SUPPORTING INFORMATION TO:

Atom Tunneling in the Hydroxylation Process of Taurine/ α-Ketoglutarate Dioxygenase (TauD) Identified by QM/MM Simulations

Sonia Álvarez-Barcia* and Johannes Kästner
Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany.

E-mail: alvarez@theochem.uni-stuttgart.de Phone: +49 (0)711 685-64404. Fax: +49 (0)711 685-64442

Computational details

Molecular Dynamics (MD) simulations

The first step was the construction of a model of the enzyme. We started from the crystal structure of E. coli TauD with iron, α-ketoglutarate and taurine bound to the enzyme (PDB code 1OS7, resolution of $2.50 \AA) .{ }^{1}$ In the PDB file, 4 monomers can be distinguished; in three of them the taurine is properly linked (i.e. they are closed conformations). We have chosen one of those closed conformations (chain B) to build our model. In order to study the hydroxylation process, we had to modify the structure of the monomer in order to get the quintet $[\mathrm{Fe}(\mathrm{IV})=\mathrm{O}]$ pre-reactive complex: we added the oxo group to the iron and replaced the α-ketoglutarate by succinate.

To properly solvate and equilibrate the enzyme, we carried out MD simulations of the reactant state prior to the QM/MM calculations. The NAMD2 code ${ }^{2}$ with the CHARMM22 ${ }^{3-8}$ force field were used. Parameters for succinate, taurine and the $[\mathrm{Fe}(\mathrm{IV})=\mathrm{O}]$ complex were defined by homology (see next section). We employed the REDUCE code ${ }^{9}$ for adding hydrogen atoms to the enzyme. We solvated the model with a pre-equilibrated box of TIP3P water, ${ }^{10}$ in each direction $10 \AA$ wider than the enzyme. Na^{+}and Cl^{-}ions $(0.15 \mathrm{~mol} / \mathrm{L})$ were added to ensure the overall charge neutrality of the model. Both processes were done with VMD (version 1.9.2). ${ }^{11}$

5 MD simulation runs of 4 ns each, starting from random initial velocities were performed at 300 L and 1 bar controlled by a Langevin piston Nóse-Hoover thermostat. A time step of 1 fs was chosen. During the simulations, three steps can be differentiated: a) the solvation process (2000 steps of minimization followed by 50000 steps of MD) where the protein is frozen and the water molecules can spread into the protein; b) MD runs of 50000 steps where the protein atoms were restrained by harmonic potentials with force constants of 5.0, 2.0 and $0.1 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-2}$; c) free MD production runs (up to 4 ns). In simulation 1 , a slightly different approach was used since only runs of restraints of 5.0 and $2.0 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-2}$ were carried out before the free MD.

QM/MM calculations

We selected 8 snapshots with the shortest (Fe) O-H distances as starting points for the QM/MM optimizations of the reactant states, because these should represent the protein environment in an configuration suitable for the reaction to proceed. We chose a total of 8 snapshots from the 5 simulations. Snapshots 1 and 8 were taken from simulation 5 (at 4.106 and 1.039 ns , respectively); snapshots 2 and 3 from simulation 2 (at 1.956 and 1.985 ns , respectively); snapshots 4 and 6 from simulation 3 (at 3.405 and 0.749 ns , respectively), snapshot 5 from simulation 1 (at 1.558 ns) and snapshot 7 from simulation 4 (at 3.914 ns). The numbering of the snapshots follows the height of the potential energy barrier, see Table 1.

