	574.208	556.194	557.175	287.602	Q	2331.060	2313.050	2314.033	1166.030	21
6	70.066	671.257	653.247	654.230	336.129	Р	2203.002	2184.991	2185.975	1102.012	20
7	101.108	799.352	781.341	782.325	400.176	K	2105.949	2087.938	2088.922	1053.474	19
8	102.055	928.395	910.384	911.368	464.697	E	1977.854	1959.844	1960.827	989.427	18
9	30.034	985.416	967.406	968.389	493.208	G	1848.812	1830.801	1831.785	924.906	17
10	101.108	1113.511	1095.501	1096.484	557.256	K	1791.790	1773.780	1774.763	896.395	16
11	87.056	1227.554	1209.543	1210.527	614.274	N	1663.695	1645.685	1646.668	832.348	15
12	110.072	1364.613	1346.602	1347.586	682.806	Н	1549.652	1531.642	1532.625	775.326	14
13	60.045	1451.645	1433.635	1434.618	726.323	S	1412.593	1394.583	1395.566	706.797	13
14	101.071	1579.703	1561.693	1562.677	790.352	Q	1325.561	1307.551	1308.534	663.281	12
15	30.034	1636.725	1618.714	1619.698	818.862	G	1197.503	1179.492	1180.476	599.251	11
16	133.043	1796.756	1778.745	1779.729	898.878	C(+57.02)	1140.481	1122.471	1123.454	570.741	10
17	30.034	1853.777	1835.767	1836.750	927.406	G	980.451	962.440	963.410	490.725	9
18	102.055	1982.843	1964.809	1965.793	991.916	E	923.429	905.419	906.402	462.215	8
19	30.034	2039.841	2021.831	2022.814	1020.421	G	794.386	776.376	777.359	397.693	7
20	101.071	2167.900	2149.889	2150.873	1084.460	Q	737.365	719.354	720.338	369.183	6
21	72.082	2266.956	2248.958	2249.960	1133.984	V	609.317	591.296	592.279	305.153	5
22	44.050	2337.993	2319.995	2321.007	1169.522	Α	510.236	492.227	493.211	255.619	4
23	133.043	2498.027	2480.025	2481.009	1249.518	C(+57.02)	439.201	421.190	422.174	220.100	3
24	86.097	2611.132	2593.109	2594.093	1306.060	L	279.172	261.160	262.143	140.085	2
25	120.081					F	166.086	148.076	149.059	83.543	1

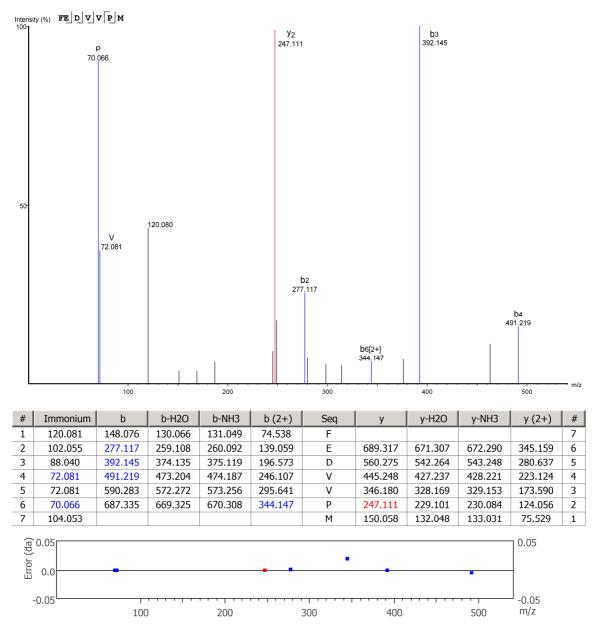

146-169, NNcGQPKEGKNHSQGcGEGQVAcL

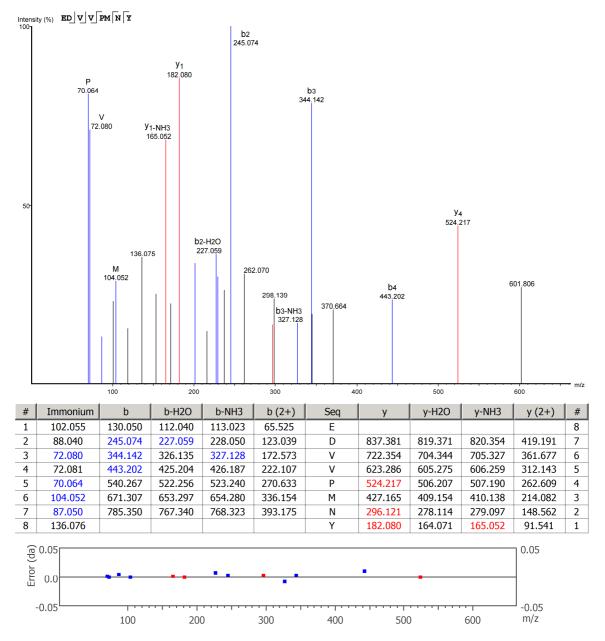

#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	у	y-H2O	y-NH3	y (2+)	#
1	87.056	115.051	97.040	98.024	58.025	N					24
2	87.056	229.097	211.083	212.067	115.047	N	2515.087	2497.077	2498.060	1258.044	23
3	133.042	389.124	371.114	372.097	195.062	C(+57.02)	2401.044	2383.034	2384.017	1201.022	22
4	30.034	446.146	428.135	429.119	223.573	G	2241.013	2223.003	2223.986	1121.007	21
5	101.071	574.204	556.194	557.177	287.602	Q	2183.992	2165.981	2166.965	1092.496	20
6	70.066	671.257	653.247	654.230	336.129	Р	2055.915	2037.923	2038.906	1028.454	19
7	101.108	799.352	781.364	782.325	400.176	K	1958.881	1940.870	1941.854	979.940	18
8	102.055	928.395	910.384	911.368	464.697	E	1830.786	1812.775	1813.759	915.893	17
9	30.034	985.416	967.406	968.389	493.208	G	1701.743	1683.733	1684.716	851.372	16
10	101.108	1113.511	1095.501	1096.484	557.256	K	1644.722	1626.711	1627.695	822.861	15
11	87.056	1227.554	1209.543	1210.527	614.277	N	1516.627	1498.616	1499.600	758.813	14
12	110.072	1364.613	1346.602	1347.586	682.806	Н	1402.584	1384.573	1385.557	701.792	13
13	60.045	1451.645	1433.635	1434.618	726.323	S	1265.525	1247.514	1248.498	633.262	12
14	101.071	1579.703	1561.693	1562.677	790.352	Q	1178.493	1160.482	1161.466	589.746	11
15	30.034	1636.725	1618.714	1619.698	818.862	G	1050.434	1032.424	1033.407	525.717	10
16	133.043	1796.756	1778.745	1779.729	898.878	C(+57.02)	993.413	975.402	976.386	497.206	9
17	30.034	1853.777	1835.767	1836.750	927.389	G	833.382	815.372	816.355	417.191	8
18	102.055	1982.816	1964.809	1965.793	991.912	E	776.361	758.350	759.334	388.680	7
19	30.034	2039.841	2021.831	2022.814	1020.421	G	647.318	629.308	630.291	324.159	6
20	101.071	2167.889	2149.889	2150.873	1084.456	Q	590.297	572.286	573.270	295.648	5
21	72.081	2266.963	2248.958	2249.941	1133.992	V	462.232	444.228	445.211	231.619	4
22	44.050	2338.012	2319.995	2320.978	1169.512	A	363.171	345.159	346.143	182.085	3
23	133.043	2497.993	2480.025	2481.009	1249.518	C(+57.02)	292.132	274.122	275.108	146.566	2
24	86.097					L	132.107	114.091	115.075	66.551	1
da)	0.05									0.05 ך	
r 0											

