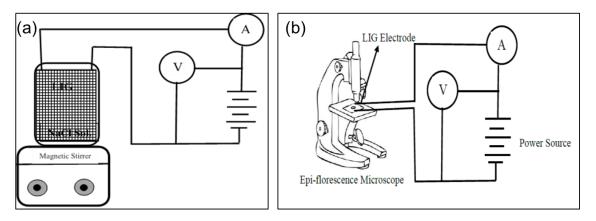
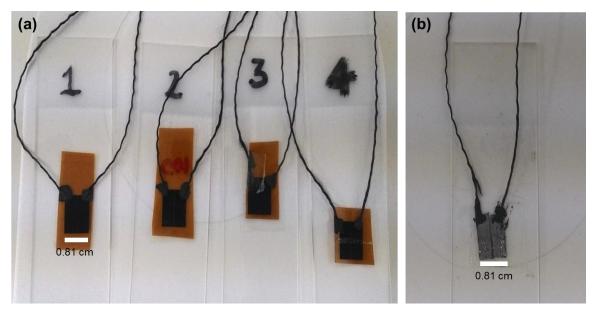
Supporting Information


Laser-Induced Graphene Layers and Electrodes Prevents Microbial Fouling and Exerts Antimicrobial Action

Swatantra P. Singh¹, Yilun Li², Avraham Be'er¹, Yoram Oren¹, James M. Tour^{2*} and Christopher J. Arnusch^{1*}


¹Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boger Campus 84990, Israel

²Department of Chemistry, Department of Materials Science and NanoEngineering, Smalley-Curl Institute and NanoCarbon Center, Rice University, 6100 Main Street, Houston, Texas 77005, USA.

*Corresponding author: C. J. Arnusch, arnusch@bgu.ac.il and J M. Tour, tour@rice.edu

Figure S1: Antibacterial experiment with the LIG electrodes at different voltages (1.5, 2.0, 2.5 V). (a) Batch system; (b) Real time monitoring experiment under a microscope.

Figure S2: Electrodes for the real time monitoring of the *Pseudomonas aeruginosa* using epifluorescence microscopy; (a) LIG electrodes; (b) graphite paper electrode.

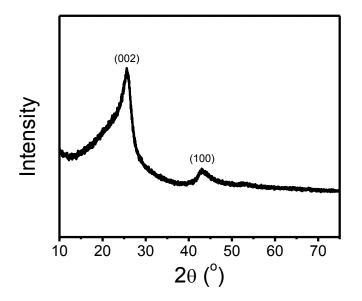
X-Ray Diffraction of the LIG:

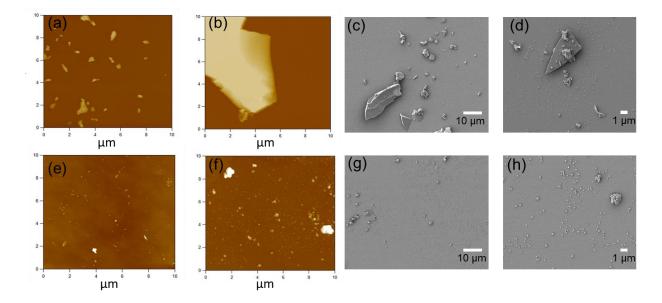
The crystalline sizes of LIG along c axis (Lc) and domain size in the a axis (La) were calculated by using Equation 1 and Equation 2, respectively.

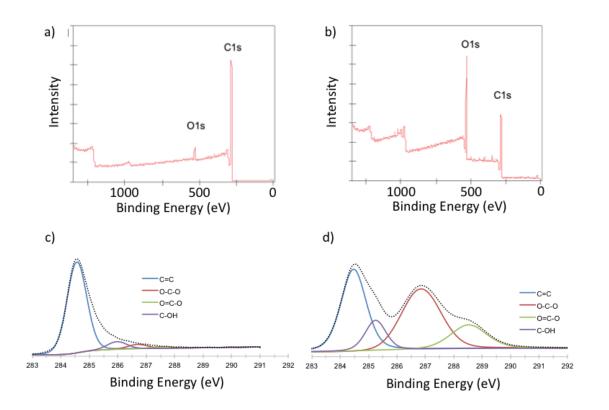
$$Lc = \frac{0.89\,\lambda}{B_{1/2}\,(2\theta)\,\cos\theta}\tag{1}$$

