## Supporting Information

# Selective Piperidine Synthesis Exploiting lodineCatalyzed $\mathrm{C}_{\mathrm{sp}}{ }^{3}-\mathrm{H}$ Amination under Visible Light 

Hongwei Zhang ${ }^{1}$ and Kilian Muñiz* ${ }^{* 1,2}$<br>${ }^{1}$ Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avgda. Països Catalans, 43007 Tarragona, Spain.<br>Email: kmuniz@iciq.es<br>${ }^{2}$ ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

## Table of contents

1- General remarks ..... S3
2- General procedure for the synthesis of the starting materials (GP1) ..... S4
3- Data for starting materials ..... S7
4- General procedure for the C-H amination reaction (GP2) ..... S24
5- Data for piperidine products ..... S25
6- Kinetic isotope (KIE) studies ..... S41
7- Hammett correlation studies ..... S42
8- Investigation on potential intermediate 7 ..... S44
9- Investigation on molecular iodine and N -bromo phthalimide 1d ..... S45
10- Investigation on TEMPO as additive ..... S46
11- Investigation on alternative oxidants ..... S48
12- Investigation on intermediate D ..... S49
13- Deprotection of $3 c$ to free piperidine 9 ..... S51
14- X-Ray structure analyses of products 3c, 3m, 3ab and 5 ..... S52
15- Full list of references ..... S56
16- NMR charts of starting materials ..... S57
17- NMR charts of piperidine products ..... S96

## 1- General remarks

If not otherwise stated, All solvents, reagents and all deuterated solvents were purchased from Aldrich and TCI commercial suppliers. Column chromatography was performed with silica gel (Merck, type 60, 0.063-0.2 mm). NMR spectra were recorded on a Bruker Avance 400 MHz or 500 MHz spectrometer, respectively. All chemical shifts in NMR experiments were reported as ppm downfield from TMS. The following calibrations were used: $\mathrm{CDCl}_{3} \delta=$ 7.26 and $77.0 \mathrm{ppm}, \mathrm{CD}_{2} \mathrm{Cl}_{2} \delta=5.32$ and $54.00 \mathrm{ppm},\left(\mathrm{CD}_{2} \mathrm{Cl}\right)_{2} \delta=5.32 \mathrm{ppm}$. MS (ESI-LCMS) experiments were performed using an Agilent 1100 HPLC with a Bruker micro-TOF instrument (ESI). A Supelco $\mathrm{C} 8(5 \mathrm{~cm} \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$ particles) column was used with a linear elution gradient from $100 \% \mathrm{H}_{2} \mathrm{O}\left(0.5 \% \mathrm{HCO}_{2} \mathrm{H}\right)$ to $100 \% \mathrm{MeCN}$ in 13 min at a flow rate of $0.5 \mathrm{~mL} / \mathrm{min}$. MS (EI) and HRMS experiments were performed on a Kratos MS 50 within the service centres at ICIQ. IR spectra were taken in a Bruker Alpha instrument in the solid state.

## 2- General procedure for the synthesis of starting materials

Starting materials were synthesised according to procedures described previously in the literature. ${ }^{[1,2]}$


Step 2



Step 4


Step 6


Step 7


Scheme S1. synthesis of starting materials

## Step 1

Diethyl malonate ( 1.05 equiv) was added drop-wise to a suspension of NaH ( $55 \%, 1.05$ equiv) in THF at $0{ }^{\circ} \mathrm{C}$ and was stirred for 15 min . Benzyl bromide was then added in one portion and the resulting milky mixture was stirred at reflux for 1 h . The reaction was then cooled and quenched by the addition of $\mathrm{H}_{2} \mathrm{O}$. THF was removed under reduced pressure and the resulting crude was dissolved in $\mathrm{Et}_{2} \mathrm{O}$ and washed with water. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{x})$, and the combined organics were washed with brine, dried over
$\mathrm{MgSO}_{4}$ and filtered. The solvent was evaporated under reduced pressure. The crude product was directly used for the subsequent step.

## Step 2

A solution of the diester ( 1.0 equiv), NaCl ( 2.1 equiv), and $\mathrm{H}_{2} \mathrm{O}$ ( 2.1 equiv) in DMSO ( 30 mL ) was heated at reflux for 8 h . The reaction was then cooled to $25^{\circ} \mathrm{C}$, diluted with a solution 3 N HCl and extracted with ethyl acetate ( $3 \times 20 \mathrm{~mL}$ ). The combined organic layers were washed with water ( $5 \times 50 \mathrm{~mL}$ ), then brine $(1 \times 100 \mathrm{~mL})$ and dried over $\mathrm{MgSO}_{4}$. The crude brown oil was then filtered through a pad of silica to obtain the desired ester in a quantitative yield.

## Step 3

$\mathrm{LiAlH}_{4}$ (2.0 equiv) was added slowly to the THF solution of ester ( 1.0 equiv) at $0{ }^{\circ} \mathrm{C}$ and then the solution was stirred for two hour at room temperature. After that, a solution of $\mathrm{NaOH}(10 \%$ in water) was added carefully until a white solid precipitated. After filtration over $\mathrm{MgSO}_{4}$ and evaporation of the solvent the crude amine was obtained in quantitative yields.

## Step 4

A solution of the propanol ( 1.0 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ was treated with $\mathrm{CBr}_{4}$ ( 1.05 equiv) followed by the portionwise addition of triphenylphosphine ( 1.05 equiv). The reaction was allowed to warm to $25^{\circ} \mathrm{C}$, and monitored by TLC. No starting material remained after 3 h . The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was purified by chromatography (silica gel, $n$-hexane) to give the pure product bromide.

## Step 5

A Schlenk tube equipped with a stirrer bar was charged with the corresponding nitrile compound (1.2 equiv) and THF ( 20 mL ). LDA ( 1.2 equiv) was added drop-wise at $-78^{\circ} \mathrm{C}$ and the solution was stirred for 30 min . After that period, the corresponding bromide ( 1.0 equiv) was added in a single portion and the mixture was stirred at room temperature for 12 h . A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ was added and the resulting mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude product was directly used for the subsequent reduction step.

## Step 6

A flame dried Schlenk equipped with a stirrer bar and a reflux condenser was charged with
$\mathrm{LiAlH}_{4}$ (3 equiv), $\mathrm{Et}_{2} \mathrm{O}$ was added carefully and the mixture was cooled to $0{ }^{\circ} \mathrm{C}$ with an external ice/water cooling bath. The crude nitrile (1 equiv) was dissolved in a small volume of $\mathrm{Et}_{2} \mathrm{O}$ and added carefully to the $\mathrm{LiAlH}_{4}$ suspension. The mixture was heated to reflux for 2 h and cooled to $0^{\circ} \mathrm{C}$ afterwards. A solution of NaOH ( $10 \%$ in water) was added carefully until a white solid precipitated. After filtration over $\mathrm{MgSO}_{4}$ and evaporation of the solvent the crude amine was obtained in quantitative yields.

## Step 7

The crude amine from step 6 (1 equiv) was dissolved in pyridine ( 20 mL ) and the respective sulfonyl chloride ( 1.5 equiv) was added at $0^{\circ} \mathrm{C}$. The solution was stirred overnight at $25^{\circ} \mathrm{C}$. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, and the mixture was washed three times with a hydrochloride solution $\left(10 \% \mathrm{HCl}\right.$ in water). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was evaporated under reduced pressure. The crude material was purified by chromatography (silica gel, $n$-hexane/ethyl acetate) to give the pure product.

## 3- Data for starting materials

## $N$-(2,2-Dimethyl-5-phenylpentyl)-4-methylbenzenesulfonamide 2a



White solid.
mp: $60-61^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.74-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H})$, 7.15-7.13 (m, 2H), $4.42(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.42(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.25-1.20(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.3,142.3,137.0,129.7,128.3,128.3,127.1,125.8$, 52.87, 39.0, 36.5, 33.7, 25.7, 24.9, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3273,3024,2959,2933,2865$.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 368.1655$; found, 368.1668.

## N-(2,2-Dimethyl-5-phenylpentyl)methanesulfonamide 2b



Yellow oil.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.26(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 1.55-1.60 (m, 2H), 1.26-1.31(m, 2H), 0.90 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCI}_{3}$ ): $\delta=142.3,128.4,128.4,125.8,53.1,40.0,40.0,36.5,33.9,25.8$, 24.8.