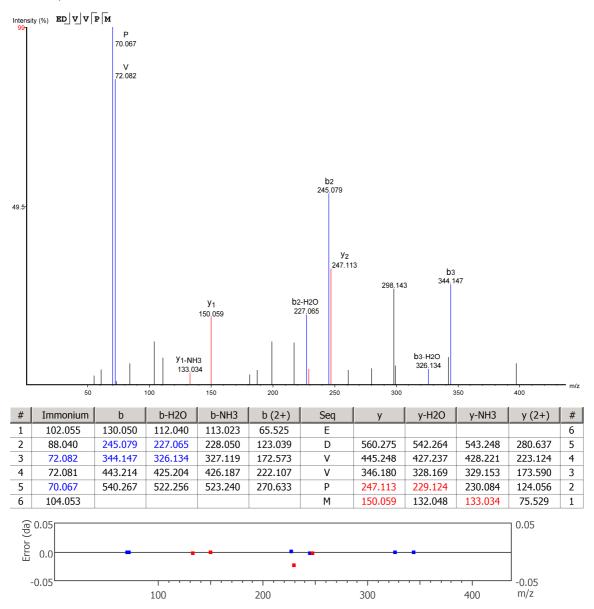

146–176, NNcGQPKEGKNHSQGcGEGQVAcLFEDVVPM

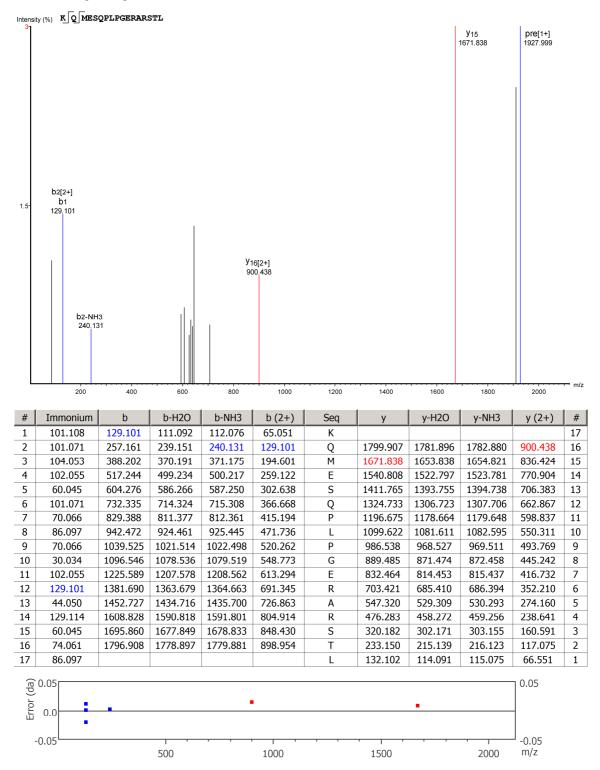

#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	У	y-H2O	y-NH3	y (2+)	#
1	87.056	115.051	97.040	98.024	58.025	N					31
2	87.056	229.090	211.083	212.067	115.047	N	3332.455	3314.445	3315.428	1666.728	30
3	133.043	389.124	371.114	372.097	195.062	C(+57.02)	3218.412	3200.414	3201.417	1609.706	29
4	30.034	446.146	428.135	429.119	223.573	G	3058.382	3040.371	3041.354	1529.691	28
5	101.071	574.185	556.194	557.177	287.602	Q	3001.360	2983.350	2984.333	1501.180	27
6	70.065	671.257	653.247	654.230	336.129	Р	2873.302	2855.291	2856.274	1437.151	26
7	101.108	799.352	781.341	782.325	400.176	К	2776.249	2758.238	2759.222	1388.624	25
8	102.055	928.395	910.384	911.368	464.697	E	2648.154	2630.143	2631.127	1324.577	24
9	30.034	985.416	967.406	968.389	493.208	G	2519.111	2501.101	2502.084	1260.056	23
10	101.108	1113.511	1095.501	1096.484	557.256	К	2462.090	2444.079	2445.062	1231.545	22
11	87.056	1227.554	1209.543	1210.527	614.277	N	2333.995	2315.984	2316.968	1167.497	21
12	110.072	1364.613	1346.602	1347.586	682.806	Н	2219.952	2201.941	2202.925	1110.476	20
13	60.045	1451.645	1433.635	1434.618	726.323	S	2082.893	2064.882	2065.866	1041.946	19
14	101.071	1579.703	1561.693	1562.677	790.352	Q	1995.861	1977.850	1978.834	998.430	18
15	30.034	1636.725	1618.714	1619.698	818.862	G	1867.802	1849.792	1850.775	934.401	17
16	133.043	1796.756	1778.745	1779.729	898.878	C(+57.02)	1810.781	1792.770	1793.754	905.890	16
17	30.034	1853.777	1835.767	1836.750	927.389	G	1650.750	1632.740	1633.723	825.875	15
18	102.055	1982.820	1964.809	1965.793	991.910	E	1593.729	1575.718	1576.702	797.364	14
19	30.034	2039.841	2021.831	2022.814	1020.421	G	1464.686	1446.676	1447.659	732.843	13
20	101.071	2167.900	2149.889	2150.873	1084.450	Q	1407.665	1389.654	1390.638	704.332	12
21	72.078	2266.968	2248.958	2249.941	1133.984	V	1279.606	1261.596	1262.579	640.303	11
22	44.050	2338.005	2319.995	2320.978	1169.503	Α	1180.538	1162.527	1163.511	590.769	10
23	133.043	2498.036	2480.025	2481.009	1249.518	C(+57.02)	1109.500	1091.490	1092.474	555.250	9
24	86.097	2611.120	2593.109	2594.093	1306.060	L	949.470	931.459	932.443	475.235	8
25	120.081	2758.188	2740.178	2741.161	1379.594	F	836.386	818.375	819.359	418.693	7
26	102.055	2887.231	2869.220	2870.204	1444.115	E	689.317	671.307	672.290	345.159	6
27	88.040	3002.270	2984.247	2985.231	1501.629	D	560.275	542.264	543.248	280.637	5
28	72.081	3101.303	3083.316	3084.299	1551.163	V	445.248	427.237	428.221	223.124	4
29	72.081	3200.414	3182.434	3183.368	1600.711	V	346.176	328.169	329.153	173.590	3
30	70.066	3297.448	3279.437	3280.420	1649.224	Р	247.111	229.090	230.084	124.056	2
31	104.053					М	150.058	132.048	133.031	75.529	1

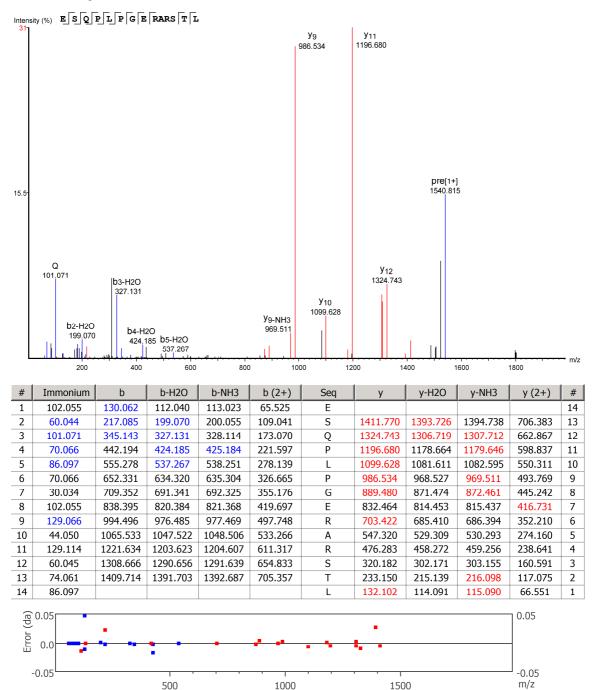

146-178, NNcGQPKEGKNHSQGcGEGQVAcLFEDVVPMNY

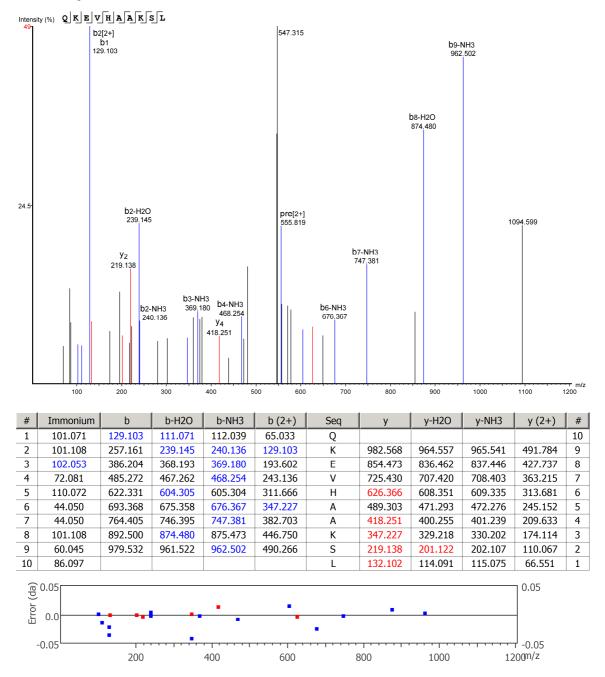

#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	у	y-H2O	y-NH3	y (2+)	#
1	87.056	115.051	97.040	98.024	58.025	N					33
2	87.056	229.084	211.083	212.067	115.047	N	3609.561	3591.551	3592.534	1805.281	32
3	133.043	389.124	371.114	372.097	195.062	C(+57.02)	3495.518	3477.508	3478.491	1748.259	31
4	30.034	446.146	428.135	429.119	223.573	G	3335.488	3317.477	3318.461	1668.244	30
5	101.071	574.204	556.194	557.177	287.602	Q	3278.466	3260.456	3261.439	1639.733	29
6	70.066	671.257	653.247	654.230	336.129	Р	3150.408	3132.397	3133.381	1575.704	28
7	101.108	799.352	781.341	782.325	400.176	К	3053.355	3035.344	3036.328	1527.177	27
8	102.055	928.395	910.384	911.368	464.697	E	2925.260	2907.250	2908.233	1463.130	26
9	30.034	985.416	967.406	968.389	493.208	G	2796.217	2778.207	2779.190	1398.609	25
10	101.108	1113.511	1095.501	1096.484	557.256	K	2739.196	2721.186	2722.169	1370.098	24
11	87.056	1227.554	1209.543	1210.527	614.277	N	2611.101	2593.091	2594.074	1306.051	23
12	110.072	1364.613	1346.602	1347.586	682.806	Н	2497.058	2479.048	2480.031	1249.029	22
13	60.045	1451.645	1433.635	1434.618	726.323	S	2359.999	2341.989	2342.972	1180.500	21
14	101.071	1579.703	1561.693	1562.677	790.352	Q	2272.967	2254.957	2255.940	1136.984	20
15	30.034	1636.725	1618.714	1619.698	818.862	G	2144.908	2126.898	2127.881	1072.954	19
16	133.043	1796.756	1778.745	1779.729	898.878	C(+57.02)	2087.887	2069.876	2070.860	1044.443	18
17	30.034	1853.777	1835.767	1836.750	927.389	G	1927.856	1909.846	1910.829	964.428	17
18	102.055	1982.820	1964.809	1965.793	991.910	E	1870.835	1852.824	1853.808	935.917	16
19	30.034	2039.841	2021.831	2022.814	1020.421	G	1741.792	1723.782	1724.765	871.396	15
20	101.071	2167.900	2149.889	2150.873	1084.450	Q	1684.771	1666.760	1667.744	842.885	14
21	72.081	2266.968	2248.958	2249.941	1133.984	V	1556.712	1538.702	1539.685	778.856	13
22	44.050	2338.005	2319.995	2320.978	1169.503	Α	1457.644	1439.633	1440.617	729.322	12
23	133.043	2498.036	2480.025	2481.009	1249.518	C(+57.02)	1386.607	1368.596	1369.580	693.803	11
24	86.097	2611.120	2593.109	2594.093	1306.060	L	1226.576	1208.566	1209.549	613.788	10
25	120.081	2758.188	2740.178	2741.161	1379.594	F	1113.492	1095.482	1096.465	557.246	9
26	102.055	2887.231	2869.220	2870.204	1444.115	E	966.424	948.413	949.397	483.712	8
27	88.040	3002.258	2984.247	2985.231	1501.629	D	837.381	819.371	820.354	419.191	7
28	72.081	3101.326	3083.316	3084.299	1551.163	V	722.354	704.344	705.327	361.677	6
29	72.081	3200.348	3182.384	3183.368	1600.697	V	623.286	605.275	606.259	312.143	5
30	70.066	3297.448	3279.437	3280.420	1649.224	Р	524.217	506.207	507.190	262.609	4
31	104.056	3428.488	3410.478	3411.461	1714.744	М	427.165	409.154	410.138	214.082	3
32	87.056	3542.531	3524.521	3525.504	1771.766	N	296.124	278.114	279.097	148.562	2
33	136.076					Y	182.081	164.071	165.054	91.541	1

