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We detail here the construction of the 6D-PES and the dynamical calculations of kinetic energy

distributions (KEDs), rotational energy distributions (REDs), vibrational state populations (VSDs)

and anisotropy parameters (APs). Fig. X and Fig. SX refer to the Xth figures of the letter and the

present document, respectively.

Potential energy surface

The S1 PES by Klossika and Schinke (KS)1 is a five-dimensional function corresponding to all

atoms confined to a plane. This function was fitted toab-initio calculations, performed using the

multi-reference configuration-interaction method with triple-zeta basis set. The KS-PES depends

on the five coordinates (rHN, rNC, rCO,α ,β ) represented in Fig. 1. The dyhedral or torsion angleγ is

chosen equal toπ for thetransconfiguration displayed in this figure. The rationale for constraining

the five atoms to a plane is that for any fixed values of the previous coordinates in the strong

coupling region, the dependence of the potential energy onγ involves two minima atγ equal 0 and

π, i.e., for planar geometries. Moreover, the equilibrium geometry in the electronic ground state

S0 is also planar. Consequently, if the system is optically excited from the equilibrium geometry

of S0 with the nuclei at rest, up to the excited state S1, it is expected to keep planar throughout the

whole fragmentation. This is, however, a classical picture neglecting the zero point energy (ZPE)

along theγ coordinate. Quantum mechanically, out-of-plane motions cannot be frozen, and these

can possibly be amplified during the dissociation.

With the aim of improving the realism of our simulations, we have thus deduced a six-dimensional

function from the KS-PES which now depends onγ and is expected to semi-quantitatively account

for the previous out-of-plane motions. This extension is based on the following reasoning: it is

clear from Fig. 4 of ref. 1 that immediately after the photon absorption, strong torques are ex-

pected to quickly drive the system from the equilibrium geometry of S0, for which α ≈ 172◦,

towards thetransor cis minima of S1, for which α ≈ 125.4◦ and 231◦, respectively, with a con-

comitent increase ofrNC. In a second step corresponding to barrier crossing at a more moderate
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speed,α is expected to oscillate around the previous values over a large portion of the dissociation

path. Fig. 6 of ref. 1 suggests thatβ should roughly behave asα. It thus makes sense to approxi-

mate the full-dimensional PES by the sum of (i) the KS-PES and (ii) a term depending mainly on

γ andrNC fitted toab-initio calculations (see further below) with the rest of the coordinates kept

at the values of thetrans or cis minima. This term must be equal to 0 forγ equal 0 andπ, so

the full-dimensional PES matches the KS-PES for planar configurations. These requirements are

fulfilled by the following expression:

V(r ,γ) = S(γ)V0(r ,γ)+ [1−S(γ)]Vπ(r ,γ) (1)

with

V0(r ,γ) = VKS
0 (r)+VTorsion

0 (γ , rNC)(sinαsinβ )
1
4 , (2)

Vπ(r ,γ) = VKS
π (r)+VTorsion

π (γ , rNC)(sinαsinβ )
1
4 , (3)

VTorsion
0 (γ , rNC) = VTorsion(γ, rNC)−VTorsion(0, rNC), (4)

VTorsion
π (γ , rNC) = VTorsion(γ , rNC)−VTorsion(π, rNC) (5)

and

S(γ) =
e−δ (γ−π/2)

eδ (γ−π/2) +e−δ (γ−π/2)
. (6)

r is vector (rHN, rNC, rCO,α,β ). VKS
π (r) is the KS-PES. In ref. 1,α andβ both belong to the range

[0,2π]. However, introducingγ now limits α andβ to the range[0,π]. VKS
π (r) is thus the KS-PES

for thetransconfiguration (γ equalπ). VKS
0 (r), the KS-PES for thecis configuration (γ equal 0),

is deduced fromVKS
π (r) by

VKS
0 (r) = VKS

π (r̄) (7)

where r̄ is vector (rHN, rNC, rCO,α ,2π − β ). VTorsion(γ , rNC) is the torsional term depending on

γ andrNC fitted to ab-initio calculations (see further below) withrHN, rCO, α andβ kept at the

values corresponding to thetrans or cis minima (in the (rHN, rNC, rCO,α ,β ,γ) space)). These
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values are not the same for the two minima, but are very close. For simplicity’s sake, we have thus

taken the average of both sets of values.V0(r ,γ) andVπ(r ,γ) are the six-dimensional extensions

of the KS-PES in the neighborhood of thetrans and cis planar geometries, respectively. The

factor(sinαsinβ )
1
4 has been introduced in order to cancel the torsional contribution to the potential

wheneverα or β take the value 0. The power one fourth makes the previous factor close to one

for any value ofα or β not too close to 0 andπ. Finally, S(γ) is a switching function ensuring a

smooth transition betweenV0(r ,γ) andVπ(r ,γ) aroundγ equalπ/2.