IR $v\left(\mathrm{~cm}^{-1}\right): 3291,3025,2937,2866$.
HRMS (m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NNaO}_{2} \mathrm{~S}^{+}$, 292.1342; found, 292.1348.

## $N$-(2,2-Dimethyl-5-phenylpentyl)-4-nitrobenzenesulfonamide 2c



White solid.
mp: $71-72{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.35(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25$ (m, 2H), 7.21-7.17 (m, 1H), 7.16-7.13 (m, 2H), $4.66(d, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}$, 2 H ), 2.54 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.55-1.47 (m, 2H), 1.20-1.21 (m, 2H), 0.84 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=150.0,145.9,142.1,128.4,128.3,128.2,125.9,124.4,53.1$, 38.91, 38.9, 36.4, 33.9, 25.7, 24.8.

IR $v\left(\mathrm{~cm}^{-1}\right): 3295,3108,3024,2940,2862$.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}, 399.1349$; found, 399.1352.

## N-(2,2-Dimethyl-5-phenylpentyl)-2-(trimethylsilyl)ethane-1-sulfonamide 2d



White solid.
mp: $65-66{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ): $\delta=7.32-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 3 \mathrm{H}), 4.09(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.95-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.62-1.55(\mathrm{~m}, 2 \mathrm{H})$, 1.33-1.26 (m, 2H), 1.03-0.97 (m, 2H), 0.90 (s, 6H), 0.05 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=139.8,128.7,127.1$ 127.0, 55.7, 53.1, 49.6, 32.7, 30.4, 28.6, 26.31, 24.3, 10.5, -2.0.

IR $v\left(\mathrm{~cm}^{-1}\right): 3276,3065,3024,2951$.
HRMS (m/z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{NNaO}_{2} \mathrm{SSi}^{+}$, 378.1893; found, 378.1897.

## 2-Bromo-N-(2,2-dimethyl-5-phenylpentyl)benzenesulfonamide 2e



White solid.
mp: $59-60^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.15(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.49 (td, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.43$ (td, $J=7.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.32-7.28$ (m, 2H), 7.23-7.16 (m, $3 \mathrm{H}), 5.10(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}$, $2 \mathrm{H}), 1.30-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=142.3,138.7,134.9,133.7,131.7,128.4,128.3,127.9$, 125.8, 119.5, 52.9, 39.1, 36.5, 33.7, 25.8, 25.0.

IR $v\left(\mathrm{~cm}^{-1}\right): 3305,3098,3025,2969,2937,2845$.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrNNaO}_{2} \mathrm{~S}^{+}, 432.0603$; found, 432.0615.

## 4-Methyl-N-(2,2,5-triphenylpentyl)benzenesulfonamide 2f



White solid.
mp: $135-136{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.63-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.25(\mathrm{~m}$, 9 H ), 7.02 (ddd, $J=6.8,3.6,1.9 \mathrm{~Hz}, 6 \mathrm{H}$ ), $3.85(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.56 (dd, $J=6.6,1.8 \mathrm{~Hz}$, 2 H ), $2.49(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.14(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.15(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=145.0,143.4,142.0,136.4,129.7,128.4,128.3,128.2$, 127.7, 127.1, 126.6, 125.7, 49.7, 49.5, 36.2, 36.1, 25.4, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3255,3087,3060,3024,2941,2921,2859$.
HRMS (m/z): calcd. for $\mathrm{C}_{30} \mathrm{H}_{31} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 492.1968$; found, 492.1972.

## 4-Methyl-N-((1-(3-phenylpropyl)cyclohexyl)methyl)benzenesulfonamide 2g



White solid.
mp: $93-94{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.74(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, \mathrm{~J}=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.43(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.26(\mathrm{~m}, 11 \mathrm{H}), 1.22(\mathrm{q}, J=6.8,6.0 \mathrm{~Hz}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.3,142.4,137.0,129.7,128.3,128.3,127.1,125.8,49.0$, 36.4, 35.7, 34.7, 33.5, 26.1, 24.6, 21.5, 21.3.

IR $v\left(\mathrm{~cm}^{-1}\right): 3280,3031,2926,2856$.
HRMS (m/z): calcd. for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 408.1968$; found, 408.1977.

## 4-Methyl-N-(5-phenylpentyl)benzenesulfonamide 2h



White solid.
mp: $52-53^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.6,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ $7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.12(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{td}, J=7.1$, $6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.4,142.2,137.0,129.7,128.3,128.3,127.1,125.8,43.1$, 35.7, 30.8, 29.5, 26.1, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3288,3270,3027,2928,2862$.
HRMS (m/z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 340.1342$; found, 340.1344.

## $N$-(2,2-Dimethyl-5-(p-tolyl)pentyl)-4-methylbenzenesulfonamide 2i



White solid.
$\mathrm{mp}: 80-81^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.5,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.48(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.82$ ( $\mathrm{s}, 6 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.3,139.2,137.0,135.2,129.7,129.0,128.2,127.1,52.9$, 39.0, 36.0, 33.7, 25.8, 24.9, 21.5, 21.0.

IR $v\left(\mathrm{~cm}^{-1}\right): 3275,2957,2931,2873$.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaO}_{2} \mathrm{~S}^{+}$, 382.1811; found, 382.1811.

## N-(5-(4-(tert-Butyl)phenyl)-2,2-dimethylpentyl)-4-methylbenzenesulfonamide 2j



White solid.
mp: $120-121^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.75(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=$ $8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}$, $3 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.32(\mathrm{~s}, 9 \mathrm{H}), 1.26-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.84(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=148.5,143.3,139.3,137.1,129.7,128.0,127.1,125.2,52.9$, 39.2, 36.0, 34.4, 33.8, 31.4, 25.8, 24.9, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3284, 2956, 2867.
HRMS (m/z): calcd. for $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 424.2281$; found, 424.2282.

## $N$-(5-([1,1'-Biphenyl]-4-yl)-2,2-dimethylpentyl)-4-methylbenzenesulfonamide 2k



White solid.
mp: $97-98^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{dt}, J=7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.51$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.50(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{~s}$, $3 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.3,141.5,141.1,138.8,137.1,129.7,128.8,128.7$, 127.1, 127.1, 127.0, 127.0, 52.9, 39.1, 36.1, 33.8, 25.7, 24.9, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3271,3028,2957,2934,2869$.
HRMS (m/z): calcd. for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 444.1968$; found, 444.1963.

## N-(5-(4-Fluorophenyl)-2,2-dimethylpentyl)-4-methylbenzenesulfonamide 2I



White solid.
mp: $61-62{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.73(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.08(\mathrm{dd}, \mathrm{J}=8.5$, $5.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{t}, \mathrm{J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.68-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.50(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, 1.49-1.43 (m, 2H), 1.26-1.20 (m, 2H), $0.82(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=162.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=242.7 \mathrm{~Hz}\right), 143.3,137.9,137.1,129.7,129.7$, $129.6,127.1,115.1\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=21.1 \mathrm{~Hz}\right.$ ), 52.9, 38.9, 35.6, 33.7, 25.8, 24.9, 21.5.
${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=-117.94-118.02(\mathrm{~m}, 1 \mathrm{~F})$.
IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3289, 2968, 2942, 2860.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{FNO}_{2} \mathrm{~S}^{-}$, 362.1596; found, 362.1607.

## N-(5-(4-Chlorophenyl)-2,2-dimethylpentyl)-4-methylbenzenesulfonamide 2m



White solid.
mp: $62-63{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCI $_{3}$ ): $\delta=7.74(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, \mathrm{~J}=8.4$ $\mathrm{Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.48-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.18(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.3,140.8,137.0,131.4,129.7,128.4,127.1,52.8,38.85$, 35.8, 33.7, 25.6, 24.9, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3266,2964,2937,2857$.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{CINNaO}_{2} \mathrm{~S}^{+}, 402.1265$; found, 402.1269.