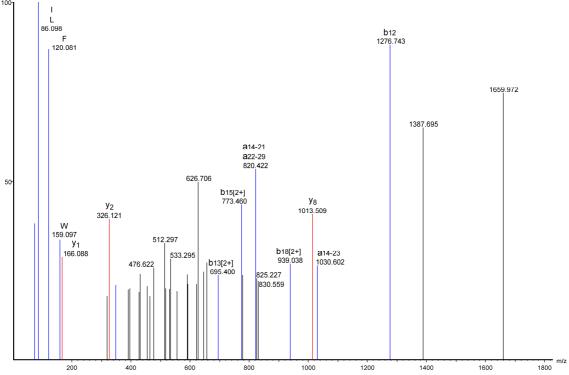

170-178, FEDVVPMNY


170-176, FEDVVPM

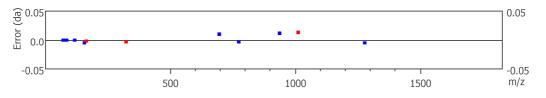

171-178, EDVVPMNY


171-176, EDVVPM

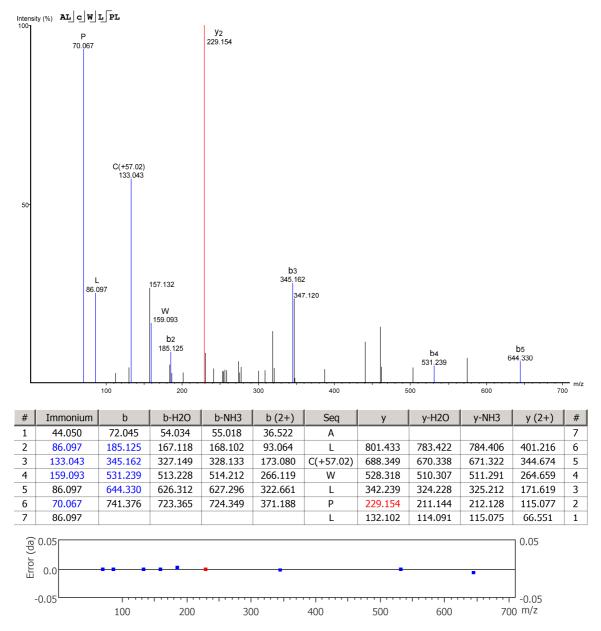

211-227, KQMESQPLPGERARSTL

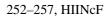

214-227, ESQPLPGERARSTL

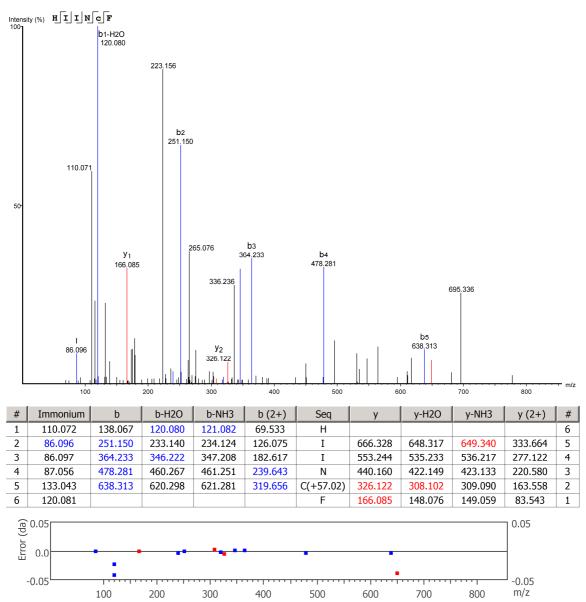
228-237, QKEVHAAKSL

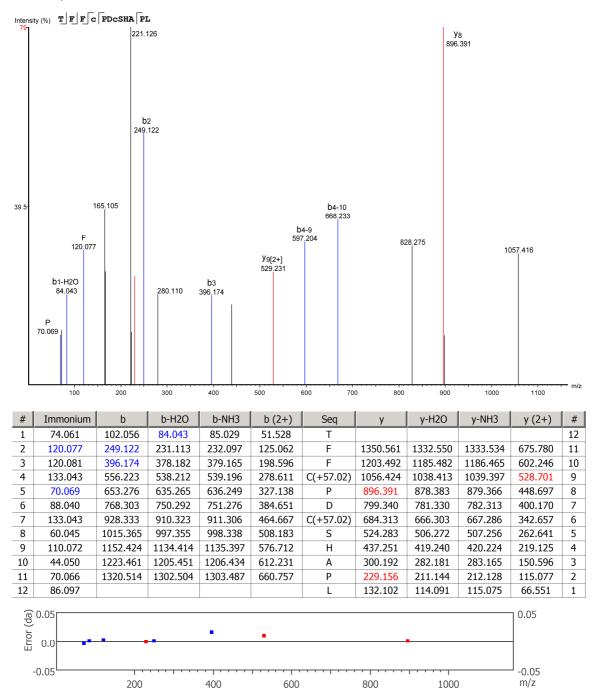


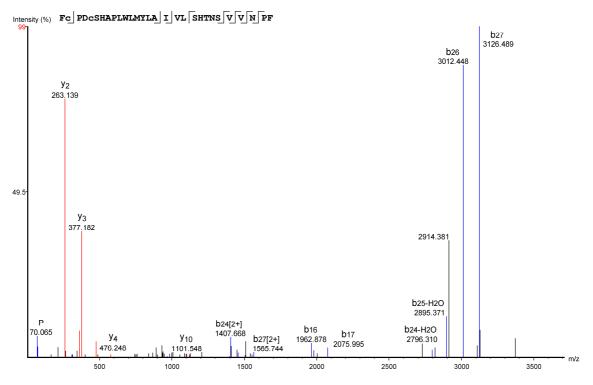
228–257, QKEVHAAKSLAIIVGLFALcWLPLHIINcF




Intensity (%) QKEVHAAKSLAI IVG LFA LCWL PLHIIN C F


#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	У	y-H2O	y-NH3	y (2+)	#
1	101.071	129.066	111.056	112.039	65.033	Q					30
2	101.108	257.161	239.151	240.134	129.081	K	3333.837	3315.826	3316.810	1667.418	29
3	102.055	386.204	368.193	369.177	193.602	E	3205.742	3187.731	3188.715	1603.371	28
4	72.081	485.272	467.262	468.245	243.136	V	3076.699	3058.688	3059.672	1538.849	27
5	110.072	622.331	604.321	605.304	311.666	Н	2977.631	2959.620	2960.604	1489.315	26
6	44.050	693.368	675.358	676.341	347.184	Α	2840.572	2822.561	2823.545	1420.786	25
7	44.050	764.405	746.395	747.378	382.703	A	2769.535	2751.524	2752.508	1385.267	24
8	101.108	892.500	874.490	875.473	446.750	K	2698.498	2680.487	2681.470	1349.749	23
9	60.045	979.532	961.522	962.505	490.266	S	2570.403	2552.392	2553.375	1285.701	22
10	86.098	1092.617	1074.606	1075.590	546.808	L	2483.371	2465.360	2466.344	1242.185	21
11	44.050	1163.654	1145.643	1146.627	582.327	Α	2370.286	2352.276	2353.259	1185.643	20
12	86.098	1276.743	1258.727	1259.711	638.869	Ι	2299.249	2281.239	2282.222	1150.125	19
13	86.097	1389.822	1371.811	1372.795	695.400	Ι	2186.165	2168.155	2169.138	1093.583	18
14	72.081	1488.890	1470.880	1471.863	744.945	V	2073.081	2055.071	2056.054	1037.041	17
15	30.034	1545.912	1527.901	1528.885	773.460	G	1974.013	1956.002	1956.986	987.506	16
16	86.097	1658.996	1640.985	1641.969	829.998	L	1916.991	1898.981	1899.964	958.996	15
17	120.081	1806.064	1788.054	1789.037	903.532	F	1803.907	1785.897	1786.880	902.454	14
18	44.050	1877.101	1859.091	1860.074	939.038	Α	1656.839	1638.828	1639.812	828.919	13
19	86.097	1990.185	1972.175	1973.158	995.593	L	1585.802	1567.791	1568.775	793.401	12
20	133.043	2150.216	2132.205	2133.189	1075.608	C(+57.02)	1472.718	1454.707	1455.691	736.859	11
21	159.097	2336.295	2318.285	2319.268	1168.648	W	1312.687	1294.677	1295.660	656.844	10
22	86.097	2449.379	2431.369	2432.352	1225.190	L	1126.608	1108.597	1109.581	563.804	9
23	70.066	2546.432	2528.422	2529.405	1273.716	Р	1013.509	995.513	996.497	507.262	8
24	86.097	2659.516	2641.506	2642.489	1330.258	L	916.471	898.460	899.444	458.735	7
25	110.072	2796.575	2778.564	2779.548	1398.787	Н	803.387	785.376	786.360	402.193	6
26	86.097	2909.659	2891.649	2892.632	1455.330	Ι	666.328	648.317	649.301	333.664	5
27	86.097	3022.743	3004.733	3005.716	1511.872	Ι	553.244	535.233	536.217	277.122	4
28	87.056	3136.786	3118.776	3119.759	1568.893	N	440.160	422.149	423.133	220.580	3
29	133.043	3296.817	3278.806	3279.790	1648.908	C(+57.02)	326.121	308.106	309.090	163.558	2
30	120.081					F	166.088	148.076	149.059	83.543	1

