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S1 AIC Example
When fitting an ensemble of models to low-dimensional data, it is important that the en-
semble only considers the minimum number of required parameters and that the model does
not achieve a high quality of fit through the addition of unwarranted populations. In the
main body of this study, we use the Akaike Information Criterion (AIC) to identify the point
at which an unwarranted scattering state is added to the ensemble,1 but here we present a
simplified scenario in which we model the function f(x) = x2 + x+ δ over x = 0 to 1, where
δ represents random Gaussian noise, using a variety of fitting functions (Figure S1). If we
fit the data with a simple linear regression (f(x) = Ax + B), then we yield a model with
a reduced χ2 of 12.03 and an AIC value of 244.52. If we instead choose to model the data
with a lone parabolic function (f(x) = Ax2), then the fit yields a reduced χ2 of 4.42 and an
AIC value of 90. The subsequent drop in AIC comes not only from the improvement of χ2,
but also because fewer parameters are used in the fitting process (f(x) = Ax2 has a single
parameter, A, while f(x) = Ax + B has two parameters, A and B). Fitting according to
the underlying function (f(x) = Ax2 +Bx) yields a model with a reduced χ2 of 0.44 and an
AIC value of 12.77, which shows that improvement of χ2 from the addition of a linear term
to the parabolic function is justified by a drastic improvement in AIC (∆AIC ∼ 88). Lastly,
we consider a cubic spline of the noisy data, which models the observed data points with a
reduced χ2 of 0.25, nearly a factor of 2 better than the linear combination. However, the
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Figure S1: Test case for AIC using the function f(x) = x2+x with Gaussian noise (black dots) fit
by a linear function (red), a parabolic function (green), f(x) = Ax2 +Bx (blue), and a cubic spline
(black). The figure legend includes the reduced χ2 goodness-of-fit, the number of model parameters
(ν), and the resulting AIC value. The AIC parameter is able to distinguish the linear combination
as the most appropriate model instead of the cubic spline, which is the best model according to χ2

value alone.



AIC actually increases by 5, signifying the addition of unwarranted parameters. This trend
is expected since we know that the true function is f(x) = x2 + x. Thus, we observe that
the AIC metric is able to distinguish models that improve goodness-of-fit to the underlying
data (the linear combination) from those that improve goodness-of-fit by the addition of
extraneous parameters that fit to the noise (the cubic spline).

S2 Elaboration of χ2
free

The colloquial measure for model quality is described by the χ2 metric:

χ2 =
∑
q

(It(q)− Ie(q))2

σ(q)2
(S1)

where It(q) is the theoretical intensity of the model, Ie(q) is the experimental scattering
amplitude, and σ2(q) is the experimentally observed error in intensity. Searching for the
model with minimum χ2 is synonymous with maximizing the likelihood function. Because
the interpretation of χ2 is largely dependent on the number of data points, model quality is
typically reported as the reduced χ2 value (χ2

red = χ2/N), with a χ2
red ≈ 1 considered to be

a good fit.
One underlying assumption to χ2-based metrics is that the errors are uncorrelated and

Gaussian. This is troublesome for a traditional SAXS experiment, where data points are
largely over-sampled and highly correlated with neighboring measurements in q. As a result,
the standard χ2 metric may routinely over-fit SAXS models due to overestimated degrees of
freedom. This has led to the recent development of the χ2

free metric, which is based on the
Nyquist-Shannon sampling limit of SAXS measurement:2

χ2
free =

∑
qεS

(It(q)− Ie(q))2

σ2(q)
(S2)

The sum is carried out for only for a single q value in each Shannon Channel, S, where the
number of channels is determined by particle size and data quality (Ns = qmax · Dmax/π).
To ensure that an adequate combination of q points are considered, the reported χ2

free value
is the median of over 2,000 random samplings. Analogously to χ2, a reduced χ2

free can be
calculated that is normalized according to the number of channels instead of total number
of q points. It has been previously shown that the use of χ2

free in place of χ2 provides more
accurate assessments of model quality and is less prone to over-fitting.2

S3 Note on system setup

In an ideal case, simulations of all seven ubiquitin systems would be initiated from x-ray crys-
tal structures since these represent a more physical state than de novo models constructed
manually. Because of this, tetra-ubiquitin crystal structures were used when possible; how-
ever, no tri or tetra-ubiquitin structures exist for the majority of systems studied here. At-
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tempts were made to construct all remaining systems by overlapping the central monomer of
the corresponding di-ubiquitin crystal structures. In the case of the K11 linked system, this
approach led to significant steric clash between the distal ubiquitin monomers so the trimer
was instead constructed by adding one ubiquitin monomer to the dimer crystal structure.

