# **Supporting Information for**

# Ethanol-Processable, Highly Crystalline Conjugated Polymers for Eco-Friendly Fabrication of Organic Transistors and Solar Cells

Thanh Luan Nguyen,<sup>†,‡</sup> Changyeon Lee,<sup>§,‡</sup> Hyoeun Kim,<sup>†</sup> Youngwoong Kim,<sup>§</sup> Wonho Lee,<sup>§</sup> Joon Hak Oh, <sup>\*,†</sup> Bumjoon J. Kim, <sup>\*,§</sup> Han Young Woo<sup>\*,†</sup>

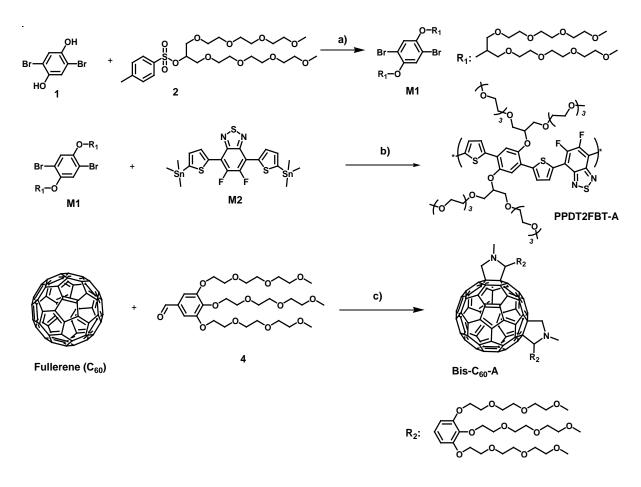
<sup>†</sup>Department of Chemistry, Korea University, Seoul 136-713, South Korea <sup>§</sup>Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea <sup>1</sup>Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea

\*E-mail: hywoo@korea.ac.kr, bumjoonkim@kaist.ac.kr, joonhoh@postech.ac.kr

## **Table of Contents**

## Methods

### **Supplementary Figure S1-7**


- Molar absorption coefficients of PPDT2FBT-A in ethanol and PPDT2FBT in chloroform
- Cyclic voltammograms of PPDT2FBT, PPDT2FBT-A, and Bis-C<sub>60</sub>-A
- Output curves of PPDT2FBT-A OFET devices fabricated using (a) ethanol or (b) CB as the processing solvent, respectively.
- *J-V* characteristics of hole-only devices based on PPDT2FBT-A pristine films
- Photoluminescence of PPDT2FBT-A pristine polymer and PPDT2FBT-A:Bis-C<sub>60</sub>-A blend film
- 2D-GIXS pattern and line profiles of PPDT2FBT-A:Bis-C<sub>60</sub>-A blend film
- *J-V* characteristics of hole- and electron-only devices based on PPDT2FBT-A and Bis-C<sub>60</sub>-A pristine films, and PPDT2FBT-A:Bis-C<sub>60</sub>-A blend film

#### **Supplementary Table S1-4**

- List of *median lethal dose* (*LD*<sub>50</sub>) for various solvents
- Chemical list in the Toxic Release Inventory
- Summary of photovoltaic properties of the ethanol-processed devices with different PPDT2FBT-A:Bis-C<sub>60</sub>-A blend ratios
- Hole and electron mobilities of pristine and blend films measured by SCLC method

#### References

#### **Methods**



**Scheme S1.** Synthetic route to the ethanol-soluble donor and acceptor materials, PPDT2FBT-A and Bis-C<sub>60</sub>-A. Reagents and reaction conditions: a) sodium *tert*-butoxide, ethanol, reflux, 48 h; b)  $Pd_2(dba)_3$ , tris(*o*-tolyl)phosphine, toluene; c) sarcosinic acid, chlorobenzene, N<sub>2</sub>, reflux.