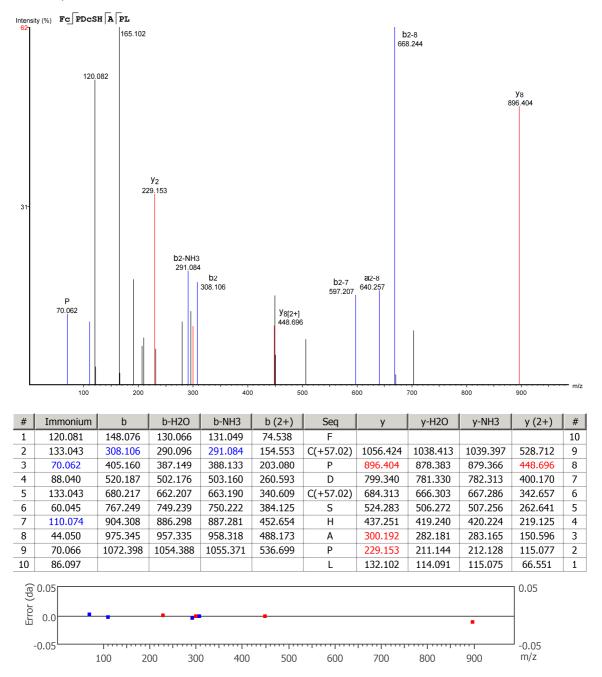

245-251, ALcWLPL

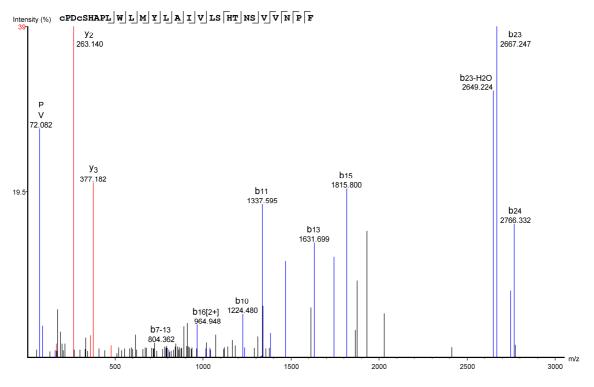


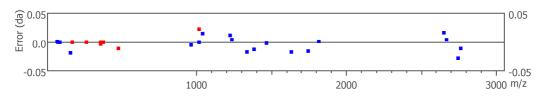
258-269, TFFcPDcSHAPL

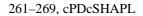


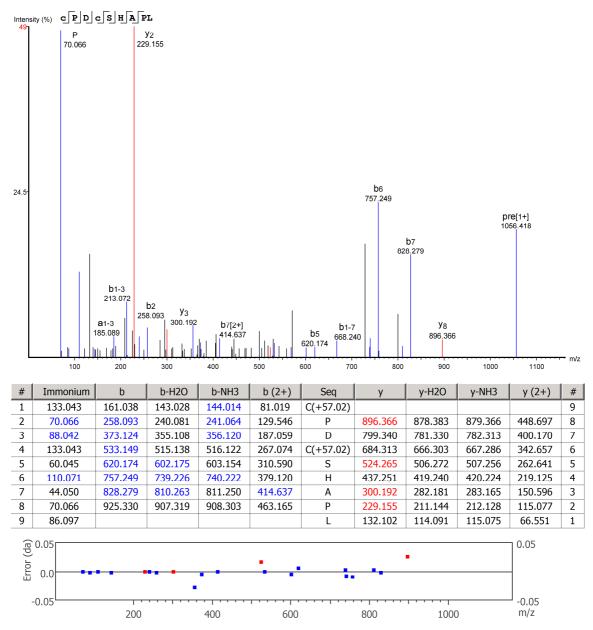
S2-52

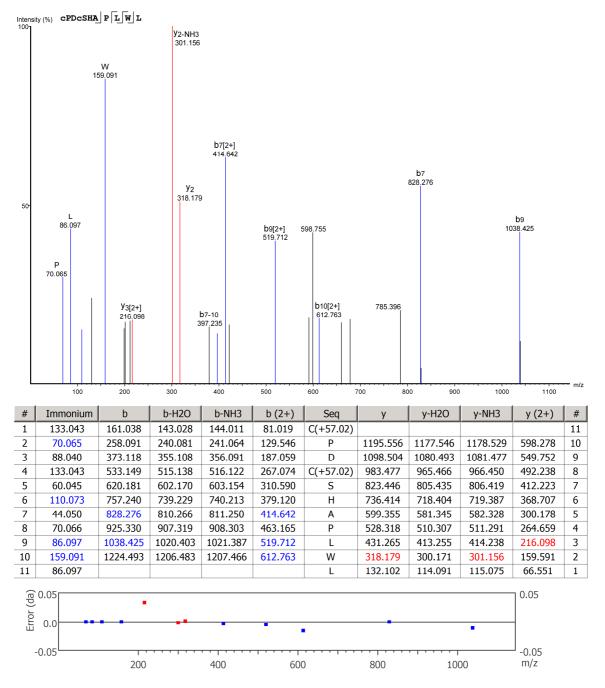

260–288, FcPDcSHAPLWLMYLAIVLSHTNSVVNPF


#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	У	y-H2O	y-NH3	y (2+)	#
1	120.081	148.076	130.066	131.049	74.538	F					29
2	133.043	308.104	290.096	291.080	154.553	C(+57.02)	3241.563	3223.552	3224.536	1621.281	28
3	70.065	405.160	387.149	388.133	203.080	Р	3081.532	3063.522	3064.505	1541.266	27
4	88.040	520.187	502.176	503.160	260.593	D	2984.480	2966.469	2967.453	1492.740	26
5	133.043	680.217	662.207	663.190	340.609	C(+57.02)	2869.453	2851.442	2852.426	1435.226	25
6	60.045	767.249	749.239	750.222	384.125	S	2709.422	2691.412	2692.395	1355.211	24
7	110.072	904.308	886.298	887.281	452.654	Н	2622.390	2604.380	2605.363	1311.695	23
8	44.050	975.345	957.335	958.318	488.173	Α	2485.331	2467.321	2468.304	1243.166	22
9	70.066	1072.398	1054.388	1055.371	536.699	Р	2414.294	2396.283	2397.267	1207.647	21
10	86.097	1185.482	1167.472	1168.455	593.241	L	2317.241	2299.231	2300.214	1159.121	20
11	159.092	1371.561	1353.551	1354.534	686.281	W	2204.157	2186.147	2187.130	1102.579	19
12	86.097	1484.646	1466.635	1467.619	742.823	L	2018.078	2000.067	2001.051	1009.539	18
13	104.053	1615.686	1597.675	1598.659	808.343	М	1904.994	1886.983	1887.967	952.997	17
14	136.076	1778.749	1760.739	1761.722	889.875	Y	1773.953	1755.943	1756.926	887.477	16
15	86.097	1891.833	1873.823	1874.806	946.417	L	1610.890	1592.880	1593.863	805.945	15
16	44.050	1962.878	1944.860	1945.844	981.943	Α	1497.806	1479.795	1480.779	749.403	14
17	86.097	2075.995	2057.944	2058.927	1038.486	Ι	1426.769	1408.758	1409.742	713.884	13
18	72.082	2175.023	2157.012	2157.996	1088.011	V	1313.685	1295.674	1296.658	657.342	12
19	86.097	2288.107	2270.096	2271.080	1144.553	L	1214.616	1196.606	1197.589	607.808	11
20	60.045	2375.139	2357.128	2358.112	1188.069	S	1101.548	1083.522	1084.505	551.266	10
21	110.072	2512.198	2494.188	2495.171	1256.599	Н	1014.500	996.490	997.473	507.750	9
22	74.061	2613.246	2595.235	2596.219	1307.123	Т	877.441	859.431	860.414	439.221	8
23	87.056	2727.289	2709.278	2710.261	1364.144	N	776.394	758.383	759.367	388.697	7
24	60.045	2814.321	2796.310	2797.293	1407.668	S	662.351	644.340	645.324	331.675	6
25	72.081	2913.389	2895.371	2896.362	1457.204	V	575.294	557.308	558.292	288.159	5
26	72.081	3012.448	2994.447	2995.430	1506.727	V	476.248	458.240	459.223	238.625	4
27	87.056	3126.489	3108.490	3109.473	1563.753	N	377.182	359.169	360.158	189.091	3
28	70.066	3223.553	3205.542	3206.526	1612.276	Р	263.139	245.128	246.112	132.069	2
29	120.081					F	166.086	148.076	149.059	83.543	1