S4 Selection of aMD Parameters

Accelerated molecular dynamics (aMD) enhances simulation sampling by reducing potential
barriers between states by the addition of a boost potential.3 This boost potential is of the
form:

∆V (x) =

{
0 if V (x) ≥ Ep
(Ep−V (x))2

α+Ep−V (x)
if V (x) < Ep

(S3)

where V (x) is the potential energy when the system has configuration x, Ep is the threshold
energy value for applying the boost, and α is the acceleration factor. Selecting the values of
α and Ep is non-deterministic, but the standard procedure is to conduct a short conventional
MD (cMD) simulation and then calculate α and Ep from the average energy of the cMD
simulation using the following relations:{

Ep = 〈Vp〉+ 1
5
natoms

αp = 1
5
natoms

(S4)

where 〈Vp〉 is the average potential energy of the cMD simulation, and natoms is the number
of explicit atoms in the system. Furthermore, additional sampling benefits can be achieved
by applying a separate boost to the dihedral component of the energy landscape:{

Ed = 〈Vd〉+ 4nresidues

αd = 4
5
nresidues

(S5)

where Ed is the dihedral energy threshold, αd is the dihedral acceleration factor, 〈Vd〉 is
the average dihedral energy from the cMD simulation, and nresidues is the number of solute
residues. It should be stressed that these values represent initial approximations and may
not provide adequate sampling increases upon inspection of the trajectories. In this case,
it may be necessary to select more aggressive values for either the energy threshold or the
accelerating factor, or in some cases both. For the case of the K6-linked trimer, improved
sampling was not achieved by the “standard” protocol, but improved sampling was observed
by incrementing Ep and Ed by αp and αd, respectively.
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Table S1: PDB IDs of the structures used to build the seven tri-ubiquitin systems, along with
the values of the aMD variables used. Note that for the K48 and K6 systems, Ep and Ed were each
incremented by the value of the corresponding α in order to attain the desired sampling level. All
energies given in units of kcal/mol.

System PDB used Ep αp Ed αd

K11 3NOB + 1UBQ -159,213 10,551 3,816 182
K29 2 x 4S22 -253,208 13,270 3,802 182
K48 2 x 3ALB -121,485 8,690 3,982 182
nK48 2 x 3ALB -130,207 8,690 3,796 182
K6 2 x 2XK5 -106,162 7,649 3,992 182
K63 3HM3 -229,014 15,051 3,806 182

nK63 3HM3 -232,019 12,040 3,809 182

Table S2: Summary of the cMD models for each system. Separation distances and angles are
measured between the centers of masses of the distal groups and using the center of mass of the
central member as the vertex. For the K48 and K63 systems, “nK48” and “nK63” denote the
trimers with the native isopeptide linkage.

Weights Rg (Å) Sep. Dist. (Å) Sep. Angle (o) χ2
free

K6 - cMD 1.00 20.4±0.2 27.7±1.3 67.0±3.7 8.7
K11 - cMD 1.00 21.5±0.4 34.3±2.1 84.3±7.2 0.8
K29 - cMD 1.00 25.6±0.8 50.2±3.1 115.4±12.6 0.9
K48 - cMD 1.00 24.3±0.6 47.2±2.4 121.7±8.0 2.8

