Supporting Information

H₂O₂ production in microbial electrochemical cells fed with primary sludge

Dongwon $Ki^{*\dagger}$, Sudeep C. Popat[‡], Bruce E. Rittmann[†], and César I. Torres^{†,§}

[†] Biodesign Swette Center for Environmental Biotechnology, Arizona State University,P.O. Box 875701, Tempe AZ 85287-5701, USA

[‡] Department of Environmental Engineering and Earth Sciences, Clemson University, USA

[§] School for Engineering of Matter Transport and Energy, Arizona State University, 501
E. Tyler Mall ECG 301, Tempe, AZ 85287, USA

Corresponding Author

*(D. Ki) Phone: +1 480 727 0848; fax: +1 480 727 0889

Email: dongwonk@asu.edu

SUPPORTING INFORMATION

8 pages including cover page

2 tables

6 figures

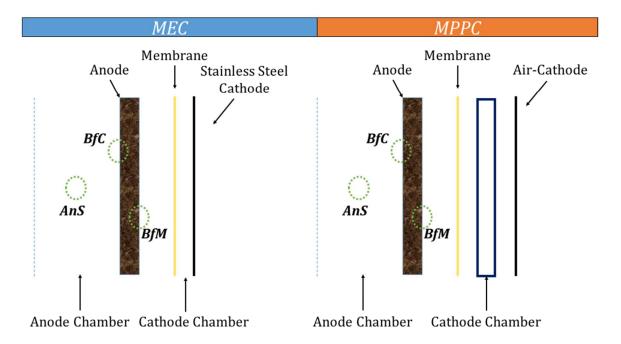


Figure S1. Microbial peroxide producing cell (MPPC) design. All of the reactor components (a) and the assembled system (b).

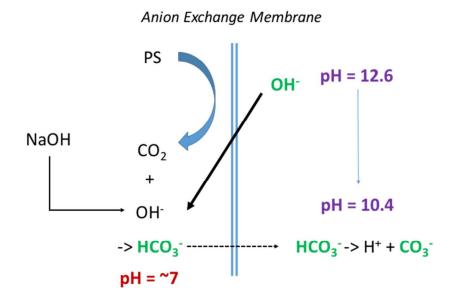

MI	EC	MPPC		
Influent	Effluent	Influent	Effluent	
7450 (±330)	2860 (±20)	7700 (±90)	3940 (±40)	
370	280	420 (±20)	340 (±20)	
4260 (±40)	1880 (±20)	4590 (±140)	2650 (±70)	
3740 (±20)	1680 (±10)	3890 (±130)	2210 (±60)	
	Influent 7450 (±330) 370 4260 (±40)	7450 (±330) 2860 (±20) 370 280 4260 (±40) 1880 (±20)	Influent Effluent Influent 7450 (±330) 2860 (±20) 7700 (±90) 370 280 420 (±20) 4260 (±40) 1880 (±20) 4590 (±140)	

Table S1. Characteristics of PS influent and MEC and MPPC effluents for experiments

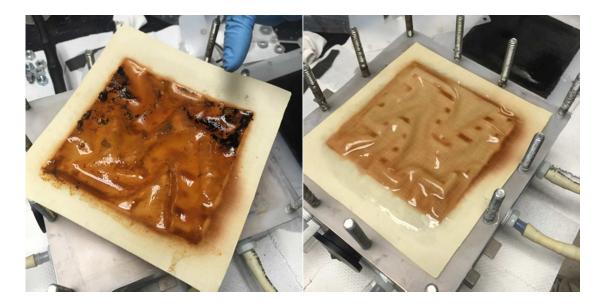

 with a 9-day HRT

Figure S2. Schematic view for the sampling locations in the MEC and MPPC at the end of operation: anode suspension (AnS), biofilm of chamber side (BfC), and biofilm of membrane side (BfM).

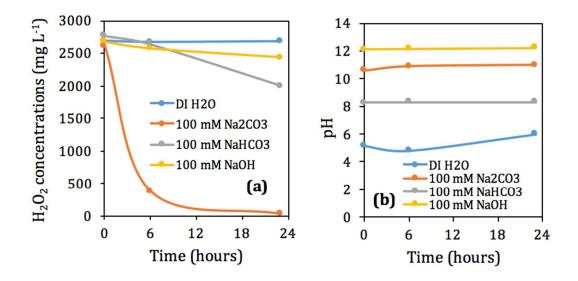

Figure S3. Possible mechanisms ion migration and diffusion across the anion exchange membrane between the anode and the cathode.

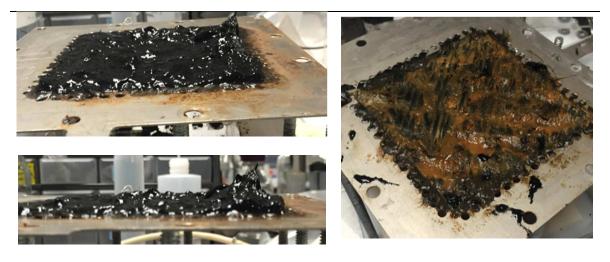
Figure S4. Anion exchange membrane used during MPPC fed with PS for 27 days. Left (anode side) and Right (cathode-chamber side).

Abiotic H₂O₂ decay tests in different salt solutions


We performed H₂O₂-decay tests using 40 mL bottles in 100-mM solutions of sodium carbonate, sodium bicarbonate, and sodium hydroxide with ~2700 mg L⁻¹ of H₂O₂. Although pH was maintained stable during ~1 day operation, the H₂O₂ concentration in sodium carbonate decreased very rapidly (99% removed in 23 hours), while H₂O₂ in the positive control with deionized water was very stable. H₂O₂ concentrations in sodium hydroxide and sodium bicarbonate were relatively stable, with 9 and 28% removals in 23 hours.

Figure S5. H_2O_2 decay with time in different solutions: 100 mM sodium carbonate, sodium bicarbonate, and sodium hydroxide. (a) H_2O_2 concentration and (b) pH.

Chamber side of anode


Membrane side of anode

MPPC

Chamber side of anode

Membrane side of anode

Figure S6. Comparisons of solid biomass on carbon fiber anodes towards chamber and membrane after MEC (top) and MPPC (bottom) operation

Source	Anolyte	Anode HRT	Membrane type	Catholyte	Maximum H ₂ O ₂ conc. (wt %)	Maximum current & voltage applied	Energy input (kWh/kg H ₂ O ₂)	PPE (%)*
Arends et al. (2014)	Wetland effluent	Batch	AEM	50 mM NaCl	0.056%	10 A/m ² at 0.6 V	2.5	~40
Modin & Fukushi (2012)	Domestic wastewater	6 min HRT	CEM	50 mM NaCl	0.008%	0.2 A/m ² at 0.6 V	18.2	4.8
Modin & Fukushi (2013)	Domestic wastewater	15 min HRT	CEM	50 mM NaCl	0.23%	0.5 A/m ² at 1 V	8.3	37-66
Sim et al. (2015)	Raw domestic wastewater	2-10 hr HRT	CEM	Deionized water	0.001%	0.56 A/m^2 at 12 V	78	~10-70
This study	Primary sludge	9 day HRT	AEM	50 mM NaOH	0.023%	$1 \text{ A/m}^2 \text{ at } 0.2 \text{ V}$	0.87	4-72

Table S2. A summary of H₂O₂-producing microbial electrochemical cell studies using real wastewater

* PPE: H₂O₂ production efficiency