## N-(5-(4-Bromophenyl)-2,2-dimethylpentyl)-4-methylbenzenesulfonamide 2n



White solid.
mp: $71-72{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.73(\mathrm{dd}, J=6.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=6.4,1.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.29-7.30 (m, 2H), 7.01 (dd, $J=6.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $4.33(\mathrm{~s}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.49$ ( $\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.42 ( $\mathrm{s}, 3 \mathrm{H}), 1.48-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.22-1.19(\mathrm{~m}, 2 \mathrm{H}), 0.82(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCI}_{3}$ ): $\delta=143.3,141.3,137.0,131.3,130.1,129.7,127.1,119.5,52.8$, 38.9, 35.9, 33.8, 25.5, 24.9, 21.5.

IR $\vee\left(\mathrm{cm}^{-1}\right)$ : 3302, 2930, 2863.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{BrNNaO}_{2} \mathrm{~S}^{+}, 446.0760$; found, 446.0767.

## 4-(4,4-Dimethyl-5-((4-methylphenyl)sulfonamido)pentyl)phenyl benzoate 20



White solid.
mp: $105-106{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ): $\delta=8.21$ (dd, $\left.J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.80-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.58$ $(\mathrm{m}, 1 \mathrm{H}), 7.56-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 4.74(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, 1.58-1.43 (m, 2H), 1.35-1.17 (m, 2H), $0.84(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=165.4,149.0,143.3,140.0,137.0,133.7,133.5,130.2$, $130.2,129.7,129.7,129.3,128.6,128.5,127.1,121.4,52.9,39.0,35.9,33.8,25.7,24.9$, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3327,3282,2971,2932$.
HRMS (m/z): calcd. for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NO}_{4} \mathrm{~S}^{-}, 464.1901$; found, 464.1888.

## 4-(4,4-Dimethyl-5-((4-methylphenyl)sulfonamido)pentyl)phenyl methanesulfonate $2 p$



White solid.
mp: $99-100^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ): $\delta=7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{~s}, 4 \mathrm{H}), 4.50$ (d, J = 7.6 Hz, 1H), $3.15(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}$, $3 \mathrm{H}), 1.50(\mathrm{td}, \mathrm{J}=11.6,9.9,6.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.28-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=147.3,143.4,141.8,137.0,129.8,129.7,127.0,121.8,52.8$, 38.9, 37.2, 35.9, 33.8, 25.6, 24.9, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3278,2987,2968,2939,2901$.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{5} \mathrm{~S}_{2}{ }^{-}, 438.1414$; found, 438.1408.

## N-(5-(4'-Acetyl-[1,1'-biphenyl]-4-yl)-2,2-dimethylpentyl)-4methylbenzenesulfonamide 2q



White solid.
mp: $95-96{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.01-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 4.38(\mathrm{t}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.66(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.61(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.41(\mathrm{~m}$, $2 \mathrm{H})$, 1.26-1.22 (m, 2H), $0.82(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=197.8,145.7,143.3,142.7,137.4,137.1,135.7,129.7$, 129.0, 128.9, 127.2, 127.1, 127.0, 52.9, 39.0, 36.1, 33.8, 26.7, 25.6, 24.9, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3262,3028,2968,2865$.
HRMS (m/z): calcd. for $\mathrm{C}_{28} \mathrm{H}_{33} \mathrm{NNaO}_{3} \mathrm{~S}^{+}, 486.2073$; found, 486.2067.

## N-(5-(4-benzoylphenyl)-2,2-dimethylpentyl)-4-methylbenzenesulfonamide 2 r



Oil.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.82$ (dd, $\left.J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.79-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.62-7.58$ $(\mathrm{m}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dt}, J=7.9,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.26(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.71(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 2 \mathrm{H})$, 1.31-1.26 (m, 2H), 0.86 (s, 6H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathbf{C D C l}_{3}$ ): $\delta=196.5,147.5,143.4,137.9,137.0,135.3,132.2,130.4$, 130.0, 129.7, 128.3, 128.2, 127.1, 52.9, 38.9, 36.5, 33.8, 25.4, 24.9, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3291,3059,2953,2866$.
HRMS (m/z): calcd. for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{NNaO}_{3} \mathrm{~S}^{+}, 472.1917$; found, 472.1925.

## $N$-(2,2-Dimethyl-5-(o-tolyl)pentyl)-4-methylbenzenesulfonamide 2s



White solid.
mp: $94-95^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.76(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dd}, J=8.5,0.9 \mathrm{~Hz}, 2 \mathrm{H})$, 7.15-7.08 (m, 4H), $4.78(\mathrm{~s}, 1 \mathrm{H}), 2.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=143.3,140.6,137.1,135.8,130.1,129.7,128.7,127.1$, 125.9, 52.9, 39.4, 33.8, 24.9, 24.5, 21.5, 19.3.

IR $v\left(\mathrm{~cm}^{-1}\right): 3269,2954,2930,2875$.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaO}_{2} \mathrm{~S}^{+}$, 382.1811; found, 382.1809.

## N-(5-(2-Fluorophenyl)-2,2-dimethylpentyl)-4-methylbenzenesulfonamide 2 t



White solid.
mp: $68-69^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.76(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.15(\mathrm{~m}$, 2 H ), 7.07 (td, $J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{ddd}, J=9.6,8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.28-1.23(\mathrm{~m}, 2 \mathrm{H})$, 0.85 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=162.0\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=244.0 \mathrm{~Hz}\right), 160.1,143.3,137.0,130.6,130.5$, $129.7,129.1,129.0,128.3,127.5,127.5,127.1,123.9,123.9,115.1\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.5 \mathrm{~Hz}\right), 52.9$, 39.0, 33.8, 29.5, 29.5, 24.9, 24.4, 21.5.
${ }^{19}$ F NMR (376 MHz, CDCl $)_{3}$ ) $-119.00-119.07$ (m, 1F).
IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3254, 2957, 2930.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{FNNaO}_{2} \mathrm{~S}^{+}, 386.1560$; found, 386.1566.

## N-(5-(3-Fluorophenyl)-2,2-dimethylpentyl)-4-methylbenzenesulfonamide 2u



White solid.
mp: $64-65^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.73(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{dt}, J=8.0,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22$ (td, $J=7.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.91 (ddd, $J=7.6,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.44(\mathrm{~m}, 2 \mathrm{H})$, 1.23-1.20 (m, 2H), $0.83(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=164.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=234.0 \mathrm{~Hz}\right.$ ), 145, 143.3, 137.0, 129.7, 129.6, $127.1,124.0,124.0,115.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=20.4 \mathrm{~Hz}\right), 112.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 52.81,38.9,36.2$, 36.2, 33.8, 25.4, 24.9, 24.9, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3293,2965,2929,2864$.
${ }^{19}$ F NMR (376 MHz, CDCI ${ }_{3}$ ): $\delta=-113.95-114.01$ (m, 1F).
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{FNNaO}_{2} \mathrm{~S}^{+}, 386.1560$; found, 386.1563.

## $N$-(5-(3-Bromo-4-methoxyphenyl)-2,2-dimethylpentyl)-4methylbenzenesulfonamide 2 v



White solid.
mp: $81-82^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (500 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{dd}, \mathrm{J}=8.3$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.68(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}$, 2 H ), 2.46 (t, J = $7.7 \mathrm{~Hz}, 5 \mathrm{H}$ ), $2.44(\mathrm{~s}, 4 \mathrm{H}), 1.49-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=154.0,143.3,137.0,136.1,133.0,129.7,128.2,127.1$, 111.9, 111.4, 56.3, 52.8, 38.8, 35.2, 33.8, 25.7, 24.9, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3288,3270,3027,2928,2862$.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{BrNNaO}_{3} \mathrm{~S}^{+}, 476.0865$; found, 476.0865.

## 4-Nitro-N-(5-(1-((trifluoromethyl)sulfonyl)-1H-indol-3-

yl)pentyl)benzenesulfonamide 2w


White solid.
mp: $91-92{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCII $_{3}$ ): $\delta=8.36$ ( $\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $8.04(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.92-7.85$ $(\mathrm{m}, 1 \mathrm{H}), 7.58-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 4.60(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.08-2.98$ $(\mathrm{m}, 2 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.47-1.36(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=150.1$, 146.0, 135.7, 131.1, 128.3, 125.9, 125.3, 124.7, 124.4, 122.1, 121.2, 119.9, 118.0, 113.9, 43.3, 29.6, 28.0, 26.2, 24.6.
${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=-74.42(\mathrm{~s}, 3 \mathrm{~F})$.
IR $v\left(\mathrm{~cm}^{-1}\right): 3274,3120,2943,2860$.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{~S}_{2}{ }^{+}, 542.0638$; found, 542.0649 .