*Synthesis*: Fullerene (C<sub>60</sub>) and 1,4-dibromo-2,5-dihydroxybenzene (1) were purchased from Solamer and Sigma-Aldrich and used without further purification. 1,3-Bis(2-(2-(2methoxyethoxy)ethoxy)propan-2-yl-toluenesulfonate (2) and 3,4,5-(2-(2-(2methoxyethoxy)ethoxy)benzaldehyde (4) were prepared as previously described.<sup>1-2</sup> 1,4-Dibromo-2,5-bis(1,3-bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)propan-2-yloxy)benzene (M1) was synthesized by following procedures. 1,4-Dibromo-2,5-dihydroxybenzene (1) (1.0 g, 3.8 mmol) was dissolved in ethanol (20 mL) and sodium *tert*-butoxide (0.77 g, 7.9 mmol) 3 was added. The mixture was stirred at room temperature for 1 h under a N<sub>2</sub> atmosphere. Compound **2** (4.2 g, 7.9 mmol) was added dropwise and the reaction mixture was stirred for 48 h under reflux. After partial evaporation of the solvent, H<sub>2</sub>O was added and the mixture was extracted with dichloromethane (CH<sub>2</sub>Cl<sub>2</sub>). The organic extracts were washed with 10% sodium hydroxide (NaOH) solution, dried over anhydrous magnesium sulfate (MgSO<sub>4</sub>) and the solvent was evaporated to afford the crude product. After silica gel column chromatography (SiO<sub>2</sub>, eluent ethyl acetate/methanol = 95/5, v/v), a colorless oily compound, **M1** (0.7 g, 60%), was obtained. <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 7.30 (s, 2H), 4.33 (m, 2H), 3.69 (m, 8H), 3.56 (m, 30H), 3.48 (m, 8H), 3.30 (s, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  (ppm) 150.4, 121.8, 112.5, 80.6, 71.7, 70.5, 70.4, 70.3, 58.9.

*OFET device fabrication and characterization:* OEFTs were fabricated in a bottom-gate and top-contact configuration to characterize the electrical performance of PPDT2FBT-A using either CB or ethanol as the processing solvent. A highly *n*-doped (100) Si wafer (< 0.005 Ω cm) with a thermally grown 300 nm-thick SiO<sub>2</sub> layer ( $C_i = 10 \text{ nF cm}^{-2}$ ) was utilized as the gate and dielectric. The SiO<sub>2</sub>/Si wafers were treated with an OTS self-assembled monolayer as previously reported.<sup>3</sup> The substrates were then washed sequentially with toluene, acetone, and isopropyl alcohol, and dried with nitrogen gas. PPDT2FBT-A was dissolved in ethanol or CB at ~2 mg mL<sup>-1</sup> and stirred at 80 °C for 5 h, filtered through a 0.2 μm membrane, and spin-coated at 3000 rpm for 50 s onto the OTS-treated SiO<sub>2</sub>/Si substrate. Au electrodes (40 nm thick) were thermally evaporated through a shadow mask onto the semiconducting active layer. The electrical performance of the FETs was measured in a N<sub>2</sub>filled glovebox using a Keithley 4200 semiconductor parametric analyzer. The field-effect mobility was estimated in the saturation regime ( $|V_{DS}| > |V_{GS}-V_T|$ ) using the following

4

equation:

$$I_{\rm DS} = \mu \frac{WC_{\rm i}}{2L} (V_{\rm GS} - V_{\rm T})^2$$

where  $I_{DS}$  is the drain-to-source current, W and L are the semiconductor channel width and length, respectively,  $\mu$  is the mobility,  $C_i$  is the capacitance per unit area of the dielectric, and  $V_{GS}$  and  $V_T$  are the gate and threshold voltage, respectively.

*SCLC Measurements:* Hole- and electron-only devices with pristine PPDT2FBT-A, Bis-C<sub>60</sub>-A, and their blend films as the active layer were measured by the SCLC method using ITO/PEDOT:PSS/active layer/Au (hole-only) and ITO/ZnO/active layers/Ca/Al (electron-only) device structures, respectively. The films were prepared as described in the device fabrication section. A range of 0-8 V was used for the current-voltage measurement, and the results were fitted to the Mott-Gurney equation:

$$J_{SCLC} = \frac{9}{8} \varepsilon \varepsilon_0 \mu \frac{V^2}{L^3}$$

where  $\varepsilon_0$  is the permittivity of free space (8.85×10<sup>-14</sup> F cm<sup>-1</sup>),  $\varepsilon$  is the relative dielectric constant of the active layer,  $\mu$  is the charge carrier mobility, V is the potential across the device ( $V = V_{applied} - V_{bi} - V_{series}$ ) corrected for potential loss due to built-in potential ( $V_{bi}$ ) and series resistance ( $V_{series}$ ), and L is the active layer thickness.