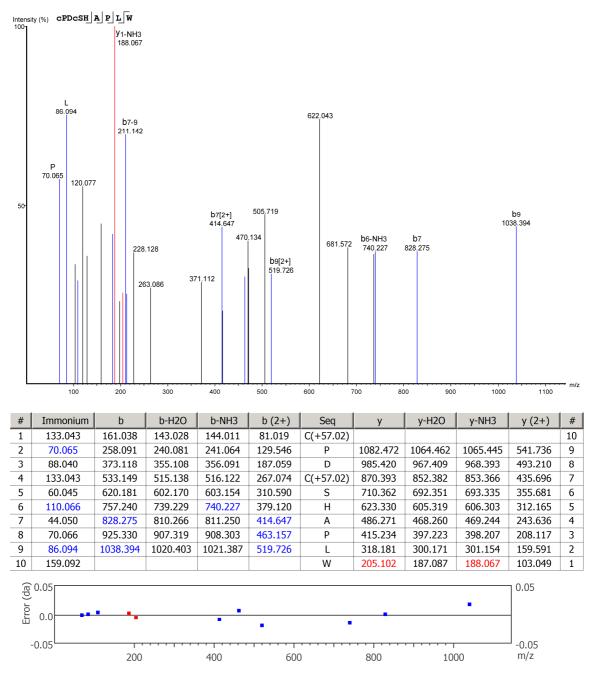

260-269, FcPDcSHAPL

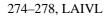


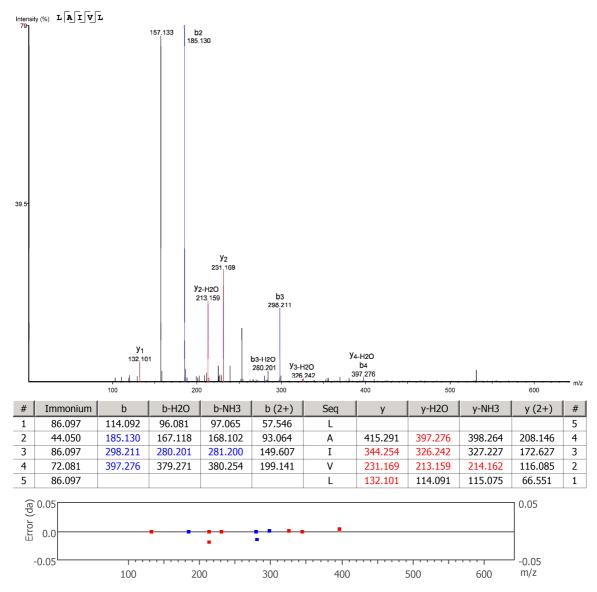


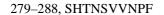

#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	У	y-H2O	y-NH3	y (2+)	#
1	133.043	161.038	143.028	144.011	81.019	C(+57.02)					28
2	70.064	258.091	240.081	241.064	129.546	Р	3081.532	3063.522	3064.505	1541.266	27
3	88.040	373.118	355.108	356.091	187.059	D	2984.480	2966.469	2967.453	1492.740	26
4	133.043	533.149	515.138	516.122	267.074	C(+57.02)	2869.453	2851.442	2852.426	1435.226	25
5	60.045	620.181	602.170	603.154	310.590	S	2709.422	2691.412	2692.395	1355.211	24
6	110.072	757.240	739.229	740.213	379.120	Н	2622.390	2604.380	2605.363	1311.695	23
7	44.050	828.277	810.266	811.250	414.638	Α	2485.331	2467.321	2468.304	1243.166	22
8	70.066	925.330	907.319	908.303	463.165	Р	2414.294	2396.283	2397.267	1207.647	21
9	86.097	1038.398	1020.403	1021.387	519.707	L	2317.241	2299.231	2300.214	1159.121	20
10	159.111	1224.480	1206.483	1207.466	612.747	W	2204.157	2186.147	2187.130	1102.579	19
11	86.097	1337.595	1319.567	1320.550	669.289	L	2018.078	2000.067	2001.051	1009.539	18
12	104.053	1468.620	1450.607	1451.591	734.809	М	1904.994	1886.983	1887.967	952.997	17
13	136.076	1631.699	1613.670	1614.654	816.340	Y	1773.953	1755.943	1756.926	887.477	16
14	86.097	1744.781	1726.754	1727.738	872.882	L	1610.890	1592.880	1593.863	805.945	15
15	44.050	1815.800	1797.792	1798.775	908.401	Α	1497.806	1479.795	1480.779	749.403	14
16	86.097	1928.886	1910.876	1911.859	964.948	Ι	1426.769	1408.758	1409.742	713.884	13
17	72.082	2027.955	2009.944	2010.928	1014.477	V	1313.685	1295.674	1296.658	657.342	12
18	86.097	2141.039	2123.028	2124.011	1071.019	L	1214.616	1196.606	1197.589	607.808	11
19	60.045	2228.071	2210.060	2211.043	1114.535	S	1101.532	1083.522	1084.505	551.266	10
20	110.072	2365.130	2347.119	2348.103	1183.065	Н	1014.477	996.490	997.473	507.750	9
21	74.061	2466.177	2448.167	2449.150	1233.583	Т	877.441	859.431	860.414	439.221	8
22	87.056	2580.220	2562.210	2563.193	1290.610	N	776.394	758.383	759.367	388.697	7
23	60.045	2667.247	2649.224	2650.225	1334.126	S	662.351	644.340	645.324	331.675	6
24	72.081	2766.332	2748.339	2749.293	1383.673	V	575.319	557.308	558.292	288.159	5
25	72.081	2865.389	2847.378	2848.362	1433.194	V	476.262	458.240	459.223	238.625	4
26	87.056	2979.432	2961.421	2962.405	1490.216	N	377.182	359.170	360.159	189.091	3
27	70.066	3076.485	3058.474	3059.458	1538.742	Р	263.140	245.128	246.112	132.069	2
28	120.081					F	166.086	148.076	149.059	83.543	1