The ChemShell suite was employed for performing the QM/MM calculations. ${ }^{12-14}$ It uses an electrostatic embedding, in which the MM charges polarize the QM part. The MM part employed the CHARMM22 ${ }^{3-8}$ force field in DL_POLY, ${ }^{15}$ while the QM calculations were done with TURBOMOLE 7.0. ${ }^{16}$

Structural/energetic study

For performing the QM/MM calculations, we selected only a part of the model used in the MD simulations. The MM part includes all protein atoms and all residues with at least one atom within a diameter of $20 \AA$ from the Fe atom (5491-5588 atoms depending on the snapshot). Active in the geometry optimizations are all residues with at least one atom within $5 \AA$ from Fe, succinate or taurine (which includes the water molecules that diffused into the inner part of the enzyme). The QM part consists of the truncated amino acids that are directly linked to the $\mathrm{Fe}\left(\mathrm{His}_{99}, \mathrm{His}_{255}, \mathrm{Asp}_{101}\right)$, as well as a second shell $\left(\mathrm{Asn}_{95}\right.$ and $\left.\operatorname{Arg}_{270}\right)$, succinate and taurine. In total, 81 atoms were treated quantum mechanically at the B3LYP/def2-TZVP level ${ }^{17-19}$ (see Figure 3). We are considering a neutral QM system with a spin multiplicity of 5 .

Initially, geometries of the snapshots selected from the MD simulations were optimized at the B3LYP/def2-SVP level ${ }^{17-19}$ using the DL-FIND optimizer. ${ }^{20}$ After that, scans along the distance difference $\mathrm{d}\left(\mathrm{C}-\mathrm{H}_{\alpha}\right)-\mathrm{d}\left(\mathrm{H}_{\alpha}-\mathrm{O}\right)$ were computed $\left(\mathrm{H}_{\alpha}\right.$ being the H abstracted from taurine in the C 1 position), by keeping the distance difference constant while minimizing all other degrees of freedom. We started the transition state search by the dimer method ${ }^{21-24}$ from the highest energy of the scan. The final geometries were re-optimized at the B3LYP/def2-TZVP level. ${ }^{17-19}$

Minimizations starting from all transitions states after small distortions along the reaction mode were carried out to confirm the structure of the reactant state and its connection to the transition state and to calculate the hydroxyl complex structure as product state.

Energy comparison

We have performed some single point calculations with different functionals, taking as reference snapshot 1, in order to test the influence of the DFT method in the barrier (see Table S1).

Table S1: Barrier heights computed with different functionals (with the def2-TZVP basis set) for snapshot 1. The geometry obtained at the B3LYP/def2-TZVP level was used as reference geometry.

	RS	TS	ΔE^{\ddagger}
B3LYP	-3780.171516	-3780.143314	17.7
B3LYP (with dispersion)	-3780.342528	-3780.317119	15.9
BHHLYP*	-3780.163414	-3780.113388	31.4
BP86	-3781.854675	-3781.822696	20.1
M06	-3780.080007	-3780.061522	11.6
M06-2X*	-3780.516059	-3780.471434	28.0
PBE0	-3778.696876	-3778.676569	12.7
TPSS	-3781.809024	-3781.771973	23.2
TPSSh	-3781.521584	-3781.486754	21.9
The values with BHHLYP and M06-2X were computed with NWCHEM. ${ }^{25}$ 年			
${ }^{* *}$ The selection of the funtionals was done following a previous publication from Chen et al. ${ }^{26}$			

Rate constant calculations

Theoretical reaction rate constants and kinetic isotope effects (KIEs) were computed and compared to experiments. For that purpose, Hessian calculations (two-point finite difference of gradients) of the $\mathrm{H}_{2} \mathrm{C}-\mathrm{Fe}=\mathrm{O}$ fragment were carried out in DL-FIND. ${ }^{20}$

Rate constants and KIEs were calculated using transition state theory (TST) taking into account the contribution of atom tunneling by means of the Eckart barrier. ${ }^{27}$ The importance of the tunneling can be easily estimated by the crossover temperature T_{c}, ${ }^{28}$ which is related to the curvature of the potential at the transition state:

$$
\begin{equation*}
T_{\mathrm{c}}=\frac{\hbar \Omega}{2 \pi k_{\mathrm{B}}} \tag{1}
\end{equation*}
$$

with Ω being the barrier frequency (the absolute value of the imaginary frequency corre-
sponding to the transition mode) and k_{B} Boltzmann's constant.
T_{c} generally indicates the temperature at which tunneling and the thermal mechanism (reaction occurs if the barrier is overcome) have roughly equal importance. ${ }^{29}$ Note that T_{c} is close to room temperature for reactions with $\Omega=1300 \mathrm{~cm}^{-1}$. Therefore, tunneling is expected to be important at room temperature for higher barrier frequencies.

