SUPPORTING INFORMATION

Temperature dependence of the organic carbon/water partition ratios (K_{OC}) of volatile methylsiloxanes

Dimitri Panagopoulos ${ }^{1,2}$, Annika Jahnke ${ }^{3}$, Amelie Kierkegaard ${ }^{1}$ and Matthew MacLeod ${ }^{1 *}$
${ }^{1}$ Department of Environmental Science and Analytical Chemistry, ACES, Stockholm University, Svante Arrhenius väg 8, SE-114 18 Stockholm, Sweden ${ }^{2}$ Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, LBNL, 1 Cyclotron Road, 94720 Berkeley, California, United States
${ }^{3}$ Department of Cell Toxicology, Helmholtz Centre for Environmental Research, UFZ, Permoserstr. 15, DE-04318 Leipzig, Germany

20 Text S1... 3
21 Text S2.. 3
22 Text S3... 6
23 Figure S1 ... 8
24 Figure S2 .. 9
25 Figure S3 .. 10

27 Table S1.. 12
28 Table S2... 12
29 Table S3.. 13
30 Table S4.. 13
31 Table S5... 14
32 Table S6.. 15
33 Table S7.. 16
34 Table S8.. 17
35 Table S9... 18
36 Table S10... 19
37 Table S11.. 19
38 Table S12... 20

Text S1: Materials

The chemical substances in this study were purchased from the companies presented below: $\mathrm{D}_{4}, \mathrm{D}_{5}, 1,4-\mathrm{DCB}, \alpha-\mathrm{HCH}$ and Aldrin standards, methanol, potassium hydroxide (KOH) and sodium chloride (NaCl) from Sigma-Aldrich Sweden AB, Stockholm, Sweden; D6 from Fluorochem, Derbyshire, UK; ${ }^{13} \mathrm{C}_{4}-\mathrm{D}_{4}$, ${ }^{13} \mathrm{C}_{5}-\mathrm{D}_{5}$ and ${ }^{13} \mathrm{C}_{6}-\mathrm{D}_{6}$ from Moravek Biochemicals Inc., Brea, California, USA; polychlorinated biphenyls (PCBs) PCB 28, PCB 52, PCB 53, PCB 101, PCB 118, PCB138, PCB 153, ${ }^{13} \mathrm{C}_{12}-\mathrm{PCB} 28,{ }^{13} \mathrm{C}_{12}-\mathrm{PCB} 52,{ }^{13} \mathrm{C}_{12}-\mathrm{PCB} 101,{ }^{13} \mathrm{C}_{12}-\mathrm{PCB} 118$, ${ }^{13} \mathrm{C}_{12}$-PCB 138 and ${ }^{13} \mathrm{C}_{12}$-PCB 153 from Larodan, Solna, Sweden; Isolute ENV+ resin (hydroxylated polystyrene-divinylbenzene copolymer) from Biotage AB (Uppsala, Sweden); dichloromethane (SupraSolv) and n-hexane (LiChrosolv) from Merck (Darmstadt, Germany); concentrated sulfuric acid (98 \%) from BDH AnalaR (Poole, England). The water was filtered using a Milli-Q system (Merck Millipore, Solna, Sweden). Sediment with an organic carbon content of 6.4% was collected from Lake Ången, Sweden, and has been used in previous studies in our group ${ }^{1-2}$.

Text S2: Modeling

The model we used in this study describes the volatilization of chemicals from the bulk water in the purge-and-trap system using first-order kinetics. The model accounts for degradation and the formation of a pool of chemical that is not available for volatilization from the system.

$$
\begin{equation*}
I(t)=(100-b(t)) \mathrm{e}^{-k t}+b(t) \tag{S1}
\end{equation*}
$$

where $I(t)$ is the percentage of available chemical in bulk water at time $(\mathrm{t}), k$ is the volatilization rate constant of the chemical and $b(\mathrm{t})$ is the percentage of the chemical at time t that is not available for volatilization due to formation of a non-available fraction and/or due to degradation. A similar example of this model can be found in the studies of Whelan et al. ${ }^{3-4}$

The formation of the non-available fraction was also described by a first-order kinetic model, which assumed that 100% of the chemical is available at time 0 .

$$
\begin{equation*}
b(t)=B\left(1-e^{-k_{\mathrm{b}} t}\right) \tag{S2}
\end{equation*}
$$

