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We detail here the construction of the 6D-PES and the dynamical calculations of kinetic energy
distributions (KEDSs), rotational energy distributions (REDs), vibrational state populations (VSDs)
and anisotropy parameters (APs). Fig. X and Fig. SX refer to fAdigures of the letter and the

present document, respectively.

Potential energy surface

The S PES by Klossika and Schinke (KSjs a five-dimensional function corresponding to all
atoms confined to a plane. This function was fitte@einitio calculations, performed using the
multi-reference configuration-interaction method with triple-zeta basis set. The KS-PES depends
on the five coordinatesin, rnc, fco, o, B) represented in Fig. 1. The dyhedral or torsion anygte
chosen equal tar for thetransconfiguration displayed in this figure. The rationale for constraining
the five atoms to a plane is that for any fixed values of the previous coordinates in the strong
coupling region, the dependence of the potential energyiomolves two minima ay equal 0 and
m, i.e., for planar geometries. Moreover, the equilibrium geometry in the electronic ground state
S is also planar. Consequently, if the system is optically excited from the equilibrium geometry
of S with the nuclei at rest, up to the excited staie iSis expected to keep planar throughout the
whole fragmentation. This is, however, a classical picture neglecting the zero point energy (ZPE)
along they coordinate. Quantum mechanically, out-of-plane motions cannot be frozen, and these
can possibly be amplified during the dissociation.

With the aim of improving the realism of our simulations, we have thus deduced a six-dimensional
function from the KS-PES which now dependsyoand is expected to semi-quantitatively account
for the previous out-of-plane motions. This extension is based on the following reasoning: it is
clear from Fig. 4 of ref. 1 that immediately after the photon absorption, strong torques are ex-
pected to quickly drive the system from the equilibrium geometry 9ff& which a ~ 172,
towards theransor cis minima of §, for whicha ~ 125.4 and 232, respectively, with a con-

comitent increase afyc. In a second step corresponding to barrier crossing at a more moderate



speedg is expected to oscillate around the previous values over a large portion of the dissociation
path. Fig. 6 of ref. 1 suggests thatshould roughly behave as. It thus makes sense to approxi-
mate the full-dimensional PES by the sum of (i) the KS-PES and (ii) a term depending mainly on
y andrc fitted to ab-initio calculations (see further below) with the rest of the coordinates kept

at the values of thérans or cis minima. This term must be equal to O fgrequal 0 andr, so

the full-dimensional PES matches the KS-PES for planar configurations. These requirements are

fulfilled by the following expression:

V(r,y) =S(yVo(r,y) +[1—SV)]Vnl(r.y) 1)
with
Vo(r.y) = VES(r) +VZ Ny, re) (sinasinB) )
__\v/KS Torsion : ; 1
Vi(r,y) =V X(r) + Ve Py, rne) (sinasing) 4, 3)
V(;I’orsion( v, rNC) _ VTorsion( v, rNC) _VTorsion(O’ rNC), (4)
V;orsion<y’ rNC) _ VTorsion( v, rNC) _VTorsion( I, rNC) (5)
and
e—5(V_7T/2)
SY) = Sy w2 s edv D (6)

r is vector ¢un,Ine, feo, @, B). VES(r) is the KS-PES. Inref. 1g and both belong to the range
[0,271. However, introducing now limits a and to the rang€0, 71]. VKS(r) is thus the KS-PES
for thetrans configuration { equalmn). VOKS(r), the KS-PES for theis configuration ¢ equal 0),
is deduced fronvXS(r) by

VG (r) = Vi () )

wherer is vector ¢un,Ine,fco, 0, 21— B). VTS y ryc) is the torsional term depending on
y andryc fitted to ab-initio calculations (see further below) withyy, rco, a and kept at the

values corresponding to theans or cis minima (in the (4n,rne, fco, A, B,Y) space)). These



values are not the same for the two minima, but are very close. For simplicity’s sake, we have thus
taken the average of both sets of valueg(r, y) andVy(r,y) are the six-dimensional extensions

of the KS-PES in the neighborhood of theans and cis planar geometries, respectively. The
factor(sinasin[S’)%1 has been introduced in order to cancel the torsional contribution to the potential
whenevera or (3 take the value 0. The power one fourth makes the previous factor close to one
for any value ofa or 3 not too close to 0 and. Finally, S(y) is a switching function ensuring a
smooth transition betweafy(r, y) andVy(r,y) aroundy equalr/2.

For the calculation of th& TSy ryc) term in Egs. (4) and (5), we employed the equation-
of-motion coupled-cluster approachEOM-CC) applied to the coupled-cluster singles and dou-
bles® (CCSD) model, where excited state energies have been obtained by solving the EOM-CC
right eigenvalue equations. The atomic basis set adopted in this study is the aug-cc-pVTZ set
of Dunning and co-worker® These computations have been carried out with the MOLPRO
(2012.1 version) package ab-initio programs. For the Sstate, the EOM-CC energies should be

accurate within 0.1-0.3 eV (in absolute values).