The doubly deuterated C1-taurine species was used for the KIEs calculations.

Analysis of the electronic structure during H atom transfer (HAT)

Natural spin densities were calculated by using the TURBOMOLE package ${ }^{16}\left(\mathrm{NBO}^{30}\right.$ and intrinsic bond orbitals (IBO) ${ }^{31}$ approaches were employed) at the B3LYP/def2-TZVP / B3LYP / def2SVP level for analyzing the course of the reaction. The snapshot with the lowest barrier height (snapshot 1) was chosen for this detailed study.

Topology and Parameter files for succinate, taurine and the $[\mathrm{Fe}(\mathrm{IV})=\mathrm{O}]$ complex

Topology File

In our simulations, we used the CHARMM22 force field, threfore, with the purpose of setting up our system, we have modified the topology file top_all22_prot.inp. 3 new residues were defined in order to simulate the enzyme: the succinate (RESI SUC), the taurine (RESI TAU) and the $[\mathrm{Fe}(\mathrm{IV})=\mathrm{O}]$ complex (RESI FEO). The patch (PRES FEOX) allows us to change the standard/original charge values for others more appropiate for the TauD enzyme. The charge values for the FEOX patch and the taurine were calculated at the B3LYP/def2-SVP level with the IBOS approach, during the setup of the system, using a QM/MM model similar to the ones employed in the final study.

ATOM C3	CT2	-0.28	
ATOM HG3	HA	0.09	
ATOM HG4	HA	0.09	
ATOM C2	CC	0.62	
ATOM 01	OC	-0. 59	
ATOM 02	OC	-0.61	
BOND C4 Hed	HG1	C4 HG2	
BOND C5	C4	C5 03	C5 04
BOND C3	C4	C3 HG3	C3 HG4
BOND C2	C3	C2 01	C2 02
IMPR C2	C3 02	01	
IMPR C5	C4 03	04	
ACCEPTOR	01	C1	
ACCEPTOR	02	C1	
ACCEPTOR	03	C5	
ACCEPTOR	04	C5	

RESI TAU		0.00
GROUP		
ATOM O1	0	-0.95
ATOM O2	0	-0.98
ATOM O3	0	-0.93
ATOM S	SO	2.13
ATOM C2	CT2	-0.46
ATOM HG1	HA	0.16
ATOM HG2	HA	0.16

```
GROUP
```

ATOM C1	CT2	-0.13					
ATOM HE1	HA	0.16					
ATOM HE2	HA	0.15					
ATOM N1	NH3	-0.34					
ATOM HZ1	HC	0.31					
ATOM HZ2	HC	0.35					
ATOM HZ3	HC	0.37					
BOND N1	HZ1	N1 HZ2	N1	HZ3			
BOND C1	N1	C1 HE1	C1	HE2			
BOND C2	C1	C2 HG1		HG2			
BOND C2	S	S 01	S	02 S 03			
DONOR HZ1							
DONOR HZ2	NZ						
DONOR HZ3	NZ						
ACCEPTOR	01 S						
ACCEPTOR	02 S						
ACCEPTOR	03 S						
IC S C2	*C1	HE1	1.4604	110.4600	119.9100	110.5100	1.1128
IC S C2	*C1	HE2	1.4604	110.4600	-120.0200	110.5700	1.1123

Parameter File

In our simulations, we used the CHARMM22 force field, threfore were have added new parameters to the parameter file par_all22_prot.inp in order to fully describe our system. Several parameters for the taurine, the succinate and the $\mathrm{Fe}=\mathrm{O}$ center were added during the setup of the system (we also modfied three of the original ones, marked with an asterisk). Some of them come from analogous values found them in the original file and other were obtained from QM/MM calculations done during the setup process.