where $b(\mathrm{t})$ is the percentage of the chemical that is not available at time t, B is the maximum percentage of the non-available fraction and k_{b} is the rate constant for formation of the non-available fraction. The model was fit to the observed values for $I(\mathrm{t})$ at various time points using least-squares minimization by optimizing values of k, B and k_{b} in Eq. (S1) and Eq. (S2), with the added constraint that $B \leq 20$ as described by Panagopoulos et al. ${ }^{1}$ For the leastsquares minimization we used the Solver function in Microsoft Excel. The equations of the model are presented in detail in Panagopoulos et al. ${ }^{1}$
$1,4-\mathrm{DCB}$ and $\alpha-\mathrm{HCH}$ were used as benchmarking chemicals to calibrate the mass transfer coefficients (MTC) of the model at the air-side (MTCa) and the water-side ($M T C \mathrm{w}$). The $K_{\text {Aw }}$ and $K_{\text {OC }}$ of $1,4-\mathrm{DCB}$ and $\alpha-\mathrm{HCH}$ that were used for
the calibration of the model are presented in Table S3. The Koc of the benchmark chemicals were calculated using the PP-LFER of Panagopoulos et al. ${ }^{1}$ and their $K_{\text {AW }}$ were calculated using the PP-LFER of Endo and Goss ${ }^{5}$. Koc measurements can vary by more than an order of magnitude depending on the source and the characteristics of the organic carbon ${ }^{9-10}$ and for that reason we chose to work with PP-LFER calculated values than having to choose from a wide range of $K_{O C}$ measurements. The $K_{O C}$ PP-LFER was constructed using a dataset of experimental values for 83 chemicals and it was evaluated for its predictive performance using the cross-validation leave-one-out approach. ${ }^{1}$ The $K_{\text {AW }}$ of VMS and PCBs used in the modeling calculations are shown in Table S4. The K_{OC} of the benchmarks and the K_{AW} of all chemicals were adjusted for temperature changes using the ΔH_{OW} and ΔH_{AW} calculated by the PP-LFERs of Brown and Wania ${ }^{6}$ (Table S5). The $K_{\text {AW }}$ values for the VMS compounds are substantially larger than those of the PCBs for all temperatures, suggesting that the characteristic time for transfer from water to air will be dominated by the contribution on the water side of the air-water interface. Therefore, it may not be necessary to know the exact $K_{\text {AW }}$ for VMS as long as the $K_{\text {AW }}$ is high enough to facilitate immediate transfer of VMS from water to air. Using $\Delta H_{\text {Ow }}$ of Brown and Wania ${ }^{6}$ to correct the $K_{\text {Oc }}$ of the benchmarks from $25^{\circ} \mathrm{C}$ to $5^{\circ} \mathrm{C}$, the $\log K_{\text {Oc }}$ of $1,4-\mathrm{DCB}$ increased only by $0.18 \log$ units and the $\log K_{\text {oc }}$ of $\alpha-\mathrm{HCH}$ increased by less than 0.01 log units. The calculated ΔH_{Ow} of the benchmarks were compared to experimental values found in the literature. The Kow of 1,4DCB from 25 to $5{ }^{\circ} \mathrm{C}$ increased by 0.19 log units in the study of Bahadur et al. ${ }^{7}$
and the Kow of $\alpha-\mathrm{HCH}$ from 25 to $5^{\circ} \mathrm{C}$ increased by 0.13 log units in the study of Paschke and Schüürmann ${ }^{8}$. We conducted a sensitivity analysis to assess how sensitive our calculations of K_{OC} are to variation in the K_{OC} of the benchmarks. Our sensitivity analysis showed that ± 1 log unit deviation in the $K_{\text {OC }}$ of $1,4-\mathrm{DCB}$ resulted in a difference smaller than 0.01 in the calculated K_{oc}, and ± 1 log unit deviation in the K_{OC} of $\alpha-\mathrm{HCH}$ resulted in a difference smaller than 0.001 in the calculated Koc (Figure S1). The necessary temperature correction of the Koc of the benchmarks is not expected to be larger than 1 log unit and therefore we can safely assume that it will not have a substantial effect on the calculations of K oc.

Text S3: Volatilization curves and calculations of $K_{\text {oc }}$

The volatilization rates for all chemicals from the purge-and-trap system, along with the correlation coefficients $\left(\mathrm{R}^{2}\right)$ and the adjusted model parameters k, B, k_{b} and I_{o}, are presented in Tables S6, S7, S8 and S9, for $25,15,10$ and 5 ${ }^{\circ} \mathrm{C}$, respectively. Examples of the volatilization curves of cVMS and 1 VMS at $5{ }^{\circ} \mathrm{C}$ are shown in Figure S2. In the example for D_{6} (Figure S 2) there is no apparent volatilization after 20 hours because the amount of D_{6} in these samples was low compared to the spiked amount of D_{6}. However, D_{6} was quantifiable in all samples and in all cases higher than the blanks. Out of 156 volatilization curves, R^{2} was greater than 0.9 in 151 cases, greater than 0.8 in 155 cases and only in one case it was lower than 0.8 (one of the 3 replicates for D_{4} at $5^{\circ} \mathrm{C}$,

Table S9). The non-available fraction was found to be between 0 and 10 for 137 cases and between 10 and 20 for 19 cases. The $M T C a$ and the $M T C$ w of the airwater interface, which were derived from the $1,4-\mathrm{DCB}$ and $\alpha-\mathrm{HCH}$ data are presented in Table S10. There is some variability between the experiments at different temperatures but the replicate measurements of the two mass transfer coefficients at each temperature show only small differences as indicated by the small standard deviations. Variability in the MTCa values between experiments at various temperatures can be explained by a difference in the air flow and variability in the $M T C \mathrm{w}$ values can be explained by a difference in the stirring speed of the water. This variation does not occur in between replicates of the same temperature because all the purge-and-trap systems are connected to the same nitrogen outlet with the same air-flow and all the flasks are placed on the same stirring plate where the stirring speed the same for all. In any case, this variation is controlled by the two benchmark chemicals and therefore it does not affect the calculations of K oc.

Text S4: Hydrolysis

As VMS are subject to hydrolysis, the rate of hydrolysis of VMS is a matter of concern when one is measuring their Koc. In our modeling calculations we used the half-lives for hydrolysis of $\mathrm{D}_{4}, \mathrm{D}_{5}$ and D_{6} in water at $25^{\circ} \mathrm{C}$ and pH 7 , which were calculated by Environment Canada in their assessment reports for D_{4}, D_{5} and $D_{6} \cdot{ }^{11-13}$ No published studies were found on the hydrolysis of $D_{4}, D_{5}, D_{6}, L_{4}$
and L_{5} in water and sediment. Environment Canada calculated the half-lives for D_{4} and D_{5} in water at various temperatures and pH values based on an unpublished report by Kozerski. ${ }^{11-13}$ The half-life of D_{6} is a read-across value from D_{4} and D_{5}. At pH 7 and $25^{\circ} \mathrm{C}$ the values of $\mathrm{D}_{4}, \mathrm{D}_{5}$ and D_{6} were $3.7,74$ and 401 days. All values that we used for all temperatures are presented in Table S12.

Figure S1: Sensitivity analysis for the influence of the temperature correction of the benchmarking chemicals on the calculated K_{OC} of the other chemicals.