Dynamical calculations

The dynamical calculations were performed by means of a homemade code. The rotational angular
momentum of HNCO was assumed to be 0, as is mostly the case in the experiment of Yang and
co-workers’8 In a first step, we determined the transformation from normal mode to Cartesian
coordinates around the equilibrium geometry of HNCO dgnBeviously stated to be planar. The
Cartesian coordinateg,f/,z) are kept along the principle axes of inertia of HNCO in the previous
geometry (see Fig. 1)x andy are chosen to lie within the HNCO planeis thus orthogonal to

this plane. .y, 2) is a body-fixed frame. The state of HNCO before the optical excitation, i.e., the
vibrational ground state ingSwas expressed as a product of six Gaussian functions, each depend-
ing on one of the normal mode coordinates. The Wigner distribution associated with the previous

state turns out to be a product of twelve Gaussians, each depending on one of the normal mode



coordinates or their conjugate mome#t&ollowing Goursaucet al., 1 the initial normal mode
coordinates and momenta were selected by importance sampling according to the previous Wigner
distribution (see also ref. 9). The transformation from normal mode to Cartesian coordinates was
used to generate the 12 Cartesian coordinates of the four atoms as well as their 12 conjugate mo-
menta. These 24 phase space coordinates served as initial conditions of the trajectories that were
run by using the 4th-order Runge-Kutta integratoon the modified KS-PES (see Egs. (1)-(7))

until they reached the products. In practice, trajectories were stoppeg at 8.5 bohr, where

INH and CO no longer interact. From the final conditions, we calculated the following trajectory
outcomes: (i) the kinetic or translational enefgy, (ii) the vibrational actionsyy andaco of the

free diatom!NH and CO (see Appendix A in ref. 12), (iii) their rotational angular momegia

andJco in h unit and (iv) the modulous of the relative velocity vector and its projectiepon
thez-axis. We show in the three next subsections how the KEDs, VSPs and APs are deduced from
the previous quantities. In the next developmenist(x) andint(x) are, respectively, the nearest

integer and real part of

Kinetic energy distributions
CO as co-product

We first focus on the case where the co-product is€CIhe pair-correlated KED, calleB(Er)

in the following, is measured fofNH in quantum statengn, jnn). Call N the total number of
trajectories run. We consider the same range [0, 9000'tas Zhanget al.2 (see Fig. 4), and
divide it in 100 bins 90 cm?! wide (this number is of course arbitrary). The discretized form of
P(Er) is then given by the probabilitig® thatEt belongs to the range [90- 1), 90i], i = 1— 100,

the final quantum state 8NH being(nny, jnH). Within GB-CTM, these probabilities read

. N . nes
PO Y Ge (alin — nnn) B, BKe > Ge(afo—co)- (8)
=] no=0



The left-hand sum is over the whole set of trajectories. The right-hand sum is over the available
vibrational states of CO. Calling,; the value oflyy for the k" trajectory, B'J-‘NH is a Boolean
variable equal to one i, belongs to the rangejj, jnn + 1], zero otherwise B is also a
Boolean variable equal to one if the kinetic eneEjS,/for the K" trajectory lies within thet" bin,

zero in the contrary case. Setting

6o = arzzexp| - (3) ] ©)

Ge(ay — Nnn) andGg(aly — nco) are Gaussian weighté ensuring Bohr's condition of vibra-

tional quantization ofNH and CO.a,; anda¥, are the values ddyy andaco for the k" trajec-

tory. These weights are normalized to unity (integratBygx) overx leads to 1). The full-width-
at-half-maximum (FWHM) of Gaussian weights is equal t@nz)l/zs. As previously stated,
Bohr’s condition of quantization assigns an infinite statistical weight to those classical trajectories
reaching the products with integer values of batly andaco, while this weight is zero for the re-
maining paths. In other words, a strict application of Bohr quantization rule would require keeping
¢ at 0, thereby making the right-hand sum of Eq. (8) a Dirac comb. This would, however, render
the calculations unfeasible, since the set of trajectories leading to integer actions is of zero mea-
sure. Generallye is kept at 0.06, corresponding to a FWHM of 10 %, a reasonably small value as
compared to the unit spacing between two neighbouring Gaussians in the comb. Since Gaussians

do not overlap, Eq. (8) can be simplified to
P'O S Ge(aliy —nun) Ge (8o — nint (aéo)) BY,, Bie. (10)
K=1

At this point, a comment on the experimental measuremeptf) is in order. CalE the total
energy available to the final produéfsH and CO. In an ideal experiment where perfect control of
bothE and the measurement&f would be achieved;r, equal toE minus the quantized internal
energy of the products, would also be quantized. ConsequéBy,) would be given by a set of