*Fabrication and characterization of inverted-type ethanol-processed PSCs:* The inverted device with an ITO/ZnO/active layer/MoO<sub>3</sub>/Ag architecture was used to evaluate the photovoltaic properties of ethanol-processed solar cells. ITO-coated glass substrates were subjected to ultra-sonication and cleaned with various solvents, i.e., acetone, deionized water,

and finally isopropyl alcohol. After the cleaning process, the substrates were kept in an 80 °C oven for 20 min. The ITO substrates were treated with UV-ozone (10 min) before spincasting a ZnO layer. The ZnO solution was prepared by dissolving zinc acetate dihydrate (Zn(O<sub>2</sub>CCH<sub>3</sub>)<sub>2</sub>·(H<sub>2</sub>O)<sub>2</sub>, 99.9%, 1 g) and ethanolamine (HOCH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, 99.5%, 0.28 g) in anhydrous 2-methoxy ethanol (CH<sub>3</sub>OCH<sub>2</sub>CH<sub>2</sub>OH, >99.8%, 10 mL) under vigorous stirring for > 24 h to allow the hydrolysis reaction and aging to occur. The ZnO solution was spincoated on top of the ITO substrates at 4000 rpm to produce a 40 nm thick ZnO layer. After the films were baked at 200 °C for 10 min in ambient condition, the devices were moved to a N<sub>2</sub>-filled glove box. Electron donor PPDT2FBT-A was blended with Bis-C<sub>60</sub>-A electron acceptor in ethanol, where the D:A blend ratios were varied from 1:1 to 1:2 (w/w), and the concentration of the polymer donor in the blend solution was 5 mg mL<sup>-1</sup>. The solutions were stirred for 1 h on a hot plate at 80 °C before spin-casting onto ITO/ZnO substrates at 1000 rpm for 40 s. The resulting thickness of the ethanol-processed blend film was measured to be 50-60 nm. The devices were baked for 20 min at 110 °C under vacuum for removal of residual ethanol in the active layer. The substrates were placed in an evaporation chamber under high vacuum (<  $10^{-6}$  Torr) for ~1 h before deposition of MoO<sub>3</sub> (10 nm) and Ag (120 nm). The active area of the fabricated device was 0.09 cm<sup>2</sup>, as measured by optical microscopy. The current density-voltage (J-V) characteristics of the devices were measured under AM 1.5G solar irradiation (100 mWcm<sup>-2</sup>, Peccell: PEC-L01) at ambient condition. This solar simulator system satisfied the Class AAB, ASTM Standards. The intensity of the solar simulator was calibrated using a standard silicon reference cell with a KG-5 visible color filter. The J-V characteristics were measured using a Keithley 2400 SMU. The EQE data were obtained using a spectral measurement system (K3100 IQX, Mc Science Inc.) with monochromatic light from a xenon arc lamp at 300 W filtered by a monochromator

(Newport) and an optical chopper (MC 2000 Thor labs). The EQE data were acquired in the dark. The calculated  $J_{SC}$  value was acquired by integrating the product of the EQE and the AM 1.5G solar spectrum, and showed good agreement with the measured  $J_{SC}$ , within 2% error.

**Supplementary Figure S1-7** 

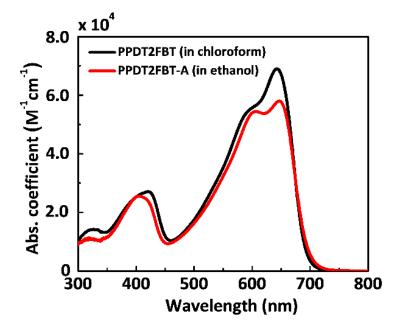
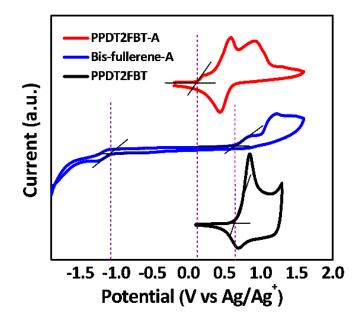
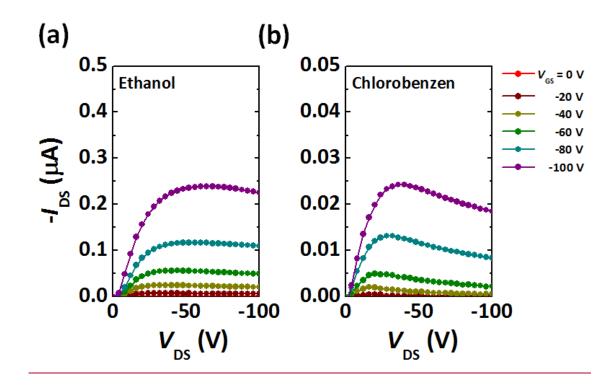
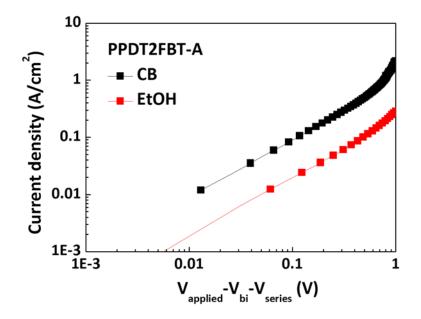
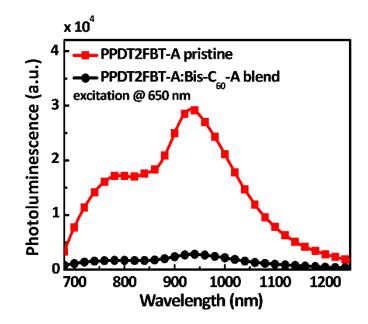