Figure S2: Examples of volatilization curves (observed data and model fits). The figures show the percentage of spiked cyclic and linear volatile methylsiloxanes remaining in the purge-and-trap system as a function of time at $5^{\circ} \mathrm{C}$. The lines are the model fits using Eq. (S2) and Eq. (S3). $I(\mathrm{t})$ is the amount of the chemical that has not volatilized and been trapped by the ENV+ sorbent at time t and I_{0} is the amount spiked into the system. The model fitting parameters for Eq. (S2) and Eq. (S3) can be found in Tables S6-S9. Note the different scales of the y axes in the figures. The scales were adjusted so that the fits of the model to the experimental data become clearly visible.

Figure S3: $\ln K_{\text {oc }}$ as a function of temperature (1/T) for 6 PCBs. The values are presented in \ln instead of \log so that the figures are in agreement with the the Van't Hoff theory. The dark blue dots represent the ln Koc measurements (n=3) at the different temperatures (total $\mathrm{n}=12$ per chemical). The black lines are the regression lines and the blue lines are the 95% confidence intervals of the regression lines. From the slopes we calculated the $\Delta H_{\text {Oc }}$ using Eq. (2) and from the intercepts we calculated Δ Soc using Eq. (3).

Figure S4: Linear regressions between $\Delta H_{\mathrm{OC}}, \Delta S_{\mathrm{OC}}$ and $\log K_{\mathrm{OC}}$ for VMS and PCBs. VMS are shown in red, PCBs in green and the black lines are the regression lines.

Table S1: Approximate concentrations in the spiking solution used for spiking the sediment, concentrations of chemicals in the sediment after equilibration and spiking efficiencies.

	Concentration in spiking solution $(\mathrm{ng} / \mu \mathrm{L})$	Concentration in sediment $(\mathrm{ng} / \mathrm{mg})$	Spiking efficiency
Chemical	15000	60	$(\%)$
D4	10000	60	40
D5	7500	60	60
D6	10000	60	80
L4	7500	60	60
L5	2000	5	80
1,4-DCB	600	5	30
a-HCH	600	5	90
PCBs			90

Table S 2 . Average total recoveries of chemicals in the K_{Oc} experiments ($\mathrm{n}=12$ for each entry in the table). Recoveries were calculated by adding the amounts of chemical collected from ENV+ and bulk water including sediment, and dividing by the amount of a chemical initially added to the system. The standard deviations are shown in parentheses.

Table S3: $\log K_{\mathrm{OC}}$ and $\log K_{\mathrm{AW}}$ of the benchmark chemicals used in the calibration of the $M T C$ and $M T C$ w of the model.

	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	25	21	15	10	5
$\log K_{\mathrm{OC}}$	$1,4-\mathrm{DCB}$	2.80	2.77	2.87	2.91	2.95
	$\alpha-\mathrm{HCH}$	3.41	3.41	3.41	3.41	3.41
$\log K_{\mathrm{AW}}$	$1,4-\mathrm{DCB}$	-0.76	-0.69	-0.95	-1.06	-1.16
	$\alpha-\mathrm{HCH}$	-3.90	-3.72	-4.36	-4.61	-4.86

Table S5: ΔH_{Aw} and ΔH_{Ow} used to correct the chemicals' K_{Aw} and K_{Oc}. The ΔH values were calculated using the PP-LFER of Brown and Wania.

	ΔH Haw	ΔH How
1,4-DCB	31.54	-12.12
$\alpha-\mathrm{HCH}$	76.45	-0.55
D_{4}	68.47	
D_{5}	87.28	
D_{6}	108.83	
$\mathrm{~L}_{4}$	85.18	
$\mathrm{~L}_{5}$	103.25	
PCB 28	55.25	
PCB 52	57.81	
PCB 101	58.57	
PCB 118	58.52	
PCB 153	61.80	
PCB 138	61.01	

243 Table S6: Values for $k\left(\% h^{-1}\right), B(\%), k_{\mathrm{b}}\left(\% h^{-1}\right), I_{\mathrm{o}}(\%)$ and R^{2} for all chemicals 244 involved in the K_{OC} experiments at $25^{\circ} \mathrm{C}$.

| $25^{\circ} \mathrm{C}$ | D_{4} | | | D 5 | | D_{6} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| replicate | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| k | $-1.10 \mathrm{E}-01$ | $-1.11 \mathrm{E}-01$ | $-7.38 \mathrm{E}-02$ | $-1.52 \mathrm{E}-02$ | $-1.60 \mathrm{E}-02$ | $-1.00 \mathrm{E}-02$ | $-1.85 \mathrm{E}-03$ | $-6.44 \mathrm{E}-04$ | $-1.04 \mathrm{E}-03$ |
| B | $0.00 \mathrm{E}+00$ | $1.70 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $2.00 \mathrm{E}+01$ | $2.00 \mathrm{E}+01$ | $1.10 \mathrm{E}-01$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $1.05 \mathrm{E}-01$ |
| k_{b} | $-1.25 \mathrm{E}-01$ | $-1.65 \mathrm{E}-01$ | $-4.46 \mathrm{E}-04$ | $-5.89 \mathrm{E}-02$ | $-3.66 \mathrm{E}-02$ | $-3.46 \mathrm{E}-03$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $-3.32 \mathrm{E}-03$ |
| $\mathrm{~b}_{0}$ | $0.00 \mathrm{E}+00$ |
| I_{0} | $7.27 \mathrm{E}+01$ | $8.87 \mathrm{E}+01$ | $9.51 \mathrm{E}+01$ | $8.92 \mathrm{E}+01$ | $8.98 \mathrm{E}+01$ | $9.47 \mathrm{E}+01$ | $9.12 \mathrm{E}+01$ | $9.81 \mathrm{E}+01$ | $9.89 \mathrm{E}+01$ |
| R^{2} | $9.84 \mathrm{E}-01$ | $9.30 \mathrm{E}-01$ | $9.54 \mathrm{E}-01$ | $9.65 \mathrm{E}-01$ | $9.11 \mathrm{E}-01$ | $9.80 \mathrm{E}-01$ | $9.87 \mathrm{E}-01$ | $9.60 \mathrm{E}-01$ | $9.71 \mathrm{E}-01$ |