Dirac peaks with given weights. In our calculations, however, we pseudo-quantize the vibrational



motions ofINH and CO through the GB procedure, but not their rotational motidh&r) is

thus a rough approximation of what would be observed if inaccuracies in the measurements would
introduce a blurring of the peaks slightly exceeding the average spacing between them. In reality,
however, the blurring is much larger, for reagent states, beam collimation, etc, are not fully con-
trolled and VMI itself significantly contributes to the blurring. We thus take this into account in

the calculation of KEDs through the Gaussian convolution
Po(Er) = [ dE} Gy (Ef ~ Er) P(ER). (11)

The discretized form of;(E), thus, reads

N 100
RO > Ge(aliy — M) Ge(8¢o — nint (aéo> INH 2 BkE Gn (90(j —1). (12)
=]

The value of] is chosen so as to reproduce as satisfyingly as possible the experimental KEDs at

the threshold and cut-off. The theoretical KEDs in Fig. 4 have been calculated from Eqg. (12).

INH as co-product

The INH co-product caskinvolves developments similar to the previous ones, but requires an
additional quantum constraint in order to reproduce the experimentally observed rotational resolu-
tion (see right-panels in Fig. 3). In an ideal experiment where perfect energy resolution would be
achieved, the dashed curves in the previous panels would reduce to Dirac peaks, located at values
of Er corresponding to the teeth of the combs displayed in Fig. 3. In our GB-CTM calculations,
however, rotational motions are classically treated, thus implyingehas not quantized. Nev-
ertheless, the quantum vallig'\’I of the kinetic energy to which a given trajectory is expected to
contribute can be straightforwardly deduced from the trajectory outc&mesi, aco, Jyn and

Jco. The deduction is as follows: the trajectory leadingai@y, aco, Jny andJco is supposed

to contribute to the quantum stateirft(ann), nint(aco), int(Ink), int(Jco)) with the Gaussian

weight G¢(any — nint(anH)) Ge(aco — nint(acp)). Within the rigid rotor harmonic oscillator



(RRHO) approximation, the quantum valElg'VI of the kinetic energy consistent with the previous

state satisfies the identity

E=Ep"+ B +Eo (13)

with
EQY — Reaun :mm (o) + ﬂ | PPint (J;an)N [::tﬁ(:gm +1) .

and
EQ = haxo :nint (aco) + %} n Rint (J;L [(i)r;tg(c;]zco) +1] (15)

wnh and axo are the vibrational frequencies 8RH and CO,myy andmeo are their reduced
masses ancg, andrg, are their equilibrium bond lengths. Besides, the classical \Ejsatisfies

(still within the RRHO approximation)

E=Er+ESN +ESY (16)
with
1 h2J2
ESM =h ( +—)+¢ 17
NH = NONH | 8NH 15 2TNAIS 2 (17)
and
1 h2J2
&6 = haxo (aco-l- —) +—=0. (18)
2)  2meorgq

From Egs. (13) and (16), we thus arrive at
M M M
EM = Er + EQM — EQY + ESY - EXY. (19)

Egs. (14), (15), (17)-(19) are the expected relations giving the dependeﬁ%v'ocbn Er, anH,

aco, Jnu andJeco. Since Eq. (19) is only approximate, we have found that for a given state
(nint(ann), nint(aco), int(Inn), int(Jco)), the value ofE?'VI fluctuates around the unique value
that it should in principle take. However, the range of fluctuation is sufficiently narrow to make the

uncertainty orE?'vI reasonably small. In other words, our method slightly thicken the teeths of the

8



combs displayed in Fig. 3 without making them overlap. One notes, however, that the difference
EGM — EQN + ESY — EQY between the quantum and classical internal energiésisfand CO
could be rigorously calculated using the exact values of the quantum and classical internal energies
of the final diatom. This would allow to recover the combs in Fig. 3. In the present case, however,
we have not found it necessary to follow this approach owing to the good quality of our predictions.
We now wish to calculate the KEDs measuredfdH and CO in the quantum states, jnH)
and(nco, jco) (see dashed curves in Fig. 3). These KEDs are obtained by repeating the same type
of calculations as in the previous part, but WEﬁM instead ofEr. We thus consider the same
range [0, 4000 cml] as Wanget al.’” (see Fig. 3), and divide it in 100 bins 40 ciwide. The
GB-CTM probabilitiesP' that E?M belongs to the range [40- 1),40i], i = 1— 100, the final

quantum states dNH and CO beingdnyy, jnn) and(nco, jco), are given by
g k k k k pik
PO % Ge(ann —nn) Biy, Ge(aco— Neo) Big, Bxe- (20)

The definition of the Boolean terms is the same as in Eq. (8), the only difference beiﬁﬂﬁa’ﬂ

substituted tdEt in the calculation oBl¥.. After convolution, we finally arrive at

_ N 100
P‘I: - Z Gg(aK‘H _nNH) Blj<NH GE(aéo— Jco Z B G’? 40 J _|)> (21)
k=1

The theoretical dashed KEDs in Fig. 3 have been calculated from Eq. (21). The theoretical solid
curve was obtained by summing the previous ones (sum pug)r. The codes used for these

calculations are available on demand.