## N-(2,2-Dimethyl-5-(1-((trifluoromethyl)sulfonyl)-1H-indol-3-yl)pentyl)-4nitrobenzenesulfonamide $\mathbf{2 x}$



White solid.
mp: $88-89^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.36(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.91-7.87$ (m, 1H), 7.59-7.55 (m, 1H), $7.39(t d, J=7.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, 1H), 1.72-1.61 (m, 2H), 1.38-1.31 (m, 2H), 0.87 (s, 6H).
${ }^{13}{ }^{\mathbf{C}}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=150.1,145.9,135.7,131.1,128.2,125.9,125.4,124.7$, 124.4, 124.4, 122.2, 119.9, 113.9, 53.2, 39.1, 33.9, 25.4, 24.8, 22.9.
${ }^{19} \mathrm{~F}$ NMR ( $\mathbf{3 7 6} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ): $\delta=-75.29(\mathrm{~s}, 3 \mathrm{~F})$.
IR $\vee\left(\mathrm{cm}^{-1}\right): 3850,3742,3267,2943$.
HRMS (m/z): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{~S}_{2}{ }^{+}, 570.0951$; found, 570.0961 .

## $N$-(2-Benzylphenethyl)-4-methylbenzenesulfonamide 2 y



White solid.
mp: $89-90^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.64(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}$, $2 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 3 \mathrm{H}), 7.12(\mathrm{dt}, J=5.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.05-7.02(\mathrm{~m}, 2 \mathrm{H})$, 4.34 (s, 1H), 3.94 (s, 2H), 3.05-3.00 (m, 2H), 2.75 (t, J=7.3 Hz, 2H), 2.41 (s, 3H).
${ }^{13}$ C NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=143.4,140.5,138.8,136.9,136.2,131.0,129.7,129.7$, 128.6, 128.5, 127.1, 127.0, 126.9, 126.2, 43.4, 39.0, 32.9, 21.5.

IR $\vee\left(\mathrm{cm}^{-1}\right): 3334,3278,3061,3024,2958,2870$.
HRMS (m/z): calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 388.1342$; found, 388.1336.

## N-(3-(2,3-Dihydro-1H-inden-2-yl)propyl)-4-methylbenzenesulfonamide $2 z$



White solid.
mp: $83-84^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCI $_{3}$ ): $\delta=7.76$ (dd, $\left.J=8.3,1.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.31(\mathrm{dd}, J=8.5,1.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.18-7.13 (m, 2H), 7.13-7.09 (m, 2H), 4.65 (s, 1H), 2.97 (ddt, $J=9.2,6.4,3.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.50$ (dd, $J=15.4,8.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.43(\mathrm{~s}, 3 \mathrm{H}), 2.34$ (ddd, $J=15.1,8.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.56(\mathrm{~m}$, 2 H ), 1.42-1.48 (m, 2H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.4,143.2,137.0,129.7,127.1,126.1,124.4,43.4,39.6$, 39.1, 32.5, 28.4, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3256,3062,3015,2949,2928,2834$.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 352.1342$; found, 352.1330.

## 4-Methyl-N-(2-methyl-5-phenylpentyl)benzenesulfonamide 2aa



Yellow oil.
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ): $\delta=7.75-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dt}, J=12.5,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.73 (dt, $J=12.5,6.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.53 (ddd, $J=8.6,6.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.42(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.54$ (m, 1H), 1.54-1.44 (m, 1H), 1.40-1.30 (m, 1H), 1.16-1.06 (m, 1H), $0.86(d, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 143.3,142.3,137.1,129.7,128.3,128.3,127.1,125.8,49.0$, 36.0, 33.5, 33.1, 28.5, 21.5, 17.4.

IR $v\left(\mathrm{~cm}^{-1}\right): 3284,3061,3026,2929,2858$.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 354.1498$; found, 354.1511.

## N-(2-Ethyl-5-phenylpentyl)-4-methylbenzenesulfonamide 2ab



White solid,
mp: $56-57^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.77$ (dd, $\left.J=8.3,1.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32(\mathrm{dt}, J=8.8,1.4 \mathrm{~Hz}, 2 \mathrm{H})$, 7.30-7.28 (m, 2H), 7.21-7.18 (m, 1H), 7.16-7.14 (m, 2H), 4.46 (s, 1H), 2.87 (t, J=6.0 Hz, 2H), $2.55(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{dt}, J=12.4,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-$ $1.26(\mathrm{~m}, 4 \mathrm{H}), 0.80(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.3,142.3,137.0,129.7,128.3,128.3,127.1,125.8,45.7$, 39.1, 36.0, 30.5, 28.3, 23.9, 21.5, 10.7.

IR $v\left(\mathrm{~cm}^{-1}\right): 3277,3024,2963,2932,2859$.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 368.1655$; found, 368.1668.

## 4-Nitro-N-(2-((1,1,1-trifluoro-N- <br> phenethylmethyl)sulfonamido)ethyl)benzenesulfonamide 2ac



White solid.
mp: $90-91^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.36(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.03(\mathrm{~d}, \mathrm{~J}=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.30$ (m, 2H), 7.29-7.24 (m, 1H), 7.22-7.16 (m, 2H), $5.05(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.17(\mathrm{q}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=150.3,145.3,136.6,128.9,128.7,128.3,127.3,124.6$, 121.5, 118.3, 51.5, 48.9, 41.7, 35.3.
${ }^{19}$ F NMR (376 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=-75.05$ ( $\mathrm{s}, 3 \mathrm{~F}$ ).
IR $v\left(\mathrm{~cm}^{-1}\right): 3861,3850,3742,3276,3107,2959$.
HRMS (m/z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{~S}_{2}{ }^{+}, 504.0481$; found, 504.0485 .

## N-(2,2-Dimethyl-6-phenylhexyl)-4-methylbenzenesulfonamide 4



White solid.
mp: $81-82^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.81-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H})$, $4.68(\mathrm{~s}, 1 \mathrm{H}), 2.69(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 2 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.50(\mathrm{~m}, 2 \mathrm{H})$, $1.22(\mathrm{q}, J=2.8,2.2 \mathrm{~Hz}, 4 \mathrm{H}), 0.85(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.3,142.6,137.1,129.7,128.3,128.3,127.1,125.6,53.0$, 39.3, 35.8, 33.8, 32.1, 24.9, 23.3, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3689,3675,3649,3270,2972,2932,2902$.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{2} \mathrm{~S}^{+}, 360.1992$; found, 360.1998.

## 2-Bromo-N-(5-bromo-2,2-dimethyl-5-phenylpentyl)benzenesulfonamide 7



Oil.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.12$ (dd, $\left.J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.72(\mathrm{dd}, J=7.8,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.47 (td, $J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.42 (dd, $J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.28(\mathrm{~m}$, $1 \mathrm{H}), 5.09(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (dd, $J=8.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{dd}, J=6.9,2.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.21-2.01 (m, 2H), 1.46 (ddd, $J=13.6,12.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.15$ (ddd, $J=13.6,12.4,4.6 \mathrm{~Hz}$, 1 H ), 0.88 ( $\mathrm{d}, \mathrm{J}=2.1 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13}{ }^{3}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=141.9,138.6,135.0,133.7,131.7,128.8,128.4,127.9$, 127.2, 119.5, 55.9, 52.8, 37.7, 34.5, 33.7, 24.9.

IR $v\left(\mathrm{~cm}^{-1}\right): 3307,3063,3029,2958,2866$.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 509.9708$; found, 509.9683.

## 4-Methyl-N-(5-phenylpentyl-5,5- $d_{2}$ )benzenesulfonamide $2 h-d_{2}$



White solid.
$\mathrm{mp}: 52-53^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$ ): $\delta=7.75-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H})$, $7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{td}, J=7.1,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.53$ ( $\mathrm{q}, \mathrm{J}=8.5,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.25(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=143.4,142.1,137.0,129.7,128.3,128.3,127.1,125.8,43.1$, $30.9,30.7,29.5,26.1,21.5$ (benzylic $\mathrm{CD}_{2}$ not detected).
IR $v\left(\mathrm{~cm}^{-1}\right): 3287,3269,3053,3025,2959,2926,2853$.
HRMS ( $\mathrm{m} / \mathrm{z}$ ): calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{D}_{2} \mathrm{NNaO}_{2} \mathrm{~S}^{+}$, 342.1467; found, 342.1463.