For the calculation of theVTorsion(γ , rNC) term in Eqs. (4) and (5), we employed the equation-

of-motion coupled-cluster approach2 (EOM-CC) applied to the coupled-cluster singles and dou-

bles3 (CCSD) model, where excited state energies have been obtained by solving the EOM-CC

right eigenvalue equations. The atomic basis set adopted in this study is the aug-cc-pVTZ set

of Dunning and co-workers.4,5 These computations have been carried out with the MOLPRO6

(2012.1 version) package ofab-initio programs. For the S1 state, the EOM-CC energies should be

accurate within 0.1-0.3 eV (in absolute values).

Dynamical calculations

The dynamical calculations were performed by means of a homemade code. The rotational angular

momentum of HNCO was assumed to be 0, as is mostly the case in the experiment of Yang and

co-workers.7,8 In a first step, we determined the transformation from normal mode to Cartesian

coordinates around the equilibrium geometry of HNCO in S0, previously stated to be planar. The

Cartesian coordinates (x,y,z) are kept along the principle axes of inertia of HNCO in the previous

geometry (see Fig. 1).x andy are chosen to lie within the HNCO plane.z is thus orthogonal to

this plane. (x,y,z) is a body-fixed frame. The state of HNCO before the optical excitation, i.e., the

vibrational ground state in S0, was expressed as a product of six Gaussian functions, each depend-

ing on one of the normal mode coordinates. The Wigner distribution associated with the previous

state turns out to be a product of twelve Gaussians, each depending on one of the normal mode
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coordinates or their conjugate momenta.9 Following Goursaudet al.,10 the initial normal mode

coordinates and momenta were selected by importance sampling according to the previous Wigner

distribution (see also ref. 9). The transformation from normal mode to Cartesian coordinates was

used to generate the 12 Cartesian coordinates of the four atoms as well as their 12 conjugate mo-

menta. These 24 phase space coordinates served as initial conditions of the trajectories that were

run by using the 4th-order Runge-Kutta integrator11 on the modified KS-PES (see Eqs. (1)-(7))

until they reached the products. In practice, trajectories were stopped atrNC = 8.5 bohr, where

1NH and CO no longer interact. From the final conditions, we calculated the following trajectory

outcomes: (i) the kinetic or translational energyET , (ii) the vibrational actionsaNH andaCO of the

free diatom1NH and CO (see Appendix A in ref. 12), (iii) their rotational angular momentaJNH

andJCO in h̄ unit and (iv) the modulousv of the relative velocity vector and its projectionvz on

thez-axis. We show in the three next subsections how the KEDs, VSPs and APs are deduced from

the previous quantities. In the next developments,nint(x) andint(x) are, respectively, the nearest

integer and real part ofx.

Kinetic energy distributions

CO as co-product

We first focus on the case where the co-product is CO.8 The pair-correlated KED, calledP(ET)

in the following, is measured for1NH in quantum state (nNH, jNH). Call N the total number of

trajectories run. We consider the same range [0, 9000 cm−1] as Zhanget al.8 (see Fig. 4), and

divide it in 100 bins 90 cm−1 wide (this number is of course arbitrary). The discretized form of

P(ET) is then given by the probabilitiesPi thatET belongs to the range [90(i−1),90i], i = 1−100,

the final quantum state of1NH being(nNH, jNH). Within GB-CTM, these probabilities read

Pi ∝
N

∑
k=1

Gε(a
k
NH−nNH) Bk

jNH
Bik

KE

nmax
CO

∑
nCO=0

Gε(a
k
CO−nCO). (8)
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The left-hand sum is over the whole set of trajectories. The right-hand sum is over the available

vibrational states of CO. CallingJk
NH the value ofJNH for the kth trajectory,Bk

jNH
is a Boolean

variable equal to one ifJk
NH belongs to the range [jNH, jNH + 1], zero otherwise.Bik