BONDS

NR2	FE	65.000	$2.1000 *$
NR4	CPH1	400.000	1.3800
NR4	CPH2	400.000	1.3200
NR4	FE	65.000	2.1000
OM	FE	250.000	$1.6100 *$
SO	O	205.000	1.5010
SO	CT2	198.000	1.8180
C	CC	600.000	1.5700
FE	OC	250.000	2.0000

ANGLES

O	SO	0	100.000	112.00
CT2	SO	0	100.000	105.45
HA	CT2	SO	46.100	106.70
CT2	CT2	SO	55.000	110.94
CC	C	CT2	52.000	113.90
C	CC	OC	40.000	118.50

CC	C	O	80.000	119.47	
NR2	FE	OM	50.000	180.00	
NR2	FE	OC	100.000	90.93	
OC	FE	OM	100.000	93.68	
NR2	FE	NR4	50.000	90.00	
CC	OC	FE	20.000	135.00	
OC	FE	OC	100.000	120.00	
CPH2	NR4	CPH1	130.000	104.0000	
FE	NR4	CPH1	30.000	133.0000	
FE	NR4	CPH2	30.000	123.0000	
NR4	CPH1	CPH1	130.000	110.0000	
NR4	CPH1	CT2	45.800	120.0000	
NR4	CPH1	HR3	25.000	120.00	20.00
NR4	CPH2	HR1	25.000	125.00	20.00
NR4	CPH2	NR1	130.000	112.5000	
NR4	FE	CM	50.000	180.0000	
NR4	FE	NPH	50.000	90.0000	
NR4	FE	OM	50.000	90.000	
NR4	FE	OC	100.000	120.000	

DIHEDRALS

0	SO	CT2	CT2	0.2700	3	0.00
0	SO	CT2	HA	0.2000	3	0.00
NR1	CPH2	NR2	FE	0.2000	2	180.00
CPH1	CPH1	NR2	FE	0.2000	2	180.00
HR1	CPH2	NR2	FE	0.2000	2	180.00

NR2	FE	OC	CC	5.2000	2	0.00
HR3	CPH1	NR2	FE	0.2000	2	180.00
CT2	CC	OC	FE	0.2000	2	180.00
CC	OC	FE	OC	5.2000	2	180.00
CC	OC	FE	OM	5.2000	2	0.00
OC	CC	OC	FE	5.2000	2	180.00
CPH2	NR4	CPH1	CPH1	14.0000	2	180.00
CT2	CPH1	NR4	CPH2	3.0000	2	180.00
HR1	CPH2	NR4	CPH1	3.0000	2	180.00
HR3	CPH1	NR4	CPH2	3.0000	2	180.00
NR1	CPH2	NR4	CPH1	14.0000	2	180.00
NR4	CPH1	CPH1	CT2	3.0000	2	180.00
NR4	CPH1	CPH1	CT3	3.0000	2	180.00
NR4	CPH1	CPH1	HR3	3.0000	2	180.00
NR4	CPH1	CPH1	NR1	14.0000	2	180.00
NR4	CPH1	CT2	CT1	0.1900	3	0.00
NR4	CPH1	CT2	CT2	0.1900	3	0.00
NR4	CPH1	CT2	CT3	0.1900	3	0.00
NR4	CPH1	CT2	HA	0.1900	3	0.00
NR4	CPH1	CT3	HA	0.1900	3	0.00
NR4	CPH2	NR1	CPH1	14.0000	2	180.00
NR4	CPH2	NR1	H	1.0000	2	180.00
X	FE	NR4	X	0.0500	4	0.00
NR1	CPH2	NR4	FE	0.2000	2	180.00
CPH1	CPH1	NR4	FE	0.2000	2	180.00
HR1	CPH2	NR4	FE	0.2000	2	180.00
NR4	FE	DC	CC	5.2000	2	180.00

| HR3 CPH1 NR4 FE $\quad 0.2000$ | 2 | 180.00 |
| :--- | :--- | :--- | :--- | :--- |