## 4-Methyl-N-(5-phenylpentyl-5- $\AA$ ) benzenesulfonamide $2 \mathrm{~h}-\mathrm{d}_{1}$



White solid.
mp: $52-53^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.76-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.20-7.15(\mathrm{~m}, 1 \mathrm{H})$, $7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{td}, J=7.1,6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{dd}, J=8.7$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.43(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.24(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=143.4,142.2,137.0,129.7,128.3,128.3,127.1,125.8,43.1$, 35.5 ( $\mathrm{t}, \mathrm{J}=19.3 \mathrm{~Hz}$ ), 35.3, 35.1, 30.7, 29.5, 26.1, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3287,3270,3056,3027,2924,2854$.
HRMS (m/z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{DNNaO}_{2} \mathrm{~S}^{+}, 341.1404$; found, 341.1405.

## 4- General procedure for the C-H amination reaction (GP2)



3a-3ac

A Schlenk tube equipped with a stirrer bar was charged with NBS 1a (71.2mg, $0.4 \mathrm{mmol}, 2.0$ equiv), $\mathrm{I}_{2}$ ( $2.6 \mathrm{mg}, 0.01 \mathrm{mmol}, 5 \%$ ) and the sulfonamide 2 ( $0.2 \mathrm{mmol}, 1.0$ equiv), evacuated, and backfilled with argon, before 1.5 mL of absolute dichloroethane were added. The solution was stirred at $25{ }^{\circ} \mathrm{C}$ for 4 h under visible light. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the resulting solution was washed with saturated aqueous solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvents were evaporated under reduced pressure. The crude product was purified by chromatography (silica gel, $n$-hexane/ethyl acetate) to give the pure product 3 .

## 5- Data for piperidine products

## 5,5-Dimethyl-2-phenyl-1-tosylpiperidine 3a



White solid, $80 \%$.
$\mathrm{mp}: 80-81^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.65(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.17-7.14(\mathrm{~m}$, $2 \mathrm{H}), 5.23(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H})$, 2.12-2.08 (m, 2H), 1.25-1.21 (m, 2H), 0.79 (d, $J=4 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=142.7,138.9,138.6,129.4,128.4,127.0,126.9,126.7,55.3$, 52.5, 32.5, 30.3, 28.6, 25.7, 24.1, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3054,3023,2956,2932,2868$.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 366.1498$; found, 366.1493.

## 5,5-Dimethyl-1-(methylsulfonyl)-2-phenylpiperidine 3b



White solid, $62 \%$.
$\mathrm{mp}: 78-79^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.37(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{dd}, \mathrm{J}=6.0$, $2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.41$ (dt, $J=13.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ (dd, $J=13.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~s}, 3 \mathrm{H}), 2.27-$ 2.17 (m, 1H), 2.14-2.08 (m, 1H), 1.39-1.30 (m, 2H), 1.11 (s, 3H), $0.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=139.2,128.8,127.2,127.0,55.2,52.4,40.4,32.6,30.3$, 28.62, 26.0, 24.2.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3020, 2951, 2924, 2866.
HRMS (m/z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}^{+}$, 290.1185; found, 290.1188.

## 5,5-Dimethyl-1-((4-nitrophenyl)sulfonyl)-2-phenylpiperidine 3c



White solid, 81\%.
mp: $115-116{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=8.24-8.21(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.84(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H})$, $7.10-7.07(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=12.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=149.5,147.0,138.4,128.6,128.1,127.2,126.8,124.0,56.1$, 53.1, 32.3, 30.6, 28.5, 26.2, 24.3.

IR $v\left(\mathrm{~cm}^{-1}\right): 3026,2969,2928,2866$.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{~S}^{+}$, 397.1192; found, 397.1200.

## 5,5-Dimethyl-2-phenyl-1-((2-(trimethylsilyl)ethyl)sulfonyl)piperidine 3d



White solid, 47\%.
mp: $54-55^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathrm{CDCl}_{3}$ ): $\delta=7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.08(\mathrm{dd}, \mathrm{J}=5.9,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.38(\mathrm{dt}, J=13.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.99(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.27-$ $2.18(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.07-1.00(\mathrm{~m}, 1 \mathrm{H}), 0.99-$ $0.91(\mathrm{~m}, 1 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H}),-0.03(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=139.8,128.7,127.1,127.0,55.7,53.1,49.6,32.7,30.4,28.6$, 26.3, 24.3, 10.5, -2.0.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3061, 2952, 2868.
HRMS (m/z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NNaO}_{2} \mathrm{SSi}^{+}, 376.1737$; found, 376.1736

## 1-((2-Bromophenyl)sulfonyl)-5,5-dimethyl-2-phenylpiperidine 3e



White solid, 77\%.
mp: $114-115^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.12(\mathrm{dd}, J=8.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.27 (m, 6H), 7.21-7.17 (m, 1H), $5.31(\mathrm{t}, \mathrm{J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.33(\mathrm{~m}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{dd}, J=9.3,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 0.79$ (d, $J=18.7 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=139.8,138.9,135.3,133.2,132.3,128.5,127.4,126.8$, 126.8, 120.4, 56.3, 53.2, 32.7, 30.6, 28.5, 25.4, 23.8.

IR $v\left(\mathrm{~cm}^{-1}\right): 3085,3082,2939,2923,2864$.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{BrNNaO}_{2} \mathrm{~S}^{+}, 430.0447$; found, 430.0448.

## 2,5,5-Triphenyl-1-tosylpiperidine $\mathbf{3 f}$



White solid, 45\%.
mp: $73-74{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.46-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 6 \mathrm{H}), 7.27-7.13(\mathrm{~m}, 7 \mathrm{H})$, 7.12-7.07 (m, 2H), 7.04-7.01 (m, 2H), 4.96 (dd, $J=5.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 4.57 (dd, $J=13.2,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.95-$ $1.88(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=147.1$, 144.6, 142.7, 140.4, 136.2, 129.1, 128.5, 128.4, 128.2, 127.9, 127.4, 127.3, 126.8, 126.4, 126.1, 56.9, 51.6, 45.8, 29.5, 28.7, 21.4.

IR $v\left(\mathrm{~cm}^{-1}\right): 3058,3028,2950,2871$.
HRMS (m/z): calcd. for $\mathrm{C}_{30} \mathrm{H}_{29} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 490.1811$; found, 490.1820.

## 3-Phenyl-2-tosyl-2-azaspiro[5.5]undecane 3g



White solid, $78 \%$.
mp: $79-80^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$ ): $\delta=7.65(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.14(\mathrm{~m}, 7 \mathrm{H}), 5.21(\mathrm{t}, \mathrm{J}=4.2$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 3.73 (d, $J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.28-2.03(\mathrm{~m}, 2 \mathrm{H})$, 1.48-1.25 (m, 8H), 1.20-1.03 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=142.7,139.0,138.5,129.3,128.4$ 127.0, 126.9, 126.7, 56.0, 50.1, 37.8, 32.6, 31.8, 30.8, 26.5, 25.0, 21.6, 21.5, 21.4.

IR $v\left(\mathrm{~cm}^{-1}\right): 3067,3032,2915,2859$.
HRMS (m/z): calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 406.1811$; found, 406.1813.

## 2-Phenyl-1-tosylpiperidine 3h



White solid, $73 \%$.
mp: $126-127^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$ ): $\delta=7.76(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.22(\mathrm{~m}$, $1 \mathrm{H}), 5.27(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.01$ (ddd, $J=14.3,12.4,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (s, 3H), 2.24-2.18 (m, 1H), 1.70-1.62 (m, 1H), 1.50 (dt, $J=8.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.43-1.27(\mathrm{~m}$, 3 H ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=142.9,138.9,138.7,129.7,128.6,127.0,127.0,126.8,55.3$, 41.9, 27.3, 24.3, 21.5, 19.0.

IR $\vee\left(\mathrm{cm}^{-1}\right)$ : 3050, 2955, 2927, 2868.
HRMS (m/z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 338.1185$; found, 338.1178.