Figure S1. Molar absorption coefficients of PPDT2FBT-A in ethanol and PPDT2FBT in chloroform.



Figure S2. Cyclic voltammograms of PPDT2FBT, PPDT2FBT-A and Bis-C<sub>60</sub>-A.



**Figure S3**. Output curves of PPDT2FBT-A OFET devices fabricated using (a) ethanol or (b) CB as the processing solvent, respectively.



**Figure S4.** *J-V* characteristics of hole-only devices based on PPDT2FBT-A pristine films processed with CB (black line), EtOH (red line). Both devices were thermally annealed at  $150 \,^{\circ}$ C for 30 min.



**Figure S5**. Photoluminescence of PPDT2FBT-A pristine polymer and PPDT2FBT-A:Bis-C<sub>60</sub>-A blend films.

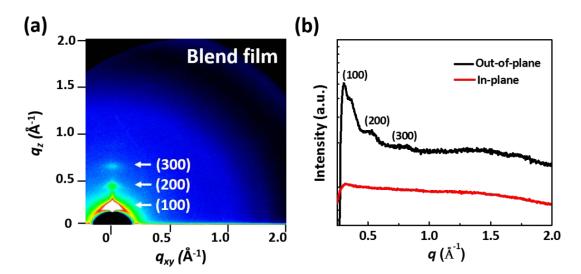
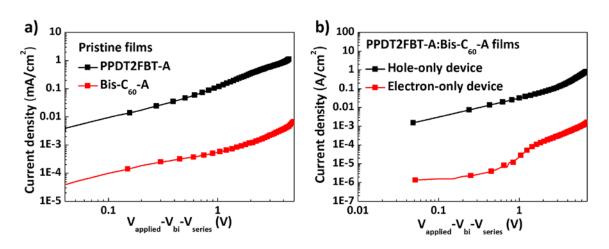




Figure S6. (a) 2D-GIXS pattern and (b) line profiles of PPDT2FBT-A:Bis-C<sub>60</sub>-A blend film.



**Figure S7.** *J-V* characteristics of hole- and electron-only devices based on (a) PPDT2FBT-A and Bis-C<sub>60</sub>-A pristine films, and (b) PPDT2FBT-A:Bis-C<sub>60</sub>-A blend film.

# **Supplementary Table S1-4**

| Solvent                 | Animal, route          | Median lethal dose (LD <sub>50</sub> ) <sup>a)</sup> |
|-------------------------|------------------------|------------------------------------------------------|
| Ethanol                 | rat, oral              | 10,470 mg/kg                                         |
| Acetone                 | rat, oral              | 5,800 mg/kg                                          |
| Ethyl acetate           | rat, oral              | 5,620 mg/kg                                          |
| Toluene                 | rat, oral              | 5,580 mg/kg                                          |
| Isopropyl alcohol       | rat, oral              | 5,045 mg/kg                                          |
| 2-Methyltetrahydrofuran | rat, oral              | 4,500 mg/kg                                          |
| 1-Methyl-2-pyrrolidone  | rat, oral              | 3,914 mg/kg                                          |
| Anisole                 | rat, oral              | 3,700 mg/kg                                          |
| Methanol                | rat, oral              | 2,769 mg/kg                                          |
| o-Xylene                | mouse, intraperitoneal | 1,364 mg/kg                                          |
| 1-Chloronaphthalene     | rat, oral              | 1,540 mg/kg                                          |
| Chlorobenzene           | rat, oral              | 1,110 mg/kg                                          |
| Chloroform              | rat, oral              | 908 mg/kg                                            |
| 1,2-Dichlorobenzene     | rat, oral              | 500 mg/kg                                            |

Table S1. List of median lethal dose (LD50) for various solvents.<sup>4</sup>

<sup>*a*</sup>)Median lethal dose (LD<sub>50</sub>): the amount of the substance required (per body weight) to kill 50% of the test population.