	L4			L5			1,4-DCB			a-HCH		
replicate	1	2	3	1	2	3	1	2	3	1	2	3
k	-9.96E-03	-3.89E-02	-2.08E-02	-1.95E-03	-1.34E-03	$-1.79 \mathrm{E}-03$	-2.08E-01	-2.90E-01	-3.77E-01	-1.88E-03	-4.12E-03	-3.00E-03
B	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$1.05 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$1.04 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$
$k_{\text {b }}$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-2.28E-01	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-3.32E-03	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-3.30E-03	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-2.00E-02
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$9.50 \mathrm{E}+01$	7.61E+01	$9.86 \mathrm{E}+01$	$9.11 \mathrm{E}+01$	$9.66 \mathrm{E}+01$	$9.84 \mathrm{E}+01$	$8.05 \mathrm{E}+01$	$8.45 \mathrm{E}+01$	$9.53 \mathrm{E}+01$	$9.64 \mathrm{E}+01$	$9.56 \mathrm{E}+01$	$9.57 \mathrm{E}+01$
R^{2}	$9.70 \mathrm{E}-01$	$9.03 \mathrm{E}-01$	$9.54 \mathrm{E}-01$	$9.77 \mathrm{E}-01$	$9.80 \mathrm{E}-01$	$9.84 \mathrm{E}-01$	$9.93 \mathrm{E}-01$	$9.94 \mathrm{E}-01$	$9.90 \mathrm{E}-01$	$8.46 \mathrm{E}-01$	$9.39 \mathrm{E}-01$	8.93E-01
	PCB 28			PCB 52			PCB 101					
replicate	1	2	3	1	2	3	1	2	3			
k	-2.39E-02	-3.05E-02	-3.58E-02	$-2.00 \mathrm{E}-02$	-2.44E-02	-3.03E-02	-7.71E-03	-6.96E-03	-8.93E-03			
B	$0.00 \mathrm{E}+00$											
$k_{\text {b }}$	$0.00 \mathrm{E}+00$											
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$9.49 \mathrm{E}+01$	$9.75 \mathrm{E}+01$	$9.73 \mathrm{E}+01$	$9.63 \mathrm{E}+01$	$9.83 \mathrm{E}+01$	$9.89 \mathrm{E}+01$	$9.85 \mathrm{E}+01$	$9.79 \mathrm{E}+01$	$9.83 \mathrm{E}+01$			
R^{2}	$9.96 \mathrm{E}-01$	$9.97 \mathrm{E}-01$	$9.98 \mathrm{E}-01$	$9.97 \mathrm{E}-01$	$9.97 \mathrm{E}-01$	$9.99 \mathrm{E}-01$	$9.95 \mathrm{E}-01$	$9.96 \mathrm{E}-01$	$9.98 \mathrm{E}-01$			

	PCB 118	PCB 138								
replicate	1	2	3	1	2	3	1	2	3	
k	$-3.16 \mathrm{E}-03$	$-3.05 \mathrm{E}-03$	$-3.65 \mathrm{E}-03$	$-2.32 \mathrm{E}-03$	$-2.03 \mathrm{E}-03$	$-2.54 \mathrm{E}-03$	$-2.68 \mathrm{E}-03$	$-2.31 \mathrm{E}-03$	$-2.94 \mathrm{E}-03$	
B	$0.00 \mathrm{E}+00$									
k_{b}	$0.00 \mathrm{E}+00$									
$\mathrm{~b}_{\mathrm{o}}$	$0.00 \mathrm{E}+00$									
I_{0}	$9.70 \mathrm{E}+01$	$9.71 \mathrm{E}+01$	$9.71 \mathrm{E}+01$	$9.82 \mathrm{E}+01$	$9.83 \mathrm{E}+01$	$9.87 \mathrm{E}+01$	$9.81 \mathrm{E}+01$	$9.81 \mathrm{E}+01$	$9.84 \mathrm{E}+01$	
R^{2}	$9.86 \mathrm{E}-01$	$9.87 \mathrm{E}-01$	$9.87 \mathrm{E}-01$	$9.92 \mathrm{E}-01$	$9.91 \mathrm{E}-01$	$9.95 \mathrm{E}-01$	$9.91 \mathrm{E}-01$	$9.89 \mathrm{E}-01$	$9.94 \mathrm{E}-01$	

246 Table S7: Values for $k\left(\% h^{-1}\right), B(\%), k_{\mathrm{b}}\left(\% h^{-1}\right), I_{\mathrm{o}}(\%)$ and R^{2} for all chemicals 247 involved in the K_{OC} experiments at $15{ }^{\circ} \mathrm{C}$.