## 5,5-Dimethyl-2-(p-tolyl)-1-tosylpiperidine 3i



White solid, 63\%.
mp: $132-133{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=7.65(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.04(\mathrm{~s}, 4 \mathrm{H}), 5.18$ (t, J = $4.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.39(\mathrm{dt}, J=13.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.30$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 2.11-2.01 (m, 2H), 1.30-1.17 (m, 2H), 0.79 (d, J = 4.6 Hz, 6H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=142.7,138.6,136.3,135.8,129.4,129.1,127.0,126.9,55.2$, 52.45, 32.5, 30.3, 28.6, 25.7, 24.1, 21.5, 20.9.

IR $v\left(\mathrm{~cm}^{-1}\right): 3025,2953,2916,2860$.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 380.1655$; found, 380.1652.

## 2-(4-(tert-Butyl)phenyl)-5,5-dimethyl-1-tosylpiperidine 3j



Oil, 80\%.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.07(\mathrm{dd}, J=8.8$, $0.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 5.18 (t, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.41 (ddd, $J=13.3,1.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.88 (d, $J=13.4$ Hz, 1H), 2.39 (s, 3H), 2.07 (dt, $J=7.7,4.1 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.31-1.19 (m, 11H), 0.81 (s, 6H).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCI3): $\delta=149.5,142.5,138.6,135.9,129.3,127.0,126.7,125.3,55.2$, 52.53, 34.3, 32.5, 31.4, 30.4, 28.7, 25.8, 24.2, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 2953, 2866, 1739.
HRMS (m/z): calcd. for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 422.2124$; found, 422.2129.

## 2-([1,1'-Biphenyl]-4-yl)-5,5-dimethyl-1-tosylpiperidine 3k



White solid, $78 \%$.
mp : $65-66^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}$, CDCl $_{3}$ ): $\delta=7.68(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.42(\mathrm{~m}$, $4 \mathrm{H}), 7.36-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 4 \mathrm{H}), 5.27(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (ddd, $J=13.5,1.8$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.92(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.25(\mathrm{~m}, 2 \mathrm{H})$, 0.83 (s, 6H).
${ }^{13}{ }^{\mathbf{C}}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=142.8,140.7,139.6,138.6,138.0,129.4,128.8,127.4,127.3$, 127.11, 127.0, 127.0, 55.3, 52.6, 32.6, 30.4, 28.6, 25.8, 24.2, 21.5.

IR $\vee\left(\mathrm{cm}^{-1}\right)$ : 3029, 2950, 2864.
HRMS (m/z): calcd. for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 442.1811$; found, 442.1824.

## 2-(4-Fluorophenyl)-5,5-dimethyl-1-tosylpiperidine 31



White solid, 66\%.
mp: $97-98^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{t}, \mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, \mathrm{J}=13.7$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (dd, $J=13.4,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{ddd}, J=8.4,5.7,4.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.24-1.20 (m, 2H), 0.78 (d, J = $10.9 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13}{ }^{13}$ NMR ( 101 MHz, CDCl $_{3}$ ): $\delta=162.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=244.0 \mathrm{~Hz}\right.$ ), 142.9, 138.4, 134.6, 129.4, 128.0 $\left(\mathrm{d}, J_{\mathrm{C}-\mathrm{F}}=7.9 \mathrm{~Hz}\right), 127.0,115.0\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.0 \mathrm{~Hz}\right), 54.9,52.5,32.5,30.3,28.5,25.8,24.1$, 21.5.
${ }^{19}$ F NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}$, CDCl $_{3}$ ): $\delta=-116.51--116.55(\mathrm{~m}, 1 \mathrm{~F})$.
IR $\vee\left(\mathrm{cm}^{-1}\right)$ : 3022, 2953, 2867.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FNNaO}_{2} \mathrm{~S}^{+}$, 384.1404; found, 384.1406.

## 2-(4-Chlorophenyl)-5,5-dimethyl-1-tosylpiperidine 3m



White solid, 71\%.
mp: $124-125^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.65-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.11-7.08(\mathrm{~m}, 2 \mathrm{H}), 5.17$ (t, J = 4.3 Hz, 1H), 3.39 (dt, $J=13.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$, 2.08-2.03 (m, 2H), 1.18-1.22 (m, 2H), 0.78 (d, $J=8.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.0,138.4,137.5,132.6,129.5,128.6,128.4,127.0,55.0$, 52.5, 32.5, 30.3, 28.5, 25.7, 24.1, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 2951, 2860, 1739.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{CINNaO}_{2} \mathrm{~S}^{+}, 400.1108$; found, 400.1109.

## 2-(4-Bromophenyl)-5,5-dimethyl-1-tosylpiperidine 3n



White solid, 70\%.
mp: $140-141^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.64(\mathrm{dd}, J=6.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{dd}, J=6.5,2.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.22 (dd, $J=8.6,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{dd}, J=8.7,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.14(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dt}$, $J=13.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, \mathrm{~J}=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.09-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.15(\mathrm{~m}$, 2 H ), 0.78 (d, $J=8.6 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.0,138.3,138.1,131.5,129.5,128.8,127.0,120.7,55.0$, 52.6, 32.5, 30.3, 28.5, 25.7, 24.1, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3058,3030,2953,2921,2859$.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{BrNNaO}_{2} \mathrm{~S}^{+}, 444.0603$; found, 444.0610.

## 4-(5,5-Dimethyl-1-tosylpiperidin-2-yl)phenyl benzoate 30



White solid, 72\%.
mp: $134-135^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.22-8.17(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 1 \mathrm{H})$, 7.55-7.48 (m, 2H), 7.26-7.23 (m, 2H), 7.22-7.18 (m, 2H), 7.12-7.08 (m, 2H), 5.27-5.19 (t, J $=4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.43(\mathrm{dt}, J=13.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.15-$ 2.07 (m, 2H), 1.33-1.21 (m, 2H), $0.82(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=165.1,149.7,142.9,138.5,136.5,133.6,130.2,129.5$, 129.5, 128.6, 128.1, 127.0, 121.6, 55.0, 52.5, 32.5, 30.4, 28.6, 25.7, 24.1, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3689, 3675, 3649, 3372, 2971, 2932.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{NNaO}_{4} \mathrm{~S}_{2}{ }^{+}, 486.1710$; found, 486.1715.

## 4-(5,5-Dimethyl-1-tosylpiperidin-2-yl)phenyl methanesulfonate 3p



White solid, 71\%.
mp: $109-110{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{5 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ): $\delta=7.67-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 4 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 5.21(\mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 2.82(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.41 (s, 3H), 2.11-2.02 (m, 2H), 1.25-1.17 (m, 2H), $0.81(\mathrm{~s}, 3 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=147.9,143.1,138.6,138.3,129.5,128.7,127.0,121.9,55.0$, 52.6, 37.4, 32.4, 30.3, 28.5, 25.8, 24.1, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3629, 3278, 2987, 2968, 2939, 2901.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 460.1223$; found, 460.1226.

## 1-(4'-(5,5-Dimethyl-1-tosylpiperidin-2-yl)-[1,1'-biphenyl]-4-yl)ethan-1-one 3q



White solid, $40 \%$.
mp: $157-158^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.02$ (dd, $\left.J=7.0,1.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.68-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.51(\mathrm{dd}, J$ $=6.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.28-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 5.26(\mathrm{t}, \mathrm{J}=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dt}, J=$ $13.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.90 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 2 \mathrm{H})$, 1.31-1.24 (m, 2H), 0.81 (d, J=10.2 Hz, 6H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCI 3 ): $\delta=197.6,145.2,142.8,139.3,138.5,138.3,135.9,129.4$, 128.9, 127.6, 127.3, 127.1, 127.0, 55.3, 52.7, 32.6, 30.4, 28.6, 26.6, 25.8, 24.1, 21.5 .

IR $v\left(\mathrm{~cm}^{-1}\right): 3031,2970,2953,2865$.
HRMS (m/z): calcd. for $\mathrm{C}_{28} \mathrm{H}_{31} \mathrm{NNaO}_{3} \mathrm{~S}^{+}$, 484.1917; found, 484.1928.