| Solvent                  | De minimus % Limit |  |
|--------------------------|--------------------|--|
| Ethanol                  | -                  |  |
| Toluene                  | 1.0                |  |
| Isopropyl alcohol        | 1.0                |  |
| 1-Methyl-2-pyrrolidinone | 1.0                |  |
| Benzene                  | 0.1                |  |
| Methanol                 | 1.0                |  |
| o-Xylene                 | 1.0                |  |
| Chlorobenzene            | 1.0                |  |
| Chloroform               | 0.1                |  |
| 1,2-Dichlorobenzene      | 1.0                |  |

**Table S2**. Chemical list in the Toxic Release Inventory.<sup>5</sup>

| D:A<br>weight ratio | V <sub>OC</sub><br>(V) | $J_{\rm SC}$ (mA cm <sup>-2</sup> ) | FF               | PCE <sub>avg</sub><br>(%) |
|---------------------|------------------------|-------------------------------------|------------------|---------------------------|
| 1:1                 | 0.79±0.019             | $1.68 \pm 0.12$                     | 0.32±0.034       | 0.43±0.03                 |
| 1:1.5               | 0.79±0.015             | $2.21 \pm 0.11$                     | 0.38±0.019       | $0.67 \pm 0.02$           |
| 1:2                 | $0.80 \pm 0.015$       | $1.61 \pm 0.10$                     | $0.40 \pm 0.019$ | $0.51 \pm 0.03$           |

**Table S3.** Summary of photovoltaic properties of the ethanol-processed devices with different PPDT2FBT-A:Bis-C<sub>60</sub>-A blend ratios.

The average PCEs (± standard deviation) were derived from 10 different devices for each different system.

| method                                |                                                                                |                                                                             |                                            |                                                                                |
|---------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------|
|                                       | $\mu_{\rm h, \ SCLC} ({\rm max}) \ ({\rm cm}^2 \ {\rm V}^{-1} \ {\rm s}^{-1})$ | $\mu_{h, SCLC} (avg)$<br>(cm <sup>2</sup> V <sup>-1</sup> s <sup>-1</sup> ) | $\mu_{e, SCLC} (max) (cm^2 V^{-1} s^{-1})$ | $\mu_{\rm e, \ SCLC} ({\rm avg}) \ ({\rm cm}^2 \ {\rm V}^{-1} \ {\rm s}^{-1})$ |
| PPDT2FBT-A                            | $7.5 	imes 10^{-5}$                                                            | $5.0 	imes 10^{-5} \ (\pm 2.6 	imes 10^{-5})^{a)}$                          | -                                          | -                                                                              |
| Bis-C <sub>60</sub> -A                | -                                                                              | -                                                                           | $8.8 \times 10^{-7}$                       | $5.3 	imes 10^{-7} \ (\pm 2.7 	imes 10^{-7})^{a)}$                             |
| PPDT2FBT-<br>A:Bis-C <sub>60</sub> -A | $2.6\times10^{\text{-5}}$                                                      | $2.1 	imes 10^{-5} \ (\pm 4.6 	imes 10^{-6})^{ m a)}$                       | $2.3 	imes 10^{-8}$                        | $1.7	imes 10^{-8}\ (\pm 7.8	imes 10^{-9})^{ m a)}$                             |

Table S4. Hole and electron mobilities of pristine and blend films measured by SCLC method

The maximum and average mobilities obtained from at least 5 SCLC devices. <sup>a)</sup> Standard deviation.

#### **III. References**

(1) Vandenbergh, J.; Dergent, J.; Conings, B.; Gopala Krishna, T. V. V.; Maes, W.; Cleij, T. J.; Lutsen, L.; Manca, J.; Vanderzande, D. J. M., Synthesis and characterization of water-soluble poly(p-phenylene vinylene) derivatives via the dithiocarbamate precursor route. *Eur. Polym. J.* **2011**, *47*, 1827-1835.

(2) Xie, Y.; Akada, M.; Hill, J. P.; Ji, Q.; Charvet, R.; Ariga, K., Real time self-assembly and reassembly of molecular nanowires of trigeminal amphiphile porphyrins. *Chem. Commun.* **2011**, *47*, 2285-2287.

(3) Ito, Y.; Virkar, A. A.; Mannsfeld, S.; Oh, J. H.; Toney, M.; Locklin, J.; Bao, Z. Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors. *J. Am. Chem. Soc.* **2009**, *131*, 9396-9404.

(4) Materials Safety Data Sheet. http://www.sigmaaldrich.com.

(5) U.S. Environmental Protection Agency. https://www.epa.gov/toxics-release-inventory-tri-program/tri-listed-chemicals.