$15^{\circ} \mathrm{C}$	D4			D 5			D6					
replicate	1	2	3	1	2	3	1	2	3			
k	-5.59E-02	-7.49E-02	-6.34E-02	-4.53E-03	-9.07E-03	-6.19E-03	-3.08E-04	-5.55E-04	-4.83E-04			
B	$1.06 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	$8.90 \mathrm{E}+00$	$2.00 \mathrm{E}+01$	$2.00 \mathrm{E}+01$	$2.00 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	0.00E+00	$1.05 \mathrm{E}-01$			
$k_{\text {b }}$	-6.26E-01	-1.70E-01	-6.34E-01	-2.00E-02	-2.17E-01	-1.91E-02	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-3.32E-03			
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$9.41 \mathrm{E}+01$	$8.46 \mathrm{E}+01$	$8.67 \mathrm{E}+01$	$1.00 \mathrm{E}+02$	$9.71 \mathrm{E}+01$	$9.74 \mathrm{E}+01$	$1.00 \mathrm{E}+02$	$1.00 \mathrm{E}+02$	$9.97 \mathrm{E}+01$			
R^{2}	$9.74 \mathrm{E}-01$	$9.81 \mathrm{E}-01$	$9.74 \mathrm{E}-01$	$9.75 \mathrm{E}-01$	$9.68 \mathrm{E}-01$	$9.67 \mathrm{E}-01$	$9.61 \mathrm{E}-01$	$9.58 \mathrm{E}-01$	$9.71 \mathrm{E}-01$			
	L4			L5			1,4-DCB			a-HCH		
replicate	1	2	3	1	2	3	1	2	3	1	2	3
k	-3.44E-03	-6.91E-03	-5.92E-03	-2.93E-04	-5.27E-04	-4.49E-04	-9.29E-02	-1.23E-01	-1.88E-01	-1.62E-03	-1.56E-03	-1.69E-03
B	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$1.05 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$				
$k_{\text {b }}$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-1.93E-02	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-3.32E-03	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-2.24E-01	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-2.41E-02
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$9.89 \mathrm{E}+01$	$9.65 \mathrm{E}+01$	$9.78 \mathrm{E}+01$	$9.99 \mathrm{E}+01$	$9.98 \mathrm{E}+01$	$9.95 \mathrm{E}+01$	7.52E+01	$7.10 \mathrm{E}+01$	$6.09 \mathrm{E}+01$	$9.85 \mathrm{E}+01$	$9.84 \mathrm{E}+01$	$9.81 \mathrm{E}+01$
R^{2}	$9.79 \mathrm{E}-01$	$9.67 \mathrm{E}-01$	$9.70 \mathrm{E}-01$	$9.71 \mathrm{E}-01$	$9.67 \mathrm{E}-01$	$9.75 \mathrm{E}-01$	$9.91 \mathrm{E}-01$	$9.93 \mathrm{E}-01$	$9.99 \mathrm{E}-01$	$9.73 \mathrm{E}-01$	$9.75 \mathrm{E}-01$	$9.74 \mathrm{E}-01$
	PCB 28			PCB 52			PCB 101					
replicate	1	2	3	1	2	3	1	2	3			
k	-8.96E-03	-1.13E-02	-1.16E-02	-1.34E-02	-1.34E-02	-1.33E-02	-5.46E-03	-6.85E-03	-6.61E-03			
B	$0.00 \mathrm{E}+00$											
$k_{\text {b }}$	$0.00 \mathrm{E}+00$											
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$9.08 \mathrm{E}+01$	$8.76 \mathrm{E}+01$	8.81E+01	$9.13 \mathrm{E}+01$	$9.13 \mathrm{E}+01$	$9.15 \mathrm{E}+01$	$9.86 \mathrm{E}+01$	$9.63 \mathrm{E}+01$	$9.62 \mathrm{E}+01$			
R^{2}	$9.40 \mathrm{E}-01$	$9.18 \mathrm{E}-01$	$9.36 \mathrm{E}-01$	$9.53 \mathrm{E}-01$	$9.53 \mathrm{E}-01$	$9.63 \mathrm{E}-01$	$9.84 \mathrm{E}-01$	$9.81 \mathrm{E}-01$	$9.85 \mathrm{E}-01$			
	PCB 118			PCB 138			PCB 153					
replicate	1	2	3	1	2	3	1	2	3			
k	-2.51E-03	-2.97E-03	-2.85E-03	-1.51E-03	-2.02E-03	-1.93E-03	-2.11E-03	-2.75E-03	-2.62E-03			
B	$0.00 \mathrm{E}+00$											
$k_{\text {b }}$	$0.00 \mathrm{E}+00$											
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$9.81 \mathrm{E}+01$	$9.71 \mathrm{E}+01$	$9.68 \mathrm{E}+01$	$9.93 \mathrm{E}+01$	$9.87 \mathrm{E}+01$	$9.84 \mathrm{E}+01$	$9.93 \mathrm{E}+01$	$9.84 \mathrm{E}+01$	$9.80 \mathrm{E}+01$			
R^{2}	$9.87 \mathrm{E}-01$	$9.85 \mathrm{E}-01$	$9.86 \mathrm{E}-01$	$9.78 \mathrm{E}-01$	$9.85 \mathrm{E}-01$	$9.88 \mathrm{E}-01$	$9.80 \mathrm{E}-01$	$9.84 \mathrm{E}-01$	$9.88 \mathrm{E}-01$			
248												

249 Table S8: Values for $k\left(\% h^{-1}\right), B(\%), k_{\mathrm{b}}\left(\% h^{-1}\right), I_{\mathrm{o}}(\%)$ and R^{2} for all chemicals 250 involved in the K_{OC} experiments at $10^{\circ} \mathrm{C}$.

| 10 oC | D_{4} | | | D_{5} | | D_{6} | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| replicate | 1 | 2 | 3 | 1 | 2 | 3 | 1 | 2 | 3 |
| k | $-5.58 \mathrm{E}-02$ | $-3.41 \mathrm{E}-02$ | $-1.07 \mathrm{E}-01$ | $-1.29 \mathrm{E}-02$ | $-1.40 \mathrm{E}-02$ | $-1.17 \mathrm{E}-02$ | $-9.80 \mathrm{E}-04$ | $-7.87 \mathrm{E}-04$ | $-7.36 \mathrm{E}-04$ |
| B | $2.86 \mathrm{E}-01$ | $0.00 \mathrm{E}+00$ | $5.44 \mathrm{E}-03$ | $7.70 \mathrm{E}+00$ | $3.31 \mathrm{E}+00$ | $5.92 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $1.05 \mathrm{E}-01$ |
| k_{b} | $-1.26 \mathrm{E}-01$ | $-1.70 \mathrm{E}-01$ | $-4.46 \mathrm{E}-04$ | $-2.73 \mathrm{E}-02$ | $-1.76 \mathrm{E}-01$ | $-1.21 \mathrm{E}-01$ | $0.00 \mathrm{E}+00$ | $0.00 \mathrm{E}+00$ | $-3.32 \mathrm{E}-03$ |
| $\mathrm{~b}_{0}$ | $0.00 \mathrm{E}+00$ |
| I_{0} | $9.95 \mathrm{E}+01$ | $1.00 \mathrm{E}+02$ | $1.08 \mathrm{E}+02$ | $8.41 \mathrm{E}+01$ | $8.72 \mathrm{E}+01$ | $8.68 \mathrm{E}+01$ | $9.17 \mathrm{E}+01$ | $9.28 \mathrm{E}+01$ | $9.78 \mathrm{E}+01$ |
| R^{2} | $9.97 \mathrm{E}-01$ | $9.57 \mathrm{E}-01$ | $9.98 \mathrm{E}-01$ | $9.96 \mathrm{E}-01$ | $9.78 \mathrm{E}-01$ | $9.83 \mathrm{E}-01$ | $9.84 \mathrm{E}-01$ | $9.21 \mathrm{E}-01$ | $9.87 \mathrm{E}-01$ |