IMPROPER

C	CC	O	CT2	96.0000	0	0.0000
HR1	NR1	NR4	CPH2	0.5000	0	0.0000
HR1	NR4	NR1	CPH2	0.5000	0	0.0000
HR3	CPH1	NR4	CPH1	0.5000	0	0.0000
HR3	NR4	CPH1	CPH1	0.5000	0	0.0000

NONBONDED

COO	0.000000	-0.070000	2.000000
NR4	0.000000	-0.200000	1.850000
SO	0.000000	-0.450000	2.000000
FE	0.000000	-0.250000	$1.090000 *$

Results

Figure S1: Inverse of κ as a function of T (in K) for the 8 snapshots, being $\kappa=k_{\text {Eckart }} / k_{\text {classical }}$; i.e. κ represents the increase of the rate constants due to the effect of the tunneling.

Figure S2: IBO charges along the H-abstraction reaction path for snapshot 1. The distance difference $\mathrm{d}\left(\mathrm{C}-\mathrm{H}_{\alpha}\right)-\mathrm{d}\left(\mathrm{H}_{\alpha}-\mathrm{O}\right)$ has been used as reaction coordinate (being H_{α} the abstracted H from the taurine). The reaction coordinate was computed at the B3LYP/def2-TZVP//B3LYP/def2-SVP level. The vertical violet line shows the position of the TS during the scan.

Figure S3: a) NBO spin densities and b) NBO charges along the H-abstraction reaction path for snapshot 1. The distance difference $\mathrm{d}\left(\mathrm{C}-\mathrm{H}_{\alpha}\right)-\mathrm{d}\left(\mathrm{H}_{\alpha}-\mathrm{O}\right)$ has been used as reaction coordinate (being H_{α} the abstracted H from the taurine). The reaction coordinate was computed at the B3LYP/def2-TZVP//B3LYP/def2-SVP level. The vertical violet line shows the position of the TS during the scan.

Complete list of authors (manuscript)

Reference 22: Baugh L.; Phan I.; Begley D.W.; Matthew C.; Clifton M.C.; Armour B.; Dranow D.M.; Taylor B.M.; Muruthi M.M.; Abendroth J.; Fairman J.W.; Fox III D.; Dieterich S.H.; Staker B.L.; Gardberg A.S.; Choi R.; Hewitt S.N.; Napuli A.J.; Myers J.; Barrett L.K.; Zhang Y.; Ferrell M.; Mundt E.; Thompkins K.; Tran N.; Lyons-Abbott S.; Abramov A.; Sekar A.; Serbzhinskiy D.; Lorimer D.; Buchko G.W.; Stacy R.; Stewart L.J.; Edwards T.E.; Van Voorhis W.C.; and Myler P.J., Tuberculosis 2015, 95, 142-148.

Reference 39: Sherwood P.; de Vries A.H.; Guest M.F.; Schreckenbach G.; Catlow C.R.A.; French S.A.; Sokol A.A.; Bromley S.T.; Thiel W.; Turner A.J.; Billeter S.; Terstegen F., Thiel S.; Kendrick J.; Rogers S.C.; Casci J.; Watson M.; King F.; Karlsen E.; Sjovoll M.; Fahmi A.; Schafer A.; Lennartz C., Comp. Theor. Chem. 2003, 632, 1-28.

