Supporting Information

Engineering of Heterojunction-Mediated Biointerface for Photoelectrochemical Aptasensing: Case of Direct Z-Scheme CdTe-Bi₂S₃ Heterojunction with Improved Visible-Light-Driven Photo-electrical Conversion Efficiency

Qian Liu^a, Juan Huan^b, Nan Hao^b, Jing Qian^b, Hanping Mao^{*a} and Kun Wang^{*b}

^aKey Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, P.R. China

^bSchool of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P.R.

China

^{*}Corresponding author. Tel.: +86 511 88791800; fax: +86 511 88791708.

E-mail address: wangkun@ujs.edu.cn; maohp@ujs.edu.cn

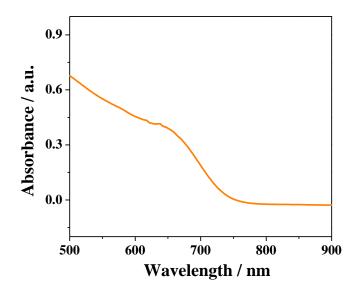


Figure S1 UV-vis spectrum of CdTe QDs solution.

Figure S1 showed the UV-Vis absorption spectrum of CdTe QDs. It is obvious that a wide absorption band around 660 nm was observed. According to the empirical equations as follows:²³

$$D = (9.8127 \times 10^{-7})\lambda^3 - (1.7147 \times 10^{-3})\lambda^2 + (1.0064)\lambda - 194.84$$
$$C = \frac{A}{10043(D)^{2.12}L}$$

where *D* (nm) and *C* (M) are the size and concentration of CdTe QDs, respectively. λ (nm) is the wavelength of the first excitonic absorption peak, *A* is the absorbance at the peak position of the first exciton absorption peak for CdTe QDs, and *L* (cm) is the path length of the radiation beam. The size and the concentration of the CdTe QDs solution were estimated to be 4.6 nm and 1.5 μ M by the empirical equations above.

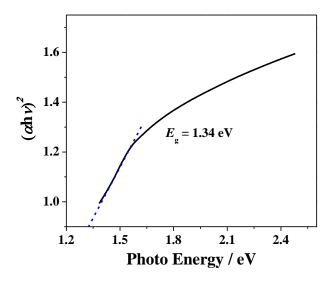


Figure S2 Tauc's plots to determine the band gap for Bi₂S₃ NRs.

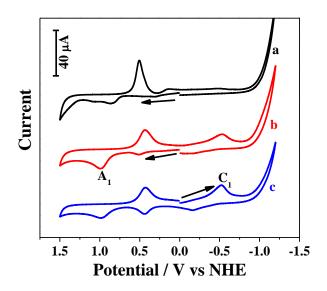
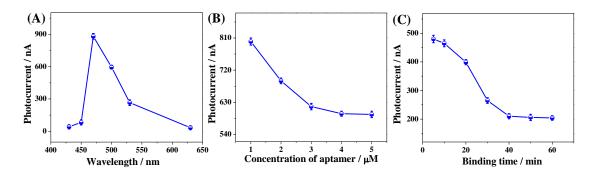



Figure S3 Cyclic voltammograms of gold disc electrode recorded in borate buffer solution in the absence (a) and presence of CdTe QDs (b, c); (b) First sweep toward a direction of positive potential $(0 \rightarrow +1.5 \text{ V})$, (c) First sweep toward a direction of negative potential $(0 \rightarrow -1.2 \text{ V})$.

Figure S4 Effects of (A) accessory light source with different wavelength (B) the aptamer concentration and (C) binding time of MC-LR with the aptamer on the photocurrent response of the aptasensor.

Table S1 Zeta potential results of CdTe QDs, Bi_2S_3 NRs and CdTe- Bi_2S_3 heterojunction.

Material	CdTe QDs	Bi ₂ S ₃ NRs	CdTe-Bi ₂ S ₃
Zeta potential (mV)	-39.7	+19.9	-35.5

Table S2 Analytical performance of different sensing methods for MC-LR.

Methods	Linear Range	Detection limit	References	
PEC aptasensor	0.1~1000 pM	0.03 pM	36	
Electrochemical aptasensor	0.1~1000 pM	1.9 pM	38	
Colorimetric aptasensor	0.1~250 nM	0.05 nM	39	
Fluorescence aptasensor	0.01~50 nM	0.002 nM	40	
Impedimetric immunosensor	0.01~100 nM	0.04 nM	41	
PEC aptasensor	0.01-100 pM	0.005 pM	This work	

Tap Water		River water				
Added/pM	Found/pM	Recovery/%	RSD/%	Found/pM	Recovery/%	RSD/%
0.2	0.19±0.02	95.0	5.7	0.22±0.02	110	5.3
2	1.93±0.17	96.5	5.4	2.13±0.11	106.5	6.8
20	19.1±1.24	95.5	6.1	21.6±1.02	108	6.5

Table S3 Analysis of real water samples with different concentrations of MC-LR (n = 3).

References

(23) Wang, W. J.; Hao, Q.; Wang, W.; Bao, L.; Lei, J. P.; Wang, Q. B.; Ju, H. X.
Quantum Dot-functionalized Porous ZnO Nanosheets as a Visible Light Induced
Photoelectrochemical Platform for DNA Detection. *Nanoscale* 2014, *6*, 2710–2717.