	L_{4}			L5			1,4-DCB			a-HCH		
replicate	1	2	3	1	2	3	1	2	3	1	2	3
k	-4.88E-03	-4.56E-03	-7.72E-03	-8.67E-04	-4.05E-04	-6.28E-04	-1.64E-01	-1.74E-01	-2.07E-01	-7.02E-04	-4.88E-04	-6.95E-04
B	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$1.05 \mathrm{E}-01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.57 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$
$k_{\text {b }}$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-5.11E-02	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-3.32E-03	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-2.16E-01	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-9.63E-03
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$8.40 \mathrm{E}+01$	$7.71 \mathrm{E}+01$	$9.18 \mathrm{E}+01$	$8.97 \mathrm{E}+01$	$9.15 \mathrm{E}+01$	$9.70 \mathrm{E}+01$	$9.00 \mathrm{E}+01$	$9.57 \mathrm{E}+01$	$1.05 \mathrm{E}+02$	$9.92 \mathrm{E}+01$	$9.94 \mathrm{E}+01$	$9.98 \mathrm{E}+01$
R^{2}	$9.49 \mathrm{E}-01$	$9.95 \mathrm{E}-01$	$9.59 \mathrm{E}-01$	$9.85 \mathrm{E}-01$	$9.87 \mathrm{E}-01$	$9.85 \mathrm{E}-01$	$9.87 \mathrm{E}-01$	$9.93 \mathrm{E}-01$	$1.00 \mathrm{E}+00$	$9.79 \mathrm{E}-01$	$9.67 \mathrm{E}-01$	$9.93 \mathrm{E}-01$

	PCB 28			PCB 52			PCB 101		
replicate	1	2	3	1	2	3	1	2	3
k	-7.53E-03	-6.54E-03	-6.51E-03	-6.98E-03	-6.51E-03	-6.62E-03	-2.19E-03	-1.80E-03	-1.81E-03
B	$0.00 \mathrm{E}+00$								
$k_{\text {b }}$	$0.00 \mathrm{E}+00$								
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$								
Io	$9.70 \mathrm{E}+01$	$9.74 \mathrm{E}+01$	$9.61 \mathrm{E}+01$	$9.82 \mathrm{E}+01$	$9.90 \mathrm{E}+01$	$9.77 \mathrm{E}+01$	$1.00 \mathrm{E}+02$	$9.94 \mathrm{E}+01$	$9.91 \mathrm{E}+01$
R^{2}	$9.92 \mathrm{E}-01$	$9.86 \mathrm{E}-01$	$9.78 \mathrm{E}-01$	$9.98 \mathrm{E}-01$	$9.96 \mathrm{E}-01$	$9.92 \mathrm{E}-01$	$9.94 \mathrm{E}-01$	$9.99 \mathrm{E}-01$	$9.96 \mathrm{E}-01$
	PCB 118			PCB 138			PCB 153		
replicate	1	2	3	1	2	3	1	2	3
k	-8.57E-04	-8.20E-04	-8.25E-04	-5.09E-04	-4.92E-04	-5.13E-04	-6.71E-04	-6.46E-04	-6.45E-04
B	$0.00 \mathrm{E}+00$								
$k_{\text {b }}$	$0.00 \mathrm{E}+00$								
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$								
Io	$9.79 \mathrm{E}+01$	$9.79 \mathrm{E}+01$	$9.78 \mathrm{E}+01$	$9.95 \mathrm{E}+01$	$9.95 \mathrm{E}+01$	$9.97 \mathrm{E}+01$	$9.80 \mathrm{E}+01$	$9.80 \mathrm{E}+01$	$9.75 \mathrm{E}+01$
R^{2}	$9.85 \mathrm{E}-01$	$9.90 \mathrm{E}-01$	$9.86 \mathrm{E}-01$	$9.86 \mathrm{E}-01$	$9.93 \mathrm{E}-01$	$9.89 \mathrm{E}-01$	$9.81 \mathrm{E}-01$	$9.86 \mathrm{E}-01$	$9.86 \mathrm{E}-01$

252 Table S9: Values for $k\left(\% h^{-1}\right), B(\%), k_{\mathrm{b}}\left(\% h^{-1}\right), I_{\mathrm{o}}(\%)$ and R^{2} for all chemicals

253 involved in the $K_{\text {OC }}$ experiments at $5^{\circ} \mathrm{C}$.