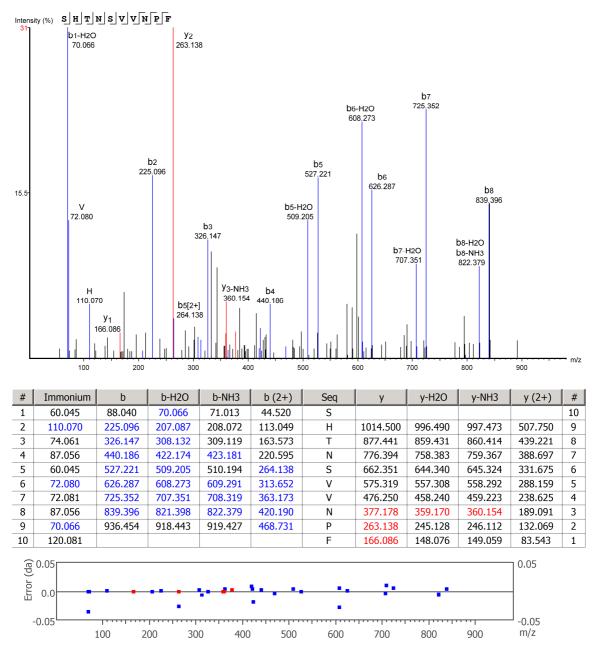


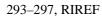


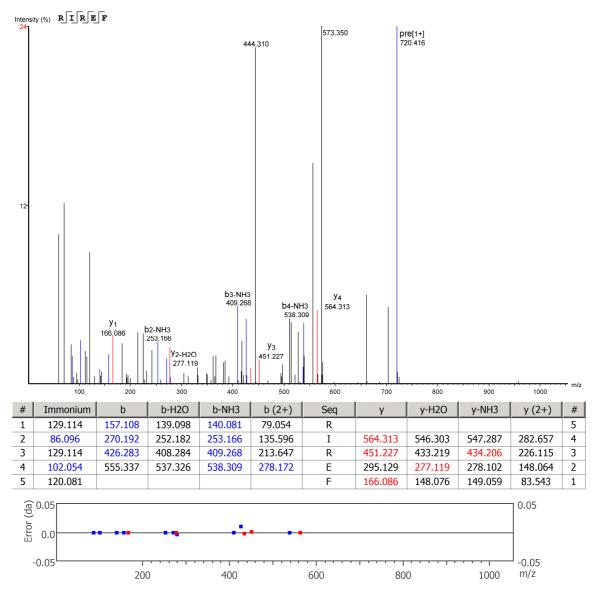


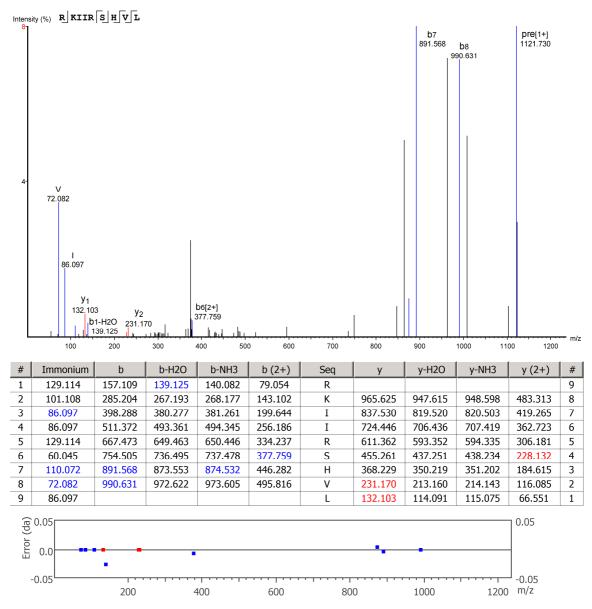

261-271, cPDcSHAPLWL

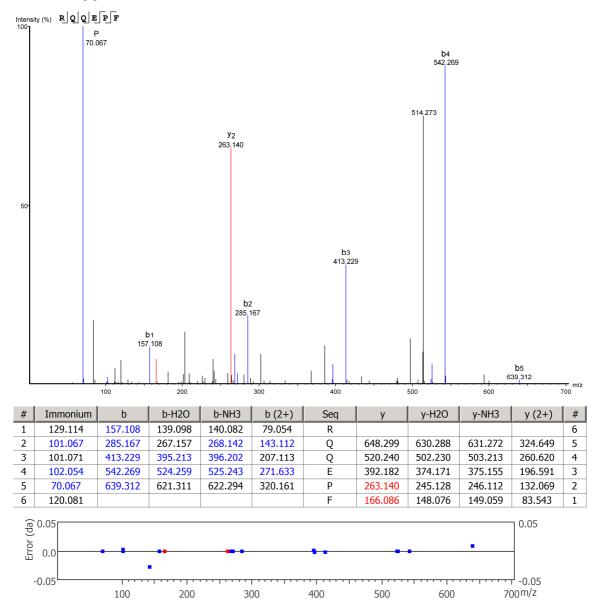


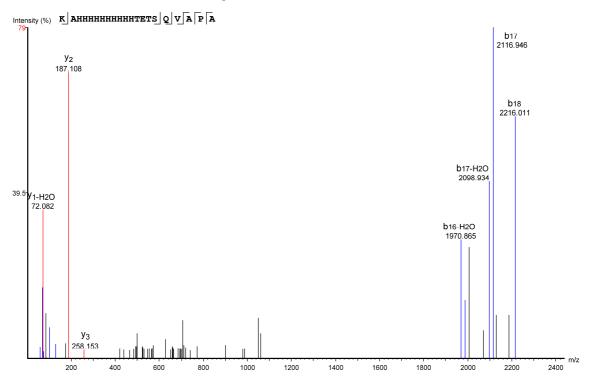






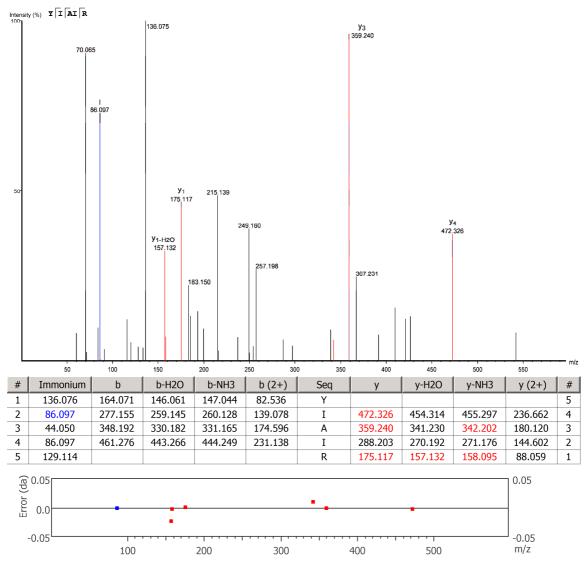




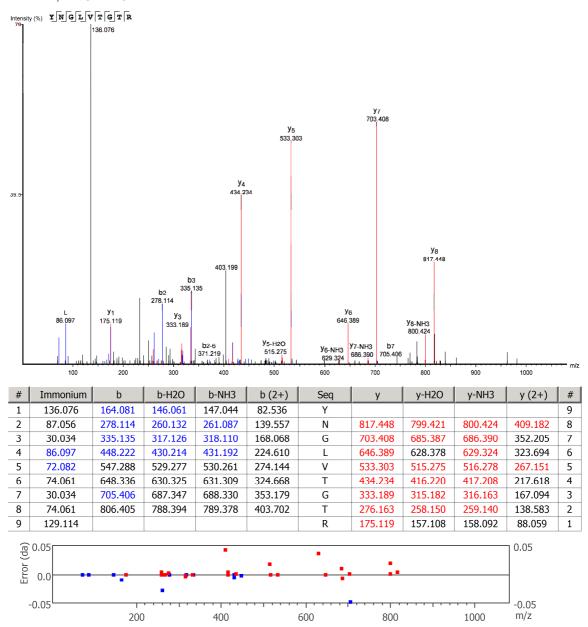

302-310, RKIIRSHVL

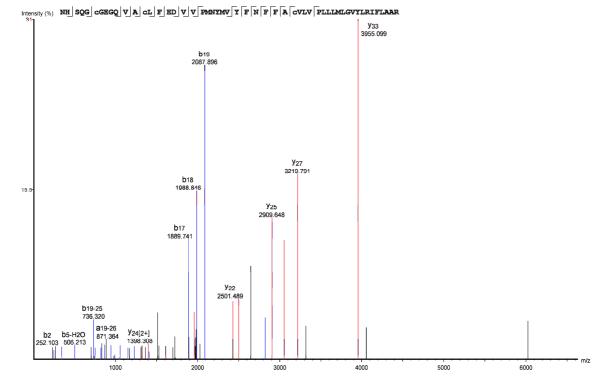
311-316, RQQEPF

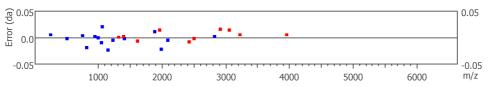
317–337, КАННННННННННТЕТSQVAPA

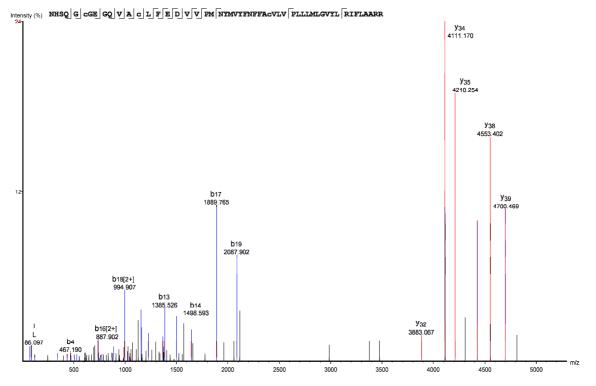


#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	У	y-H2O	y-NH3	y (2+)	#
1	101.108	129.102	111.092	112.076	65.051	К					21
2	44.050	200.140	182.129	183.113	100.570	А	2345.068	2327.058	2328.041	1173.034	20
3	110.072	337.199	319.188	320.172	169.099	Н	2274.031	2256.021	2257.004	1137.516	19
4	110.072	474.258	456.247	457.231	237.629	Н	2136.972	2118.961	2119.945	1068.986	18
5	110.072	611.317	593.306	594.290	306.158	Н	1999.913	1981.903	1982.886	1000.457	17
6	110.072	748.376	730.365	731.349	374.688	Н	1862.854	1844.844	1845.827	931.927	16
7	110.072	885.434	867.424	868.407	443.217	Н	1725.795	1707.785	1708.768	863.398	15
8	110.072	1022.493	1004.483	1005.466	511.747	Н	1588.736	1570.726	1571.709	794.868	14
9	110.072	1159.552	1141.542	1142.525	580.276	Н	1451.677	1433.667	1434.651	726.339	13
10	110.072	1296.611	1278.601	1279.584	648.806	Н	1314.619	1296.608	1297.592	657.809	12
11	110.072	1433.670	1415.660	1416.643	717.335	Н	1177.560	1159.549	1160.533	589.280	11
12	110.072	1570.729	1552.719	1553.702	785.865	Н	1040.501	1022.490	1023.474	520.750	10
13	74.060	1671.777	1653.766	1654.750	836.388	Т	903.442	885.431	886.415	452.221	9
14	102.055	1800.819	1782.809	1783.792	900.910	E	802.394	784.384	785.367	401.697	8
15	74.061	1901.867	1883.856	1884.840	951.433	Т	673.352	655.341	656.325	337.176	7
16	60.045	1988.895	1970.865	1971.872	994.950	S	572.304	554.293	555.277	286.652	6
17	101.069	2116.946	2098.934	2099.930	1058.979	Q	485.272	467.261	468.245	243.136	5
18	72.082	2216.011	2198.015	2198.999	1108.513	V	357.213	339.203	340.186	179.107	4
19	44.050	2287.063	2269.052	2270.036	1144.031	А	258.153	240.134	241.118	129.572	3
20	70.065	2384.116	2366.105	2367.089	1192.558	Р	187.108	169.097	170.081	94.054	2
21	44.050					А	90.055	72.082	73.028	45.527	1
									0.05		
-	0.05	5	00	100	 D	1500		2000		 	


4. MS/MS Spectra for tryptic peptides of $hA_{2A}AR$.

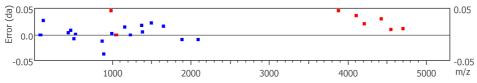

Carbamidomethylcysteines are designated in lower case in all figures.