## (4-(5,5-Dimethyl-1-tosylpiperidin-2-yl)phenyl)(phenyl)methanone 3r



Oil, 56\%.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.81-7.77(\mathrm{~m}, 2 \mathrm{H}), 7.69(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.63-7.56(\mathrm{~m}$, $1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 5.29(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.47-3.40(\mathrm{~m}, 1 \mathrm{H}), 2.87(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.10(\mathrm{~m}, 2 \mathrm{H}), 1.29-1.18(\mathrm{~m}$, 2 H ), 0.80 ( $\mathrm{d}, \mathrm{J}=7.7 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13}$ C NMR (126 MHz, CDCI3): $\delta=196.2,144.1,143.1,138.3,137.54,136.1,132.5,130.3$, 130.0, 129.5, 128.3, 127.0, 126.9, 55.4, 52.7, 32.6, 30.3, 28.6, 25.8, 24.0, 21.5 .

IR $v\left(\mathrm{~cm}^{-1}\right): 3501,3059,2952,2866$.
HRMS (m/z): calcd. for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NNaO}_{3} \mathrm{~S}^{+}, 470.1760$; found, 470.1760.

## 5,5-Dimethyl-2-(o-tolyl)-1-tosylpiperidine 3s



White solid, 62\%.
mp: 95-96 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.30-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.92(\mathrm{dd}, \mathrm{J}=7.8,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.82-6.78(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=12.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J$ $=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.42(\mathrm{~m}$, 1H), 1.32-1.27 (m, 1H), 1.06 (d, $J=2.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=142.4,140.0,137.3,134.8,130.6,128.9,127.0,126.8$, 126.6, 125.29, 55.1, 53.9, 33.2, 30.6, 27.8, 27.8, 25.7, 21.4, 19.6.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3013, 2945, 2864.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 380.1655$; found, 380.1654

## 2-(2-Fluorophenyl)-5,5-dimethyl-1-tosylpiperidine 3t



White solid, 54\%.
mp: $60-61^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.52(\mathrm{dd}, J=6.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.06$ $(\mathrm{m}, 1 \mathrm{H}), 6.95-6.88(\mathrm{~m}, 2 \mathrm{H}), 5.25(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~d}, J=$ $13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.98(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=160.8\left(\mathrm{~d}, \mathrm{~J}_{\mathrm{C}-\mathrm{F}}=248.1 \mathrm{~Hz}\right), 158.9,142.8,137.5,129.2,129.0$, $129.0,128.5,128.4,128.0,127.9,127.1,123.5\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=5.0 \mathrm{~Hz}\right), 115.8\left(\mathrm{~d}, J_{\mathrm{C}-\mathrm{F}}=22.4 \mathrm{~Hz}\right)$, 54.2, 52.0, 33.2, 30.3, 28.1, 27.2, 27.1, 24.7, 21.4.
${ }^{19}$ F NMR ( $\mathbf{3 7 6} \mathbf{~ M H z}, \mathrm{CDCl}_{3}$ ): $\delta=-115.08-115.35(\mathrm{~m}, 1 \mathrm{~F})$.
IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3062, 2983, 2949, 2921, 2862.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FNNaO}_{2} \mathrm{~S}^{+}$, 384.1404; found, 384.1410.

## 2-(3-Fluorophenyl)-5,5-dimethyl-1-tosylpiperidine 3u



Oil, 45\%.
${ }^{1} \mathrm{H}$ NMR ( $\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $_{3}$ ): $\delta=7.69-7.63(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 3 \mathrm{H}), 6.97-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.87$ (dd, $J=1.7,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=$ $13.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (dd, $J=13.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.17$ (m, 2H), 0.79 (d, J = $3.1 \mathrm{~Hz}, 6 \mathrm{H}$ ).
${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCI}_{3}$ ): $\delta=164.3$ (d, $\mathrm{J}_{\mathrm{C} . \mathrm{F}}=245.1 \mathrm{~Hz}$ ), 143.0, 141.9, 141.9, 138.4, 130.0, $129.9,129.5,127.0,122.6,122.5,113.0\left(d d, J_{C-F}=44.5,22.3 \mathrm{~Hz}\right), 55.0,54.9,52.5,32.5$, 30.3, 28.6, 25.7, 24.0, 21.5.

IR $\vee\left(\mathrm{cm}^{-1}\right)$ : 3029, 2952, 2866.
${ }^{19}$ F NMR ( $\mathbf{3 7 6} \mathbf{~ M H z , ~}$ CDCl $_{3}$ ): $\delta=-112.99-113.12(\mathrm{~m}, 1 \mathrm{~F})$.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{FNNaO}_{2} \mathrm{~S}^{+}$, 384.1404; found, 384.1408.

## 2-(3-Bromo-4-methoxyphenyl)-5,5-dimethyl-1-tosylpiperidine 3v



White solid, $77 \%$.
mp: $131-132{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.63(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.21$ ( $\mathrm{m}, 2 \mathrm{H}$ ), 7.11 (dd, $J=2.4$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=2.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{td}, J=3.7,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.41$ (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.41$ (s, 3H), 2.12-1.97 $(\mathrm{m}, 2 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 2 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=11.9 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13}{ }^{\mathbf{C}}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=154.6,143.0,138.4,132.4,131.8,129.6,127.3,126.8$, 111.8, 111.6, 56.2, 54.5, 52.5, 32.6, 30.4, 28.5, 25.8, 24.1, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 2970, 2945, 2867.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{BrNNaO}_{3} \mathrm{~S}^{+}, 474.0709$; found, 474.0708.

## 3-(1-((4-Nitrophenyl)sulfonyl)piperidin-2-yl)-1-((trifluoromethyl)sulfonyl)-1H-

 indole 3w

White solid, $51 \%$.
mp: $167-168^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$ ): $\delta=8.27$ ( $\mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.94(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.92-7.87$ (m, 2H), 7.50-7.41 (m, 2H), 7.07 (d, J=1.4 Hz, 1H), $5.61(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=13.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.16$ (ddd, $J=13.9,12.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, \mathrm{~J}=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{ddt}, J=13.6$, $9.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13}{ }^{\mathbf{C}}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta=149.9,146.4,135.4,129.4,128.2,126.5,125.2,124.3$, 123.7, 122.8, 121.1, 120.9, 117.9, 113.8, 50.1, 42.8, 28.1, 24.2, 19.0.
${ }^{19}$ F NMR ( $\mathbf{3 7 6} \mathbf{~ M H z , ~}$ CDCI $_{3}$ ): $\delta=-74.95$ ( $\mathrm{s}, 3 \mathrm{~F}$ ).
IR $v\left(\mathrm{~cm}^{-1}\right): 3861,3732,3120,2956,2874$.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{~S}_{2}{ }^{+}, 540.0481$; found, 540.0484 .

## 3-(5,5-Dimethyl-1-((4-nitrophenyl)sulfonyl)piperidin-2-yl)-1-

## ((trifluoromethyl)sulfonyl)-1H-indole 3x



White solid, 63\%.
mp: $162-163{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.17-8.07(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.72$ (m, 2H), 7.70-7.65 (m, 1H), 7.50-7.35 (m, 2H), $6.75(\mathrm{~s}, 1 \mathrm{H}), 5.60-5.51(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.48(\mathrm{~m}$, $1 \mathrm{H}), 2.97(\mathrm{~d}, \mathrm{~J}=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.04$ (s, 3H), 1.00 (s, 3H).
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=149.8,145.8,135.1,129.2,127.9,126.6,125.1,123.9$, 122.9, 122.7, 120.3, 113.9, 53.4, 49.2, 32.4, 30.5, 28.7, 26.0, 23.6.
${ }^{19}$ F NMR (376 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=-75.44(\mathrm{~s}, 3 \mathrm{~F})$.

IR $v\left(\mathrm{~cm}^{-1}\right): 3850,3742,3170,2969,2353,2337$.
HRMS (m/z): calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{~S}_{2}{ }^{+}, 568.0794$; found, 568.0820 .

## 1-Phenyl-2-tosyl-1,2,3,4-tetrahydroisoquinoline 3y



White solid, 51\%.
mp: $155-156{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.58(\mathrm{dd}, \mathrm{J}=6.4,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.20$ $(\mathrm{m}, 2 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.26(\mathrm{~s}, 1 \mathrm{H}), 3.80$ (dddd, J $=14.1,6.5,2.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{ddd}, \mathrm{J}=14.1,11.0,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.59$ (ddd, $J=16.7,5.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=143.0,141.6,137.7,134.1,133.8,129.3,128.9,128.7$, 128.4, 128.2, 127.6, 127.1, 127.0, 126.1, 59.2, 39.1, 26.7, 21.4.