$5^{\circ} \mathrm{C}$	D4			D5			D6					
replicate	1	2	3	1	2	3	1	2	3			
k	-3.50E-02	-8.43E-03	-1.06E-02	-8.69E-03	-5.23E-03	-6.26E-03	-4.34E-04	-1.04E-03	-3.54E-04			
B	$2.00 \mathrm{E}+01$	$2.00 \mathrm{E}+01$	$5.44 \mathrm{E}-03$	$2.00 \mathrm{E}+01$	$5.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$1.05 \mathrm{E}-01$			
$k_{\text {b }}$	-4.87E-02	$-1.00 \mathrm{E}+00$	-4.46E-04	-1.94E-02	$-1.00 \mathrm{E}+00$	$-1.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-3.32E-03			
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$8.94 \mathrm{E}+01$	$7.60 \mathrm{E}+01$	8.13E+01	$9.88 \mathrm{E}+01$	$8.87 \mathrm{E}+01$	$9.58 \mathrm{E}+01$	$9.99 \mathrm{E}+01$	$9.98 \mathrm{E}+01$	$9.99 \mathrm{E}+01$			
R^{2}	$9.72 \mathrm{E}-01$	7.75E-01	$8.19 \mathrm{E}-01$	$9.97 \mathrm{E}-01$	$8.70 \mathrm{E}-01$	$9.42 \mathrm{E}-01$	$9.86 \mathrm{E}-01$	$9.87 \mathrm{E}-01$	$9.91 \mathrm{E}-01$			
	L4			L5			1,4-DCB			a-HCH		
replicate	1	2	3	1	2	3	1	2	3	1	2	3
k	-5.80E-03	-4.05E-03	-4.96E-03	-5.63E-04	-1.32E-03	-5.76E-04	-8.10E-02	-8.71E-02	-8.90E-02	-3.19E-04	-2.17E-04	-3.66E-04
B	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$1.01 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	$2.00 \mathrm{E}+01$
$k_{\text {b }}$	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-2.03E-02	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-1.84E-02	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-4.91E-01	$0.00 \mathrm{E}+00$	$0.00 \mathrm{E}+00$	-1.48E-02
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$9.65 \mathrm{E}+01$	$8.94 \mathrm{E}+01$	$9.66 \mathrm{E}+01$	$9.94 \mathrm{E}+01$	$9.81 \mathrm{E}+01$	$9.96 \mathrm{E}+01$	$9.33 \mathrm{E}+01$	$8.93 \mathrm{E}+01$	$9.73 \mathrm{E}+01$	$1.00 \mathrm{E}+02$	$9.99 \mathrm{E}+01$	$1.00 \mathrm{E}+02$
R^{2}	$9.91 \mathrm{E}-01$	$9.14 \mathrm{E}-01$	$9.64 \mathrm{E}-01$	$9.86 \mathrm{E}-01$	$9.74 \mathrm{E}-01$	$9.96 \mathrm{E}-01$	$9.99 \mathrm{E}-01$	$9.98 \mathrm{E}-01$	$9.98 \mathrm{E}-01$	$9.81 \mathrm{E}-01$	$9.71 \mathrm{E}-01$	$9.78 \mathrm{E}-01$
	PCB 28			PCB 52			PCB 101					
replicate	1	2	3	1	2	3	1	2	3			
k	-6.17E-03	-4.84E-03	-5.20E-03	-6.19E-03	-4.78E-03	-5.24E-03	-2.78E-03	-2.15E-03	-2.43E-03			
B	$0.00 \mathrm{E}+00$											
$k_{\text {b }}$	$0.00 \mathrm{E}+00$											
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$1.00 \mathrm{E}+02$	$9.91 \mathrm{E}+01$	$9.85 \mathrm{E}+01$	$1.00 \mathrm{E}+02$	$9.91 \mathrm{E}+01$	$9.85 \mathrm{E}+01$	$9.91 \mathrm{E}+01$	$9.86 \mathrm{E}+01$	$9.81 \mathrm{E}+01$			
R^{2}	$9.88 \mathrm{E}-01$	$9.85 \mathrm{E}-01$	$9.74 \mathrm{E}-01$	$9.89 \mathrm{E}-01$	$9.86 \mathrm{E}-01$	$9.79 \mathrm{E}-01$	$9.85 \mathrm{E}-01$	$9.81 \mathrm{E}-01$	$9.78 \mathrm{E}-01$			
	PCB 118			PCB 138			PCB 153					
replicate	1	2	3	1	2	3	1	2	3			
k	-1.26E-03	-1.07E-03	-1.21E-03	-9.23E-04	-7.69E-04	-9.38E-04	-1.20E-03	-1.01E-03	-1.17E-03			
B	$0.00 \mathrm{E}+00$											
$k_{\text {b }}$	$0.00 \mathrm{E}+00$											
$\mathrm{b}_{\text {o }}$	$0.00 \mathrm{E}+00$											
Io	$9.80 \mathrm{E}+01$	$9.80 \mathrm{E}+01$	$9.75 \mathrm{E}+01$	$9.82 \mathrm{E}+01$	$9.82 \mathrm{E}+01$	$9.76 \mathrm{E}+01$	$9.82 \mathrm{E}+01$	$9.81 \mathrm{E}+01$	$9.75 \mathrm{E}+01$			
R^{2}	$9.67 \mathrm{E}-01$	$9.54 \mathrm{E}-01$	$9.49 \mathrm{E}-01$	$9.50 \mathrm{E}-01$	$9.31 \mathrm{E}-01$	$9.39 \mathrm{E}-01$	$9.65 \mathrm{E}-01$	$9.52 \mathrm{E}-01$	$9.47 \mathrm{E}-01$			
254												

Table S10: Averages and standard deviations of $M T C a$ and $M T C \mathrm{w}$ values for each experiment.

		$M T C a$	$M T C W$
$25^{\circ} \mathrm{C}$	average	$1.930 \mathrm{E}+00$	$3.626 \mathrm{E}-02$
	SD	$4.444 \mathrm{E}-01$	$6.695 \mathrm{E}-03$
$15{ }^{\circ} \mathrm{C}$	average	$4.298 \mathrm{E}+00$	$1.330 \mathrm{E}-02$
	SD	$2.351 \mathrm{E}-01$	$5.800 \mathrm{E}-03$
$10^{\circ} \mathrm{C}$	average	$2.877 \mathrm{E}+00$	$2.079 \mathrm{E}-02$
	SD	$5.945 \mathrm{E}-01$	$2.861 \mathrm{E}-03$
$5{ }^{\circ} \mathrm{C}$	average	$2.312 \mathrm{E}+00$	$9.439 \mathrm{E}-03$
	SD	$6.116 \mathrm{E}-01$	$6.652 \mathrm{E}-04$

Table S11: Measured $\log K_{\mathrm{OC}}(n=3)$ for all chemicals at four different temperatures $\left(25,15,10\right.$ and $\left.5^{\circ} \mathrm{C}\right)$. The standard errors of the measurements are shown in parentheses.