114-122, YNGLVTGTR

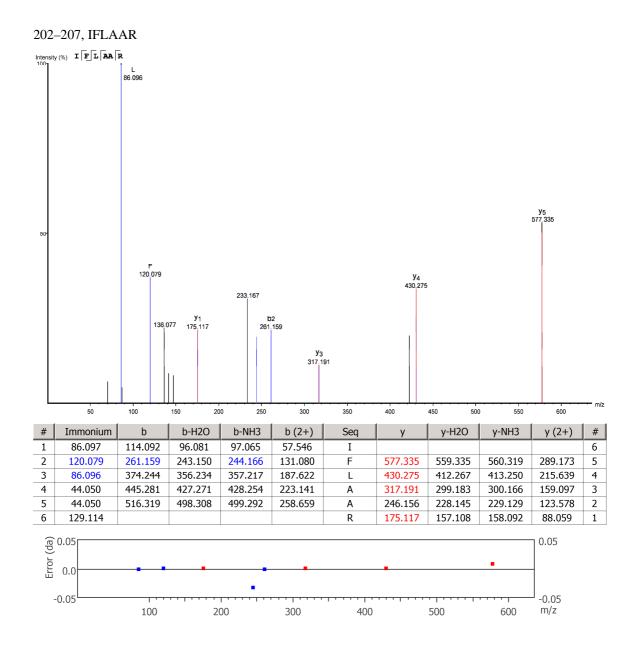


156–207, NHSQGcGEGQVAcLFEDVVPMNYMVYFNFFAcVLVPLLLMLGVYLRIFLAAR

#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	у	y-H2O	y-NH3	y (2+)	#
1	87.056	115.051	97.040	98.024	58.025	N					52
2	110.072	252.103	234.099	235.083	126.555	Н	5927.947	5909.937	5910.920	2964.474	51
3	60.045	339.142	321.131	322.115	170.071	S	5790.888	5772.877	5773.861	2895.944	50
4	101.071	467.200	449.190	450.173	234.100	Q	5703.856	5685.845	5686.829	2852.428	49
5	30.034	524.222	506.213	507.195	262.611	G	5575.797	5557.787	5558.770	2788.399	48
6	133.043	684.252	666.242	667.225	342.626	C(+57.02)	5518.776	5500.765	5501.749	2759.888	47
7						_ · · · ·					
	30.034	741.274	723.263	724.247	371.137	G	5358.746	5340.735	5341.718	2679.873	46
8	102.055	870.316	852.306	853.289	435.658	E	5301.724	5283.713	5284.697	2651.362	45
9	30.034	927.338	909.327	910.311	464.169	G	5172.681	5154.670	5155.654	2586.841	44
10	101.071	1055.374	1037.386	1038.370	528.198	Q	5115.660	5097.649	5098.632	2558.330	43
11	72.081	1154.489	1136.454	1137.438	577.732	V	4987.601	4969.590	4970.574	2494.301	42
12	44.050	1225.507	1207.491	1208.475	613.251	A	4888.533	4870.522	4871.505	2444.766	41
13	133.043	1385.533	1367.522	1368.506	693.266	C(+57.02)	4817.496	4799.485	4800.468	2409.248	40
14	86.097	1498.617	1480.606	1481.590	749.803	L	4657.465	4639.455	4640.438	2329.233	39
15	120.081	1645.685	1627.675	1628.658	823.362	F	4544.381	4526.370	4527.354	2272.690	38
16	102.055	1774.728	1756.717	1757.701	887.864	E	4397.312	4379.302	4380.285	2199.156	37
17	88.040	1889.741	1871.744	1872.728	945.374	D	4268.270	4250.259	4251.243	2134.635	36
18	72.081	1988.846	1970.812	1971.796	994.910	V	4153.243	4135.232	4136.216	2077.122	35
19	72.081	2087.896	2069.881	2070.864	1044.455	V	4054.175	4036.164	4037.147	2027.587	34
20	70.066	2184.944	2166.934	2167.917	1092.972	Р	3955.099	3937.095	3938.079	1978.053	33
21	104.053	2315.985	2297.974	2298.958	1158.492	М	3858.053	3840.043	3841.026	1929.527	32
22	87.056	2430.028	2412.017	2413.000	1215.514	N	3727.013	3709.002	3709.986	1864.006	31
23	136.076	2593.091	2575.081	2576.064	1297.046	Y	3612.970	3594.959	3595.943	1806.985	30
24	104.053	2724.131	2706.121	2707.104	1362.566	М	3449.906	3431.896	3432.879	1725.453	29
25	72.081	2823.196	2805.189	2806.173	1412.102	V	3318.866	3300.855	3301.839	1659.933	28
26	136.076	2986.263	2968.253	2969.236	1493.632	Y	3219.791	3201.787	3202.771	1610.406	27
27	120.081	3133.332	3115.321	3116.304	1567.166	F	3056.718	3038.724	3039.707	1528.867	26
28	87.056	3247.375	3229.364	3230.347	1624.187	N	2909.648	2891.656	2892.639	1455.333	25
29	120.081	3394.443	3376.432	3377.416	1697.721	F	2795.623	2777.613	2778.596	1398.308	24
30	120.081	3541.511	3523.501	3524.484	1771.256	F	2648.555	2630.544	2631.528	1324.775	23
31	44.050	3612.548	3594.538	3595.521	1806.774	Α	2501.489	2483.476	2484.459	1251.243	22
32	133.043	3772.579	3754.569	3755.552	1886.790	C(+57.02)	2430.458	2412.438	2413.422	1215.724	21
33	72.081	3871.647	3853.637	3854.620	1936.324	V	2270.418	2252.408	2253.391	1135.709	20
34	86.097	3984.732	3966.721	3967.705	1992.866	L	2171.350	2153.340	2154.323	1086.175	19
35	72.081	4083.800	4065.790	4066.773	2042.400	V	2058.266	2040.255	2041.239	1029.633	18
36	70.066	4180.853	4162.842	4163.826	2090.926	Р	1959.182	1941.187	1942.171	980.099	17
37	86.097	4293.937	4275.926	4276.910	2147.469	L	1862.145	1844.134	1845.118	931.572	16
38	86.097	4407.021	4389.010	4389.994	2204.010	L	1749.061	1731.050	1732.034	875.030	15
39	86.097	4520.105	4502.094	4503.078	2260.552	L	1635.977	1617.966	1618.950	818.488	14
40	104.053	4651.146	4633.135	4634.119	2326.073	M	1522.893	1504.882	1505.866	761.946	13
41	86.097	4764.229	4746.219	4747.203	2382.615	L	1391.852	1373.842	1374.825	696.426	12
42	30.034	4821.251	4803.240	4804.224	2411.125	G	1278.768	1260.758	1261.741	639.884	11
43	72.081	4920.319	4902.309	4903.292	2460.660	V	1221.747	1203.736	1201.711	611.373	10
44	136.076	5083.383	5065.372	5066.356	2542.191	Y	1122.678	1104.668	1105.651	561.839	9
45	86.097	5196.467	5178.456	5179.440	2598.733	L	959.615	941.604	942.588	480.307	8
	129.114			5335.541				828.520	829.504		
46		5352.568	5334.557 5447.641		2676.784	R	846.531			423.765	7
47	86.097	5465.652		5448.625	2733.326	I	690.430	672.419	673.403	345.715	6
48	120.081	5612.720	5594.709	5595.693	2806.860	F	577.346	559.335	560.319	289.173	5
49	86.097	5725.804	5707.793	5708.777	2863.402	L	430.277	412.267	413.250	215.639	4
50	44.050	5796.841	5778.831	5779.814	2898.921	A	317.193	299.183	300.166	159.097	3
51	44.050	5867.878	5849.868	5850.852	2934.439	A	246.156	228.145	229.129	123.578	2
52	129.114					R	175.119	157.108	158.092	88.059	1
-	0.05									- 0 0F	