Rotational energy distributions

Within the RRHO approximation, the distribution of the rotational energy of CO is given by

. N .
P'O Y Ge(alo—nint (%0)) Ge (@ — nint (aKJH>) BRe: (22)
=



Bi,'gE is equal to one if the CO rotational energy (right-most term in Eq. (15)) fok'theajectory
lies within theit" previously defined bin (see paragraph before Eg. (8)), zero in the contrary case.

The distribution of the rotational energy HfH is analogously calculated.

Vibrational state distributions

The population of theco state correlated witbnyy, jnH) IS given by

Si1Ge(afin — ) B, Ge (8o — Nco)

= . 23
Y1 Ge(akiy _nNH)Blj(NHGs(an_nint (ao)) ~

Nco

In order to avoid heavy notationsyy and jyy do not explicitely appear as subscripts or upper-
scripts inPy.,. The population of they state correlated wittnco, jco) is given by an analogous
expression. The latter is useless here, however, since only the vibrational ground $hiteisf

available in the experiment of Wareg al.’

Anisotropy parameters

The anisotropy parametgr., measured by Zhanet al8is given byt3

Breo =2 < Po(coByy) > . (24)

P, is the second Legendre polynomiél,, is the angle between the velocity vectoand the tran-

sition dipole momenyu in the body-fixed framexy,z), and the average is over the trajectories
contributing to statenco. As previously outlined, the equilibrium geometry ig IS planar. Be-

fore the optical excitation, the system is in the vibrational ground state, thus implying that the
amplitude of the vibrational motions around the equilibrium geometry is small. In particular, out-
of-plane motions are reduced. We thus neglect them and assume that HNCO is planar. Within
this reasonable approximatioab-initio calculations show thaft for the § «— Sy transition is

perpendicular to the HNCO plane. In other words, this moment is parallel tpdkis. We thus

10



have

coByy, = % (25)
From Egs. (24) and (25), the GB-CTM expressiorfgf, reads

_ 23kea Ge(an — Mr)Bf, Ge (@0 — Nco)Pe(Ve/VY)
e S k1 Ge (@ — Man)BE |, Ge (8o — Nco) '

(26)

Again, nyy and jyy do not explicitely appear as subscripts or upperscripfShig so as to avoid
heavy notations.

Analogously, the anisotropy paramef&y,, measured by Wanet al.” for nyy = 0 is given by

2511 Ge (@) B, Ge (o — Nco) BY . Pa(VE/V¥)
ZE::L Gg(aKIH)Blj(NH Gs (aléo - nCO) Blj(CO

BJNH = (27)

Trajectory calculations of APs for polyatomic fragmentations can also be found in refs. 14 and 15.

Additional results

The distributions of the rotational energies'dfH and CO at 210 and 201 nm are displayed in
Fig. S1. Additional results regarding the KEDs measured in the experiment at 201 nm are provided
in Figs. S2-S4. The GB-CTM VSDs and APs are shown in Fig. S5, to be compared with Fig. 3 in
ref. 8. The distribution of the dihedral anglat the TS is represented in Fig. S6.

As previously outlined, theory tends to underestimate APs somehow. One may wonder whether
internal conversion towards the electronic ground statewhich is ignored in our simulation,
could not improve the predictions. For those trajectories hoppingeoth8 lifetime of HNCO
would indeed be much larger, for trajectories would be trapped within a much deeper well than
in S;. Therefore, the anisotropy parameter for these hopping trajectories would be close to O,
thus making the overall APs larger than-0.9, and hence, in better agreement with experiment.

Another reason why our APs are lower than the experimental ones might e ithkept parallel

11



to thez-axis of the body-fixed frame in our simulations, which is only an approximation. A more
realistic (though much more involved) treatment would consist in relaxing the previous constraint
by fitting ab-initio calculations of each componentpfby an analytical function. The APs would
then be estimated from Eq. (24) with

_ HxVx + UyVy + UzV,

cosby, = e (28)

instead of Eq. (25). One expects that the distributiofgf aroundr/2 would be broadened as
compared with the previous treatment, thereby making the APs largerth@r®. Nevertheless,
Eq. (25) respects the fact that on average, the more excited the internal states of the diatoms, the

larger the AP (see Fig. S5).

12
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