nK48 - cMD
0.56
0.44
1.00

22.7±0.2
26.9±0.3
24.5±0.4

35.8±0.5
55.2±1.1
44.4±1.2

76.5±2.0
131.3±3.4
100.8±3.9

6.2
11.9
0.7

K63 - cMD
0.43
0.57
1.00

31.4±0.4
25.1±0.4
27.8±0.6

64.7±1.3
49.6±1.4
56.2±1.9

113.7±2.9
122.2±3.3
118.5±4.4

28.3
11.7
1.9

nK63 - cMD 1.00 27.0±0.6 54.6±2.1 123.2±6.6 1.2
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Figure S2: Signal-to-Noise ratios of the natively (left) and non-natively (right) linked tri-ubiquitin
systems. The points in low q with low signal-to-noise were filtered out as the results of beam
smearing and points above q = 0.2 Å-1 were removed due to theoretical limitations.
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K6, non-native linkage
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Figure S3: Backbone RMSD values for aMD (left) and cMD (right) simulations of the non-
native K6 linkage. “FitToSystem” defines the backbone RMSD after least-squares fitting the whole
backbone to the first frame, and the “FitToCenter” describes the backbone RMSD after least-
squares fitting the central member backbone to the first frame. In this manner, “FitToSystem”
describes total system mobility, while “FitToCenter” describes the flexibility of the distal groups.
Thus, it becomes apparent that the distal groups in the aMD simulation (left, green) are significantly
more mobile than in the cMD simulation (right, green).
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K11, non-native linkage
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Figure S4: Backbone RMSD values for aMD (left) and cMD (right) simulations of the non-native
K11 linkage.

K29, non-native linkage
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Figure S5: Backbone RMSD values for aMD (left) and cMD (right) simulations of the non-native
K29 linkage.
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K48, non-native linkage
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Figure S6: Backbone RMSD values for aMD (left) and cMD (right) simulations of the non-native
K48 linkage.

K48, native linkage
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Figure S7: Backbone RMSD values for aMD (left) and cMD (right) simulations of the non-native
nK48 linkage.
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K63, non-native linkage
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Figure S8: Backbone RMSD values for aMD (left) and cMD (right) simulations of the non-native
K63 linkage.

K63, native linkage

0 20 40 60 80 100 120 140
Time (ns)

0

5

10

15

20

25

30

35

40

R
M

S
D

 (
)

FitToSystem
FitToCenter

0 20 40 60 80 100 120 140
Time (ns)

0

5

10

15

20

25

30

35

40

R
M

S
D

 (
)

FitToSystem
FitToCenter

Figure S9: Backbone RMSD values for aMD (left) and cMD (right) simulations of the non-native
nK63 linkage.
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Figure S10: The number of scattering states vs initial structural clusters for the six systems not
shown in the main text. nK63 and nK48 denote the systems with the native isopeptide linkage,
and all other systems possess the non-native thiolene linkage between ubiquitin domains.

11



100 101 102

Time (ns)

10-1

100

101

102

χ
2 fr

ee

K6
aMD cMD

100 101 102

Time (ns)

10-1

100

101

102

χ
2 fr

ee

K11
aMD cMD

100 101 102

Time (ns)

10-1

100

101

102

χ
2 fr

ee

K29
aMD cMD

A B

C

Figure S11: Reduced χ2
free goodness-of-fit of identified ensembles vs sampling time for aMD (blue)

and cMD (green) simulations of non-native (a) K6, (b) K11, and (c) K29. The overall quality of the
initial conformations of K11 and K29 contributes to the comparable performance of the aMD and
cMD simulations, but the K6 system displays a large disparity between the quality and convergence
times of the aMD and cMD trajectories.
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K6, aMD
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Figure S12: (a) Representative conformation of the population. (b) The ensemble scattering
superimposed on the experimental curve.
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K11, aMD

0 1
Clus te r No.

0.0

0.2

0.4

0.6

0.8

1.0

P
o

p
u

la
ti

o
n

 W
e

ig
h

t

1
.8

1
.8

0.0 0.1 0.2

q (
−1

)

10-1

100

101

I[
q

]

Clus te r 0
Clus te r 1

0.0 0.1 0.2

q (
−1

)

10-1

100

101

I[
q

]

Ca lc .
Exp.

A

B

C

D E

Figure S13: Representative conformations of the (a) compact and (b) slightly extended states.
(c) The relative weights of each population and (d) their individual scattering curves. (e) The
ensemble scattering superimposed on the experimental curve.
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K29, aMD
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Figure S14: (a) Representative conformation of the population. (b) The ensemble scattering
superimposed on the experimental curve.

15



K48, aMD
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Figure S15: (a) Representative conformation of the population. (b) The ensemble scattering
superimposed on the experimental curve.
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nK48, aMD
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Figure S16: Representative conformations of the (a) extended and (b) compact states. (c) The
relative weights of each population and (d) their individual scattering curves. (e) The ensemble
scattering superimposed on the experimental curve.
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nK63, aMD
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Figure S17: Representative conformations of the (a) extended and (b) compact states. (c) The
relative weights of each population and (d) their individual scattering curves. (e) The ensemble
scattering superimposed on the experimental curve.

18