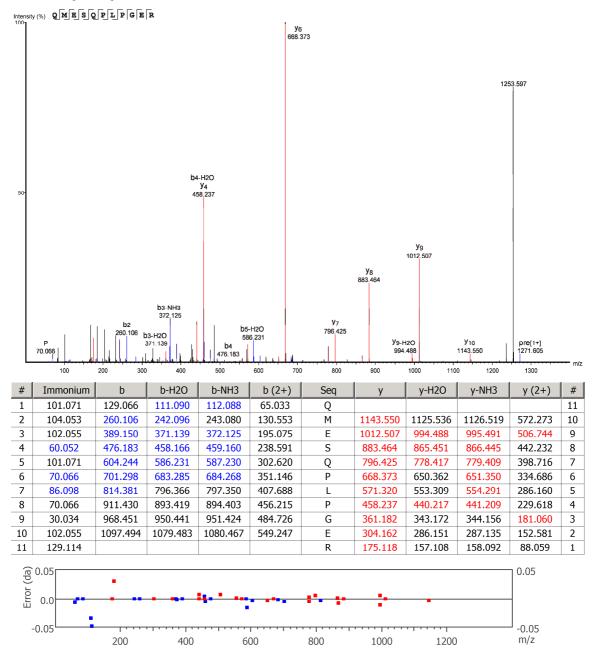


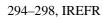
S2-71

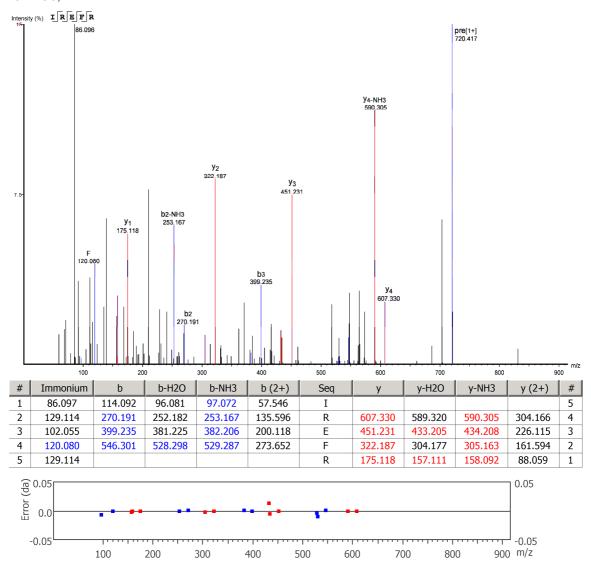


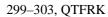
156–208, NHSQGcGEGQVAcLFEDVVPMNYMVYFNFFAcVLVPLLLMLGVYLRIFLAARR

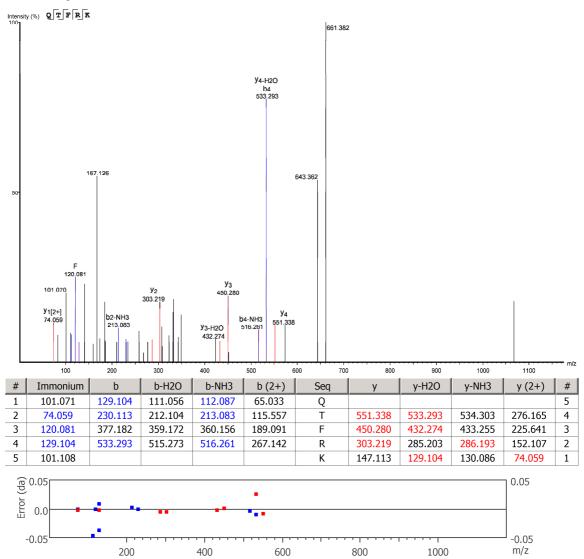
#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	у	y-H2O	y-NH3	y (2+)	#
1	87.056	115.051	97.040	98.024	58.025	N					53
2	110.072	252.110	234.099	235.083	126.555	Н	6084.048	6066.038	6067.021	3042.524	52
3	60.045	339.142	321.131	322.115	170.071	S	5946.989	5928.979	5929.962	2973.995	51
4	101.071	467.190	449.190	450.173	234.100	Q	5859.957	5841.946	5842.930	2930.479	50
5	30.034	524.222	506.219	507.195	262.611	G	5731.898	5713.888	5714.871	2866.449	49
6	133.043	684.252	666.242	667.225	342.626	C(+57.02)	5674.877	5656.866	5657.850	2837.938	48
7	30.045	741.274	723.263	724.247	371.137	G	5514.847	5496.836	5497.819	2757.923	40
						E					
8	102.055	870.330	852.306	853.289	435.653	-	5457.825	5439.814	5440.798	2729.413	46
9	30.034	927.338	909.327	910.311	464.169	G	5328.782	5310.771	5311.755	2664.891	45
10	101.071	1055.396	1037.386	1038.370	528.196	Q	5271.761	5253.750	5254.734	2636.381	44
11	72.081	1154.448	1136.454	1137.438	577.732	V	5143.703	5125.692	5126.675	2572.351	43
12	44.050	1225.501	1207.491	1208.475	613.251	A	5044.634	5026.623	5027.606	2522.817	42
13	133.043	1385.526	1367.522	1368.486	693.266	C(+57.02)	4973.597	4955.586	4956.569	2487.298	41
14	86.097	1498.593	1480.606	1481.590	749.808	L	4813.566	4795.556	4796.539	2407.283	40
15	120.053	1645.668	1627.675	1628.658	823.343	F	4700.469	4682.471	4683.455	2350.741	39
16	102.055	1774.728	1756.717	1757.701	887.902	Е	4553.402	4535.403	4536.386	2277.207	38
17	88.040	1889.765	1871.744	1872.728	945.377	D	4424.340	4406.360	4407.344	2212.686	37
18	72.081	1988.823	1970.812	1971.796	994.907	V	4309.344	4291.333	4292.317	2155.172	36
19	72.081	2087.902	2069.881	2070.864	1044.445	V	4210.254	4192.265	4193.249	2105.638	35
20	70.066	2184.944	2166.934	2167.917	1092.972	Р	4111.170	4093.197	4094.180	2056.104	34
21	104.053	2315.985	2297.974	2298.958	1158.492	М	4014.155	3996.144	3997.127	2007.577	33
22	87.056	2430.028	2412.017	2413.000	1215.514	N	3883.067	3865.104	3866.087	1942.057	32
23	136.076	2593.091	2575.081	2576.064	1297.046	Y	3769.071	3751.061	3752.044	1885.036	31
24	104.053	2724.131	2706.121	2707.104	1362.566	M	3606.008	3587.997	3588.980	1803.504	30
25	72.081	2823.200	2805.189	2806.173	1412.100	V	3474.967	3456.957	3457.940	1737.984	29
26	136.076	2986.263	2968.253	2969.236	1493.632	Y	3375.899	3357.888	3358.872	1688.449	28
27	120.081	3133.332	3115.321	3116.304	1567.166	F	3212.835	3194.825	3195.808	1606.918	27
28	87.056	3247.375	3229.364	3230.347	1624.187	N	3065.767	3047.757	3048.740	1533.384	26
20	120.081		3376.432	3377.416		F	2951.724	2933.714	2934.697		20
		3394.443			1697.721 1771.256	F		-		1476.362	
30	120.081	3541.511	3523.501	3524.484			2804.656	2786.645	2787.629	1402.828	24
31	44.050	3612.548	3594.538	3595.521	1806.774	A	2657.587	2639.577	2640.560	1329.294	23
32	133.043	3772.579	3754.569	3755.552	1886.790	C(+57.02)	2586.550	2568.540	2569.523	1293.775	22
33	72.081	3871.647	3853.637	3854.620	1936.324	V	2426.520	2408.509	2409.492	1213.760	21
34	86.097	3984.732	3966.721	3967.705	1992.866	L	2327.451	2309.441	2310.424	1164.226	20
35	72.081	4083.800	4065.790	4066.773	2042.400	V	2214.367	2196.356	2197.340	1107.683	19
36	70.066	4180.853	4162.842	4163.826	2090.926	Р	2115.299	2097.288	2098.271	1058.150	18
37	86.097	4293.937	4275.926	4276.910	2147.469	L	2018.246	2000.235	2001.219	1009.623	17
38	86.097	4407.021	4389.010	4389.994	2204.010	L	1905.162	1887.151	1888.135	953.081	16
39	86.097	4520.105	4502.094	4503.078	2260.552	L	1792.078	1774.067	1775.051	896.539	15
40	104.053	4651.146	4633.135	4634.119	2326.073	М	1678.994	1660.983	1661.967	839.997	14
41	86.097	4764.229	4746.219	4747.203	2382.615	L	1547.953	1529.943	1530.926	774.477	13
42	30.034	4821.251	4803.240	4804.224	2411.125	G	1434.869	1416.859	1417.842	717.935	12
43	72.081	4920.319	4902.309	4903.292	2460.660	V	1377.848	1359.837	1360.821	689.424	11
44	136.076	5083.383	5065.372	5066.356	2542.191	Y	1278.779	1260.769	1261.752	639.890	10
45	86.097	5196.467	5178.456	5179.440	2598.733	L	1115.716	1097.705	1098.689	558.358	9
46	129.114	5352.568	5334.557	5335.541	2676.784	R	1002.632	984.574	985.605	501.816	8
47	86.097	5465.652	5447.641	5448.625	2733.326	I	846.531	828.520	829.504	423.765	7
48	120.081	5612.720	5594.709	5595.693	2806.860	F	733.447	715.436	716.420	367.223	6
49	86.097	5725.804	5707.793	5708.777	2863.402	L	586.378	568.368	569.351	293.689	5
50	44.050	5796.841	5778.831	5779.814	2898.921	A	473.294	455.284	456.267	237.147	4
51	44.050	5867.878	5849.868	5850.852	2934.439	A	402.257	384.247	385.230	201.629	3
52	129.114	6023.979	6005.969	6006.953	3012.490	R	331.220	313.209	314.193	166.110	2
52	129.114	0020.979	0003.909	0000.900	3012.490	R	175.119	157.108	158.092	88.059	1
	127.117					N	112.112	121.100	10.022	00.009	1 ±

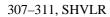


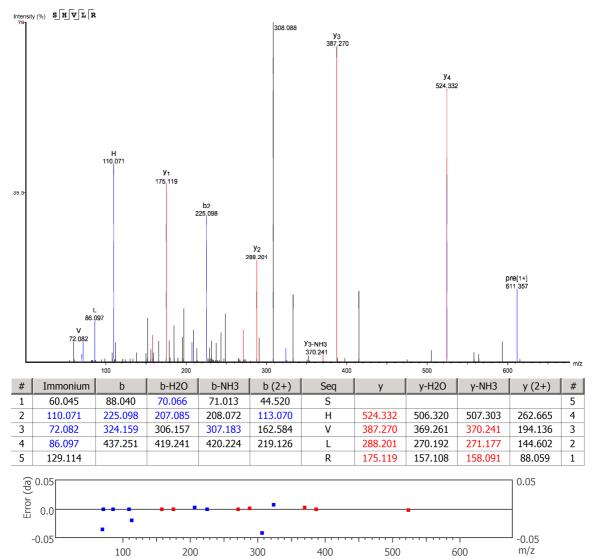

S2-73

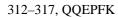


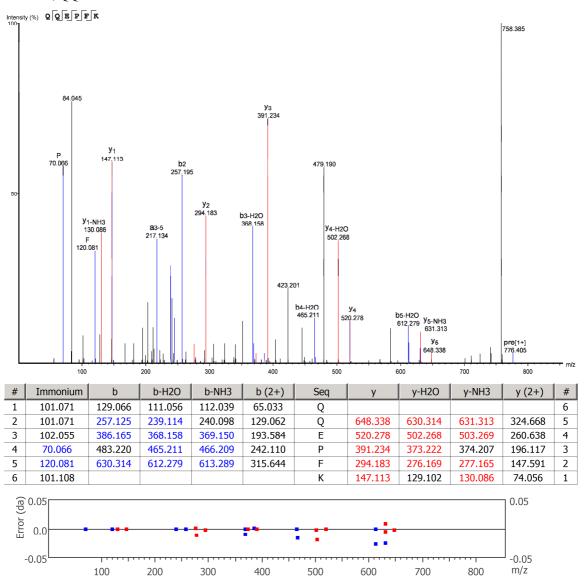

S2-74

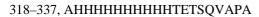

212-222, QMESQPLPGER

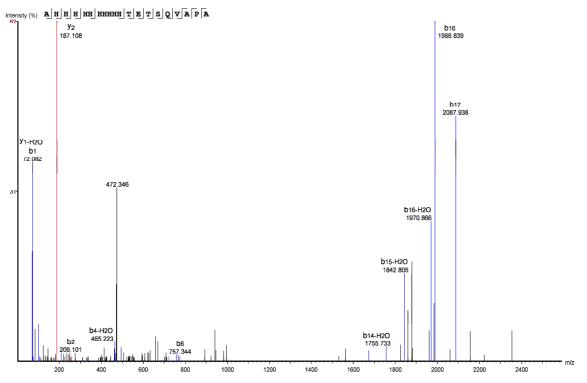












#	Immonium	b	b-H2O	b-NH3	b (2+)	Seq	У	y-H2O	y-NH3	y (2+)	#
1	44.050	72.082	54.034	55.018	36.522	А					20
2	110.072	209.101	191.093	192.077	105.066	Н	2274.031	2256.021	2257.004	1137.516	19
3	110.072	346.163	328.148	329.136	173.581	Н	2136.972	2118.961	2119.945	1068.986	18
4	110.072	483.222	465.223	466.214	242.111	Н	1999.913	1981.903	1982.886	1000.457	17
5	110.072	620.281	602.270	603.254	310.640	Н	1862.854	1844.844	1845.827	931.927	16
6	110.072	757.344	739.329	740.312	379.170	Н	1725.795	1707.785	1708.768	863.398	15
7	110.072	894.398	876.388	877.371	447.699	Н	1588.736	1570.726	1571.709	794.868	14
8	110.072	1031.457	1013.447	1014.430	516.229	Н	1451.677	1433.667	1434.651	726.339	13
9	110.072	1168.516	1150.506	1151.489	584.758	Н	1314.619	1296.608	1297.592	657.809	12
10	110.072	1305.575	1287.565	1288.548	653.288	Н	1177.560	1159.549	1160.533	589.280	11
11	110.072	1442.634	1424.624	1425.607	721.842	Н	1040.501	1022.490	1023.474	520.750	10
12	74.062	1543.682	1525.671	1526.655	772.336	Т	903.442	885.431	886.415	452.221	9
13	102.055	1672.737	1654.714	1655.697	836.862	E	802.394	784.384	785.367	401.697	8
14	74.061	1773.772	1755.733	1756.745	887.386	Т	673.352	655.341	656.325	337.176	7
15	60.045	1860.804	1842.805	1843.777	930.902	S	572.304	554.293	555.277	286.652	6
16	101.072	1988.839	1970.866	1971.836	994.931	Q	485.272	467.261	468.245	243.136	5
17	72.082	2087.938	2069.921	2070.904	1044.466	V	357.213	339.203	340.186	179.107	4
18	44.050	2158.968	2140.958	2141.941	1079.984	А	258.141	240.134	241.118	129.572	3
19	70.066	2256.021	2238.010	2238.994	1128.510	Р	187.108	169.097	170.081	94.054	2
20	44.050					А	90.055	72.082	73.028	45. <mark>5</mark> 27	1
										0.05	
-0.05 ^L 500			1000		1500	20	000	2500	¹ -0.05 m/z		

5. Reference.

Isberg, V.; Mordalski, S.; Munk, C.; Rataj, K.; Harpsøe, K.; Hauser, A. S.; Vroling, B.; Bojarski, A. J.; Vriend, G.; Gloriam, D. E. GPCRdb: an Information System for G Protein-Coupled Receptors. *Nucleic Acids Res.* 2016, 44, D356–D364.