KE is also a

Boolean variable equal to one if the kinetic energyEk
T for thekth trajectory lies within theith bin,

zero in the contrary case. Setting

Gε(x) =
1

π1/2ε
exp

[

−
(x

ε

)2
]

, (9)

Gε(ak
NH−nNH) andGε(ak

CO−nCO) are Gaussian weights12 ensuring Bohr’s condition of vibra-

tional quantization of1NH and CO.ak
NH andak

CO are the values ofaNH andaCO for thekth trajec-

tory. These weights are normalized to unity (integratingGε(x) overx leads to 1). The full-width-

at-half-maximum (FWHM) of Gaussian weights is equal to 2(ln2)1/2ε. As previously stated,

Bohr’s condition of quantization assigns an infinite statistical weight to those classical trajectories

reaching the products with integer values of bothaNH andaCO, while this weight is zero for the re-

maining paths. In other words, a strict application of Bohr quantization rule would require keeping

ε at 0, thereby making the right-hand sum of Eq. (8) a Dirac comb. This would, however, render

the calculations unfeasible, since the set of trajectories leading to integer actions is of zero mea-

sure. Generally,ε is kept at 0.06, corresponding to a FWHM of 10 %, a reasonably small value as

compared to the unit spacing between two neighbouring Gaussians in the comb. Since Gaussians

do not overlap, Eq. (8) can be simplified to

Pi ∝
N

∑
k=1

Gε(a
k
NH−nNH) Gε(a

k
CO−nint

(
ak

CO

)
) Bk

jNH
Bik

KE. (10)

At this point, a comment on the experimental measurement ofP(ET) is in order. CallE the total

energy available to the final products1NH and CO. In an ideal experiment where perfect control of

bothE and the measurement ofET would be achieved,ET , equal toE minus the quantized internal

energy of the products, would also be quantized. Consequently,P(ET) would be given by a set of

Dirac peaks with given weights. In our calculations, however, we pseudo-quantize the vibrational
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motions of1NH and CO through the GB procedure, but not their rotational motions.P(ET) is

thus a rough approximation of what would be observed if inaccuracies in the measurements would

introduce a blurring of the peaks slightly exceeding the average spacing between them. In reality,

however, the blurring is much larger, for reagent states, beam collimation, etc, are not fully con-

trolled and VMI itself significantly contributes to the blurring. We thus take this into account in

the calculation of KEDs through the Gaussian convolution

Pc(ET) =
∫

dE′T Gη(E′T −ET) P(E′T). (11)

The discretized form ofPc(ET), thus, reads

Pi
c ∝

N

∑
k=1

Gε(a
k
NH−nNH) Gε(a

k
CO−nint

(
ak

CO

)
) Bk

jNH

100

∑
j=1

Bjk
KE Gη(90( j− i)). (12)

The value ofη is chosen so as to reproduce as satisfyingly as possible the experimental KEDs at

the threshold and cut-off. The theoretical KEDs in Fig. 4 have been calculated from Eq. (12).

1NH as co-product

The 1NH co-product case7 involves developments similar to the previous ones, but requires an

additional quantum constraint in order to reproduce the experimentally observed rotational resolu-

tion (see right-panels in Fig. 3). In an ideal experiment where perfect energy resolution would be

achieved, the dashed curves in the previous panels would reduce to Dirac peaks, located at values

of ET corresponding to the teeth of the combs displayed in Fig. 3. In our GB-CTM calculations,

however, rotational motions are classically treated, thus implying thatET is not quantized. Nev-

ertheless, the quantum valueEQM
T of the kinetic energy to which a given trajectory is expected to

contribute can be straightforwardly deduced from the trajectory outcomesET , aNH, aCO, JNH and

JCO. The deduction is as follows: the trajectory leading toaNH, aCO, JNH andJCO is supposed

to contribute to the quantum state (nint(aNH), nint(aCO), int(JNH), int(JCO)) with the Gaussian

weight Gε(aNH − nint(aNH)) Gε(aCO− nint(aCO)). Within the rigid rotor harmonic oscillator
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(RRHO) approximation, the quantum valueEQM
T of the kinetic energy consistent with the previous

state satisfies the identity

E = EQM
T +EQM

NH +EQM
CO (13)

with

EQM
NH = h̄ωNH

[

nint (aNH)+
1
2

]