	$\log K_{\mathrm{OC}}$							
	$25^{\circ} \mathrm{C}$	SE	$15^{\circ} \mathrm{C}$	SE	$10^{\circ} \mathrm{C}$	SE	$5{ }^{\circ} \mathrm{C}$	SE
D4	5.20	(0.08)	5.28	(0.07)	5.34	(0.22)	6.38	(0.25)
D5	6.20	(0.07)	6.16	(0.02)	6.53	(0.09)	6.79	(0.07)
D6	7.32	(0.13)	7.38	(0.04)	7.72	(0.08)	7.91	(0.15)
L4	6.01	(0.18)	6.62	(0.10)	6.54	(0.08)	6.93	(0.05)
L5	7.12	(0.05)	7.74	(0.08)	7.52	(0.10)	7.76	(0.12)
PCB28	5.11	(0.08)	5.84	(0.04)	5.61	(0.03)	6.08	(0.04)
PCB52	5.15	(0.08)	5.63	(0.00)	5.51	(0.01)	5.93	(0.05)
PCB101	5.35	(0.04)	5.65	(0.04)	5.71	(0.03)	5.87	(0.05)
PCB118	5.69	(0.03)	5.98	(0.03)	6.00	(0.01)	6.19	(0.03)
PCB138	5.68	(0.03)	5.97	(0.04)	6.02	(0.01)	6.08	(0.04)
PCB153	5.87	(0.03)	6.07	(0.04)	6.15	(0.01)	6.23	(0.03)

Table S12: Half-lives for VMS used in the calculations of K_{Oc}.

T (oC)	D_{4} half-life (d)	D_{5} half-life (d)	D_{6} half-life (d)	L_{4} half-life	L_{5} half-life
25	4^{a}	74^{a}	401^{c}	74	$(\mathrm{~d})^{\mathrm{d}}$

a Data calculated by Environment Canada ${ }^{11-13}$ based on measurements in an unpublished report by Kozerski. ${ }^{\text {b }}$ Read-across calculations in this study. ${ }^{\text {cRead- }}$ across calculations by Environment Canada. dDue to the lack of data for L_{4} and L_{5}, we used the corresponding half-lives for D_{5} and D_{6}.

References

(1) Panagopoulos, D.; Jahnke, A.; Kierkegaard, A.; MacLeod M. Organic Carbon/Water and Dissolved Organic Carbon/Water Partitioning of Cyclic Volatile Methylsiloxanes: Measurements and Polyparameter Linear Free Energy Relationships. Environ. Sci. Technol. 2015, 49, 12161-12168.
(2) Panagopoulos, D.; Kierkegaard, A.; Jahnke, A.; MacLeod, M. Evaluating the Salting-Out Effect on the Organic Carbon/Water Partition Ratios (Koc and KDoc) of Linear and Cyclic Volatile Methylsiloxanes: Measurements and Polyparameter Free Energy Relationships. J. Chem. Eng. Data, 2016, 61, 30983108.
(3) Whelan, M. J.; Sanders, D.; van Egmond, R. Effect of Aldrich Humic Acid on Water-Atmosphere Transfer of Decamethylcyclopentasiloxane. Chemosphere 2009, 74, 1111-1116.
(4) Whelan, M. J.; van Egmond, R.; Gore, D.; Sanders, D. Dynamic Multi-Phase Partitioning of Decamethylcyclopentasiloxane (D5) in River Water. Water Res. 2010, 44, 3679-3686.
(5) Endo, S.; Goss, K.-U. Predicting Partition Coefficients of Polyfluorinated and Organosilicon Compounds Using Polyparameter Linear Free Energy Relationships (PP-LFERs). Environ. Sci. Technol. 2014, 48, 2776-2784.
(6) Brown, T. N.; Wania, F. Development and Exploration of an Organic Contaminant Fate Model Using Poly-Parameter Linear Free Energy Relationships. Environ. Sci. Technol. 2009, 43, 6676-6683.
(7) Bahadur, N.P.; Shiu, W.-Y.; Boocock, D.G.B.; Mackay, D. Temperature Dependence of Octanol-Water Partition Coefficient for Selected Chlorobenzenes. J. Chem. Eng. Data 1997, 42, 685-688.
(8) Paschke, A.; Schüürmann, G. Octanol/Water Partitioning of four HCH Isomers at 5, 25, and $45^{\circ} \mathrm{C}$. Fresenius Envir. Bull. 1998, 7, 258-263.
(9) Seth, R.; Mackay, D.; Muncke, J. Estimating the Organic Carbon Partition Coefficient and its Variability for Hydrophobic Chemicals. Environ. Sci. Technol. 1999, 33, 2390-2394.
(10) Mackay, D.; Shiu, W. Y.; Ma, K. C. Illustrated Handbook of PhysicalChemical Properties and Environmental Fate for Organic Chemicals, 2nd ed.; Lewis Publishers: Chelsea, MI, 1992.
(11) Environment Canada. Screening Assessment for the Challenge Octamethylcyclotetrasiloxane. Chemical abstracts service registry number 556-67-2. Environment Canada 2008 (Available online: http://www.ec.gc.ca/ese-ees/default.asp?lang=En\&n=2481B508-1 , latest access: 02.05.2017).
(12) Environment Canada. Screening Assessment for the Challenge

Decamethylcyclopentasiloxane. Chemical abstracts service registry number 541-02-6. Environment Canada 2008 (Available online:
http://www.ec.gc.ca/ese-ees/default.asp?lang=En\&n=13CC261E-1\#a4 , latest access: 02.05.2017).
(13) Environment Canada. Screening Assessment for the Challenge Dodecamethylcyclohexasiloxane. Chemical abstracts service registry number 540-97-6. Environment Canada 2008 (Available online:
http://www.ec.gc.ca/ese-ees/default.asp?lang=En\&n=FCOD11E7-1\#a9, latest access: 02.05.2017).