References

(1) O’Brien, J. R.; Schuller, D. J.; Yang, V. S.; Dillard, B. D.; Lanzilotta, W. N. Biochemistry 2003, 42, 5547-5554.
(2) Phillips, J. C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R. D.; Kalé, L.; Schulten, K. J. Comput. Chem. 2005, 26, 17811802.
(3) MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S. J. Phys. Chem. B 1998, 102, 3586-3616.
(4) MacKerell, A. D.; Banavali, N. K. J. Comput. Chem. 2000, 21, 105-120.
(5) Mackerell, A. D.; Feig, M.; Brooks, C. L. J. Comput. Chem. 2004, 25, 1400-1415.
(6) Feller, S. E.; MacKerell, A. D. J. Phys. Chem. B 2000, 104, 7510-7515.
(7) Feller, S. E.; Gawrisch, K.; MacKerell, A. D. J. Am. Chem. Soc. 2002, 124, 318-326.
(8) Foloppe, N.; MacKerell, A. D. J. Comput. Chem. 2000, 21, 86-104.
(9) Word, J. M.; Lovell, S. C.; Richardson, J. S.; Richardson, D. C. J. Mol. Biol. 1999, 285, 1735-1747.
(10) Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926-935.
(11) Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graphics 1996, 14, 27-28.
(12) Sherwood, P.; de Vries, A.; Guest, M.; Schreckenbach, G.; Catlow, C.; French, S.; Sokol, A.; Bromley, S.; Thiel, W.; Turner, A.; et al., Comp. Theor. Chem. 2003, 632, 1-28.
(13) Metz, S.; Kästner, J.; Sokol, A. A.; Keal, T. W.; Sherwood, P. WIREs Comput. Mol. Sci. 2014, 4, 101.
(14) ChemShell, a Computational Chemistry Shell. see http://www.chemshell.org, accessed May 8, 2017.
(15) Smith, W.; Yong, C.; Rodger, P. Mol. Simul. 2002, 28, 385-471.
(16) TURBOMOLE V7.0 2015, a development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989-2007, TURBOMOLE GmbH, since 2007; available from
http://www.turbomole.com. accessed May 8, 2017.
(17) Becke, A. D. J. Chem. Phys. 1993, 98, 5648-5652.
(18) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297-3305.
(19) Weigend, F. Phys. Chem. Chem. Phys. 2006, 8, 1057-1065.
(20) Kästner, J.; Carr, J. M.; Keal, T. W.; Thiel, W.; Wander, A.; Sherwood, P. J. Phys. Chem. A 2009, 113, 11856-11865.
(21) Henkelman, G.; Jónsson, H. J. Chem. Phys. 1999, 111, 7010.
(22) Olsen, R. A.; Kroes, G. J.; Henkelman, G.; Arnaldsson, A.; Jónsson, H. J. Chem. Phys. 2004, 121, 9776.
(23) Heyden, A.; Bell, A. T.; Keil, F. J. J. Chem. Phys. 2005, 123, 224101.
(24) Kästner, J.; Sherwood, P. J. Chem. Phys. 2008, 128, 014106.
(25) Valiev, M.; Bylaska, E.; Govind, N.; Kowalski, K.; Straatsma, T.; Dam, H. V.; Wang, D.; Nieplocha, J.; Apra, E.; Windus, T.; de Jong, W. Comp. Phys. Comm. 2010, 181, 1477 - 1489.
(26) Chen, H.; Lai, W.; Shaik, S. The Journal of Physical Chemistry Letters 2010, 1, 15331540.
(27) Eckart, C. Phys. Rev. 1930, 35, 1303-1309.
(28) Gillan, M. J. J. Phys. C: Solid State Physics 1987, 20, 3621-3641.
(29) Kästner, J. WIREs Comput. Mol. Sci. 2014, 4, 158.
(30) Reed, A. E.; Weinstock, R. B.; Weinhold, F. J. Chem. Phys. 1985, 83, 735-746.
(31) Knizia, G. J. Chem. Theory. Comput. 2013, 9, 4834-4843.