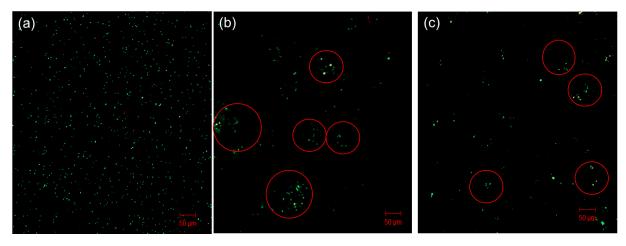
$$La = \frac{1.84\,\lambda}{B_{1/2}\,(2\theta)\,\cos\theta}\tag{2}$$

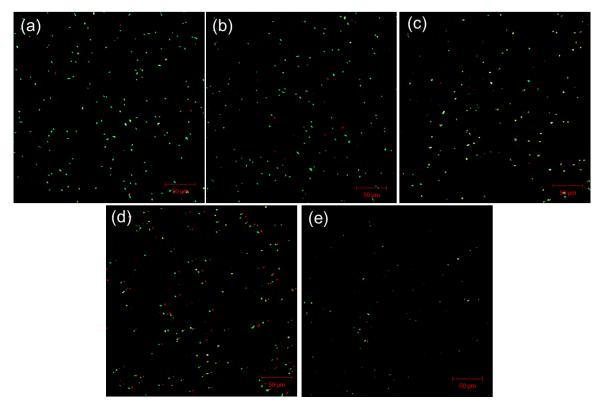
Where $B_{1/2}(2\theta)$ (in radian unit) is the full width and half maximum of peaks, and λ is X-ray wavelength (λ =1.54Å). Lc and La are calculated to be 1.8 and 5.8 nm, respectively.




Figure S3: XRD of the powder LIG.


Figure S4: Zeta potential of different surfaces at different pH.


Figure S5: Contact angles for the (a) LIG film on PI, (b) PI, and (c) graphite paper are measured to be $45.3 \pm 3.8^{\circ}$, $74.5 \pm 3.3^{\circ}$ and $61.3 \pm 6.6^{\circ}$, respectively.


Figure S6: Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images for powder LIG; (a & b) AFM images for P-LIG-B; (c & d) SEM images for P-LIG-B; (e & f) AFM images for P-LIG-S; (g & h) SEM images for P-LIG-S.

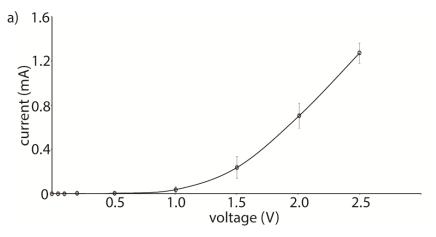
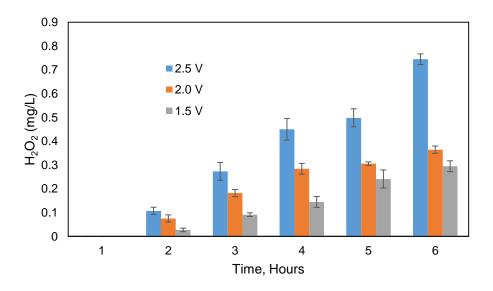
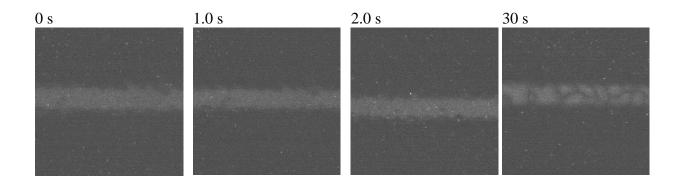
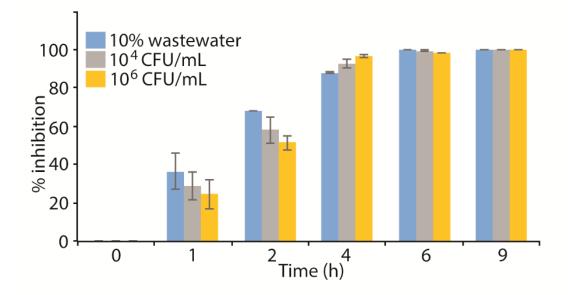

Figure S7: X-ray photoelectron spectra of LIG powders; (a, c) Before oxidation; (b, d) after oxidation.