+
h̄2int (JNH) [int (JNH)+1]

2mNHre
NH

2 (14)

and

EQM
CO = h̄ωCO

[

nint (aCO)+
1
2

]

+
h̄2int (JCO) [int (JCO)+1]

2mCOre
CO

2 . (15)

ωNH andωCO are the vibrational frequencies of1NH and CO,mNH andmCO are their reduced

masses andre
NH andre

CO are their equilibrium bond lengths. Besides, the classical valueET satisfies

(still within the RRHO approximation)

E = ET +ECM
NH +ECM

CO (16)

with

ECM
NH = h̄ωNH

(

aNH +
1
2

)

+
h̄2J2

NH

2mNHre
NH

2 (17)

and

ECM
CO = h̄ωCO

(

aCO+
1
2

)

+
h̄2J2

CO

2mCOre
CO

2 . (18)

From Eqs. (13) and (16), we thus arrive at

EQM
T = ET +ECM

NH −EQM
NH +ECM

CO −EQM
CO . (19)

Eqs. (14), (15), (17)-(19) are the expected relations giving the dependence ofEQM
T on ET , aNH,

aCO, JNH and JCO. Since Eq. (19) is only approximate, we have found that for a given state

(nint(aNH), nint(aCO), int(JNH), int(JCO)), the value ofEQM
T fluctuates around the unique value

that it should in principle take. However, the range of fluctuation is sufficiently narrow to make the

uncertainty onEQM
T reasonably small. In other words, our method slightly thicken the teeths of the
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combs displayed in Fig. 3 without making them overlap. One notes, however, that the difference

ECM
NH −EQM

NH + ECM
CO −EQM

CO between the quantum and classical internal energies of1NH and CO

could be rigorously calculated using the exact values of the quantum and classical internal energies

of the final diatom. This would allow to recover the combs in Fig. 3. In the present case, however,

we have not found it necessary to follow this approach owing to the good quality of our predictions.

We now wish to calculate the KEDs measured for1NH and CO in the quantum states (nNH, jNH)

and(nCO, jCO) (see dashed curves in Fig. 3). These KEDs are obtained by repeating the same type

of calculations as in the previous part, but withEQM
T instead ofET . We thus consider the same

range [0, 4000 cm−1] as Wanget al.7 (see Fig. 3), and divide it in 100 bins 40 cm−1 wide. The

GB-CTM probabilitiesPi that EQM
T belongs to the range [40(i − 1),40i], i = 1− 100, the final

quantum states of1NH and CO being(nNH, jNH) and(nCO, jCO), are given by

Pi ∝
N

∑
k=1

Gε(a
k
NH−nNH) Bk

jNH
Gε(a

k
CO−nCO) Bk

jCO
Bik

KE. (20)

The definition of the Boolean terms is the same as in Eq. (8), the only difference being thatEQM
T is

substituted toET in the calculation ofBik
KE. After convolution, we finally arrive at

Pi
c ∝

N

∑
k=1

Gε(a
k
NH−nNH) Bk

jNH
Gε(a

k
CO−nCO) Bk

jCO

100

∑
j=1

Bjk
KE Gη(40( j− i)). (21)

The theoretical dashed KEDs in Fig. 3 have been calculated from Eq. (21). The theoretical solid

curve was obtained by summing the previous ones (sum overjNH). The codes used for these

calculations are available on demand.

Rotational energy distributions

Within the RRHO approximation, the distribution of the rotational energy of CO is given by

Pi ∝
N

∑
k=1

Gε(a
k
CO−nint

(
ak

CO

)
) Gε(a

k
NH−nint

(
ak

NH

)
) Bik

RE. (22)
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Bik
RE is equal to one if the CO rotational energy (right-most term in Eq. (15)) for thekth trajectory

lies within theith previously defined bin (see paragraph before Eq. (8)), zero in the contrary case.

The distribution of the rotational energy of1NH is analogously calculated.

Vibrational state distributions

The population of thenCO state correlated with(nNH, jNH) is given by

PnCO =
∑N

k=1Gε(ak
NH−nNH)Bk

jNH
Gε(ak

CO−nCO)

∑N
k=1Gε(ak

NH−nNH)Bk
jNH

Gε(ak
CO−nint

(
ak

CO

)
)
. (23)

In order to avoid heavy notations,nNH and jNH do not explicitely appear as subscripts or upper-

scripts inPnCO. The population of thenNH state correlated with(nCO, jCO) is given by an analogous

expression. The latter is useless here, however, since only the vibrational ground state of1NH is

available in the experiment of Wanget al.7

Anisotropy parameters

The anisotropy parameterβnCO measured by Zhanget al.8 is given by13

βnCO = 2 < P2(cosθvμ) > . (24)

P2 is the second Legendre polynomial,θvμ is the angle between the velocity vectorv and the tran-

sition dipole momentμμμ in the body-fixed frame (x,y,z), and the average is over the trajectories

contributing to statenCO. As previously outlined, the equilibrium geometry in S0 is planar. Be-

fore the optical excitation, the system is in the vibrational ground state, thus implying that the

amplitude of the vibrational motions around the equilibrium geometry is small. In particular, out-

of-plane motions are reduced. We thus neglect them and assume that HNCO is planar. Within

this reasonable approximation,ab-initio calculations show thatμμμ for the S1← S0 transition is

perpendicular to the HNCO plane. In other words, this moment is parallel to thez-axis. We thus
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have

cosθvμ =
vz

v
. (25)

From Eqs. (24) and (25), the GB-CTM expression ofβnCO reads

βnCO =
2∑N

k=1Gε(ak
NH−nNH)Bk

jNH
Gε(ak

CO−nCO)P2(vk
z/vk)

∑N
k=1Gε(ak

NH−nNH)Bk
jNH

Gε(ak
CO−nCO)

. (26)

Again, nNH and jNH do not explicitely appear as subscripts or upperscripts inβnCO so as to avoid

heavy notations.

Analogously, the anisotropy parameterβ jNH measured by Wanget al.7 for nNH = 0 is given by

β jNH =
2∑N

k=1Gε(ak
NH)Bk

jNH
Gε(ak

CO−nCO)Bk
jCO

P2(vk
z/vk)

∑N
k=1Gε(ak

NH)Bk
jNH

Gε(ak
CO−nCO)Bk

jCO

. (27)

Trajectory calculations of APs for polyatomic fragmentations can also be found in refs. 14 and 15.

Additional results

The distributions of the rotational energies of1NH and CO at 210 and 201 nm are displayed in

Fig. S1. Additional results regarding the KEDs measured in the experiment at 201 nm are provided

in Figs. S2-S4. The GB-CTM VSDs and APs are shown in Fig. S5, to be compared with Fig. 3 in

ref. 8. The distribution of the dihedral angleγ at the TS is represented in Fig. S6.

As previously outlined, theory tends to underestimate APs somehow. One may wonder whether

internal conversion towards the electronic ground state S0, which is ignored in our simulation,

could not improve the predictions. For those trajectories hopping on S0, the lifetime of HNCO

would indeed be much larger, for trajectories would be trapped within a much deeper well than

in S1. Therefore, the anisotropy parameter for these hopping trajectories would be close to 0,

thus making the overall APs larger than∼ -0.9, and hence, in better agreement with experiment.

Another reason why our APs are lower than the experimental ones might be thatμμμ is kept parallel
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to thez-axis of the body-fixed frame in our simulations, which is only an approximation. A more

realistic (though much more involved) treatment would consist in relaxing the previous constraint

by fitting ab-initio calculations of each component ofμμμ by an analytical function. The APs would

then be estimated from Eq. (24) with

cosθvμ =
μxvx + μyvy + μzvz

μv
(28)

instead of Eq. (25). One expects that the distribution ofθvμ aroundπ/2 would be broadened as

compared with the previous treatment, thereby making the APs larger than∼ -0.9. Nevertheless,

Eq. (25) respects the fact that on average, the more excited the internal states of the diatoms, the

larger the AP (see Fig. S5).
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Fig. S 1: GB-CTM product rotational energy distributions. At both wavelengths,1NH is rotation-
ally colder than CO.
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Fig. S 2: GB-CTM kinetic energy distributions at 201 nm for (nNH, jNH) =(0,2) and (0,8).
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Fig. S 3: GB-CTM kinetic energy distributions at 201 nm for (nNH, jNH) =(0,9) and (1,2).
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Fig. S 5: GB-CTM vibrational state distributions and anisotropy parameters at 201 nm.
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Fig. S 6: Distribution of the dihedral angleγ at the exit transition state at 201 nm.
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