Figure S8: Representative epi-fluorescence picture of *Pseudomonas aeruginosa* in LIG suspension (Green: live cells, Red: dead cells); (a) Bacterial suspension with no LIG; (b) Bacterial suspension with P-LIG-B, red circles are showing LIG powder and bacterial cells aggregates; (c) Bacterial suspension with P-LIG-S.

Figure S9: Representative epi-fluorescence picture of *Pseudomonas aeruginosa* on different surfaces (Green: live cells, Red: dead cells); (a) Cells on mixed cellulose filter; (b) Cells on mixed cellulose filter coated with P-LIG-B; (c) Cells on mixed cellulose filter coated with P-LIG-S; (d) Cells on mixed cellulose filter coated with P-LIG-S; (e) Cells on 2% LIG film.

Figure S10: Current voltage relationship with the LIG electrodes in antibacterial batch experiments.

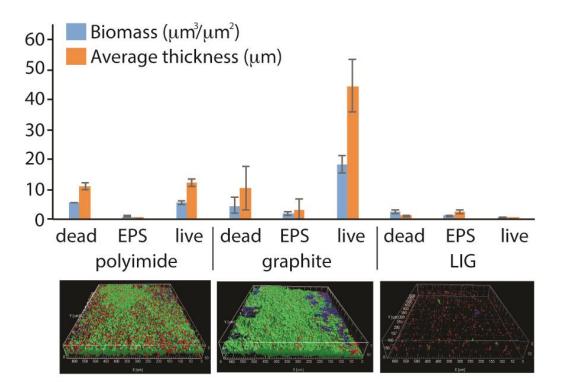

Figure S11: H_2O_2 generation in bulk solution with low bacteria load.

Figure S12: Real time bacterial population observation under epi-florescent microscopy at 1.1 V. In each image, a 100 μ m channel separates the anode (top), from the cathode (bottom).

Figure S13: Inhibition of microbial growth expressed as % inhibition using various secondary treated wastewater solutions at 2.5 V.

Figure S14: Biofilm growth on the polyimide, graphite, and LIG surfaces with using secondary treated wastewater showing biomass and average thickness. Representative IMARIS software images for polyimide; graphite; and LIG are seen. Green, red, and blue represents live bacteria, dead bacteria, and EPS, respectively.

Low Loading				
Time (h)	Measured H ₂ O ₂	% Killing relative		
	Conc. (mg/L)	to control		
0	1.07	0.00		
1	0.92	6.26		
2	0.84	4.09		
4	0.75	0.77		
6	0.69	4.26		
9	0.49	4.63		

Table S1: $H_2O_2(1.0 \text{ mg/L})$ is added to a solution with low bacterial concentration, and the bacterial viability and the H_2O_2 is monitored over time. The control is the solution with no H_2O_2 added.

Table S2: H_2O_2 (1.0 mg/L) is added to a solution with high bacterial concentration, and the bacterial viability and the H_2O_2 is monitored over time. The control is the solution with no H_2O_2 added.

High Loading		
Time (h)	Measured H ₂ O ₂	% Killing relative
	Conc. (mg/L)	to control
0	1.09	0.00
1	0.26	5.45
2	0.18	4.56
4	0.13	7.44
6	0.00	4.12
9	0.00	1.09

Table S3: Change in current with voltage in microscope electrodes.

Microscope Electrodes		
Voltage	LIG Electrode	Graphite Paper
(V)	Current (µA)	Current (µA)
0	0	0
0.1	3.2	0.1
0.5	28.5	0.6
1	67.2	4.2
1.5	105.6	42.5
2	152.3	86.5
2.5	203.8	110.4

Table S4: Secondary treated wastewater composition.

	Value (ppm)
BOD ₅	55
TOC	122
Nitrogen	20
Phosphate	15