IR $v\left(\mathrm{~cm}^{-1}\right): 3061,3029,2982,2970,2928,2872$.
HRMS (m/z): calcd. for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 386.1185$; found, 386.1195.

## 1-Tosyl-2,3,4,4a,5,9b-hexahydro-1H-indeno[1,2-b]pyridine $3 z$



White solid, 63\%.
mp: 93-94 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR (400 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 4 \mathrm{H}), 5.40(\mathrm{~d}, \mathrm{~J}$ $=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{ddd}, J=14.1,12.5,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.43-2.46(\mathrm{~m}, 4 \mathrm{H}), 2.34(\mathrm{dd}, J=11.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.55(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{dt}, J=13.3,3.1$ $\mathrm{Hz}, 1 \mathrm{H})$, 1.23-1.16 (m, 1H), 1.09-1.01 (m, 1H).
${ }^{13} \mathbf{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=143.1,141.1,139.8,138.8,129.8,127.5,127.0,126.8$, 125.6, 123.9, 61.0, 41.3, 37.2, 37.0, 26.1, 23.2, 21.5.

IR $v\left(\mathrm{~cm}^{-1}\right): 3028,2926,2855$.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 350.1185$; found, 350.1190.

## 5-Methyl-2-phenyl-1-tosylpiperidine syn/anti-3aa



Oil, 66\%.
${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.75(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 3 \mathrm{H}), 7.32(\mathrm{~d}, J=4.4$ $\mathrm{Hz}, 4 \mathrm{H}), 7.29(\mathrm{dt}, J=8.0,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 12 \mathrm{H}), 5.27(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{t}, J$ $=5.0 \mathrm{~Hz}, 1.5 \mathrm{H}$ ), $3.84-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.52(\mathrm{dd}, J=12.9,3.8 \mathrm{~Hz}, 1.5 \mathrm{H}), 3.12$ (ddt, $J=12.9,5.1$, $0.9 \mathrm{~Hz}, 1.5 \mathrm{H}), 2.58-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 4.5 \mathrm{H}), 2.24(\mathrm{dd}, \mathrm{J}=14.1,2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.98(\mathrm{dt}, J=7.2,5.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.82(\mathrm{ddd}, J=11.3,6.0,2.7 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.73-1.60(\mathrm{~m}, 2.7 \mathrm{H})$, $1.51-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{dt}, J=7.2,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.16(\mathrm{dd}, J=13.6,5.5 \mathrm{~Hz}, 1.6 \mathrm{H}), 1.08-0.98$ (m, 1H), $0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 4.5 \mathrm{H}), 0.70(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCI3): $\delta=142.8,140.0,138.7,137.3,129.7,129.3,128.6,128.2$, $127.3,127.2,127.0,126.9,126.8,126.8,57.8,54.4,49.2,48.3,29.9,28.3,27.8,27.4,27.2$, 26.9, 21.5, 21.5, 18.9, 18.0.

IR $v\left(\mathrm{~cm}^{-1}\right)$ : 3060, 3028, 2953, 2926, 2870.
HRMS (m/z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NO}_{2} \mathrm{~S}^{+}, 330.1522$; found, 330.1524.

## 5-Ethyl-2-phenyl-1-tosylpiperidine syn/anti-3ab



Oil, 60\%.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.78(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.37-7.33$ $(\mathrm{m}, 4 \mathrm{H}), 7.33-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 9 \mathrm{H}), 5.31(\mathrm{dd}, J=5.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{t}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.97-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=13.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=$ $14.3,11.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.46(\mathrm{~s}, 3 \mathrm{H}), 2.43(\mathrm{~s}, 4 \mathrm{H}), 2.27(\mathrm{dd}, J=14.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.00-1.95(\mathrm{~m}$, $2 H), 1.50-1.71(\mathrm{~m}, 6 \mathrm{H}), 1.34-1.18(\mathrm{~m}, 6 \mathrm{H}), 1.07-1.00(\mathrm{~m}, 3 \mathrm{H}), 0.88-0.80(\mathrm{~m}, 7 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=142.9,142.8,140.0,138.8,138.7,137.3,129.7,129.3$, $128.6,128.2,127.3,127.2,127.0,126.9,126.8,126.8,57.8,54.8,46.9,46.8,36.5,35.4$, 27.6, 27.1, 26.6, 25.6, 24.8, 24.7, 21.5, 21.5, 11.8, 11.0.

IR $v\left(\mathrm{~cm}^{-1}\right): 3059,3028,2928,2873$.
HRMS (m/z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NNaO}_{2} \mathrm{~S}^{+}, 366.1498$; found, 366.1496.

1-((4-Nitrophenyl)sulfonyl)-2-phenyl-4-((trifluoromethyl)sulfonyl)piperazine 3ac


White solid, 36\%.
mp: $159-160^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=8.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.25$ (m, 3H), 7.23-7.15 (m, 2H), $5.22(\mathrm{~s}, 1 \mathrm{H}), 4.28(\mathrm{~s}, 1 \mathrm{H}), 3.88(\mathrm{dt}, J=13.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57$ (dd, $J=13.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.47-3.26(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=150.1,145.3,134.7,129.1,128.7,128.3,127.2,124.4$, 121.5, 118.3, 49.1, 46.1, 41.7.
${ }^{19}$ F NMR (376 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=-74.12$ ( $\mathrm{s}, 3 \mathrm{~F}$ ).
IR $v\left(\mathrm{~cm}^{-1}\right): 3850,3742,3644,3116,3028,2870$.
HRMS (m/z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{NaO}_{6} \mathrm{~S}_{2}{ }^{+}, 502.0325$; found, 502.0349.

## 6,6-dimethyl-2-phenyl-1-tosylazepane 5



White solid, $31 \%$.
mp: $93-94{ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, CDCl $_{3}$ ): $\delta=7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.92(\mathrm{~m}, 2 \mathrm{H})$, 6.90-6.86 (m, 2H), 6.85-6.81 (m, 2H), 4.92 (dd, $J=11.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67$ (ddd, $J=14.9$, $2.1,0.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.33 (d, $J=14.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}$, 2 H ), 1.60-1.53 (m, 2H), 1.25-1.17 (m, 4H), 0.98 (s, 3H).
${ }^{13}{ }^{2}$ NMR ( $101 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=142.2,141.6,138.5,128.6,128.0,126.9,126.6,126.5,63.0$, 55.5, 44.7, 39.3, 35.8, 29.5, 24.9, 22.6, 21.3.

IR $\vee\left(\mathrm{cm}^{-1}\right): 3292,3022,2961,2915$.
HRMS (m/z): calcd. for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{~S}^{+}, 358.1835$; found, 358.1841.

## 6- Kinetic isotope (KIE) studies



Scheme S2. Intramolecular KIE effect

The experiment for the intramolecular KIE was carried out following the general procedure. Integration of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture revealed an isotope effect $k_{H} / k_{D}=2.7$.


Scheme S3. Intermolecular KIE effect

KIE experiment for the intramolecular KIE was carried out following the general procedure with 2.5 equivalents of substrate $\mathbf{1 h}$ and 2.5 equivalents of substrate $\mathbf{1 h}-\mathbf{d} \mathbf{2}$. The reaction was run to full conversion, which accounts for a $20 \%$ total conversion of the starting materials. Integration of the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture revealed an isotope effect $k_{H} / k_{D}=2.6$.

## 7- Hammett correlation studies



Scheme S4. Hammett correlation studies

General procedure. A Schlenk tube equipped with a stirrer bar is charged with 35.6 mg NBS ( $0.2 \mathrm{mmol}, 1.0$ equiv), $2.6 \mathrm{mg} \mathrm{I}_{2}$ ( $0.01 \mathrm{mmol}, 0.05$ equiv), $N$ - (2,2-dimethyl-4-phenylbutyl)-4methylbenzenesulfonamidesulfonamide $\mathbf{2 a}(0.5 \mathrm{mmol}, 2.5$ equiv) and the corresponding substituted sulfonamide 2i-m ( $0.5 \mathrm{mmol}, 2.5$ equiv), evacuated, and backfilled with argon. At this point, 2.0 mL of absolute dichloroethane are added. The solution is stirred at $25^{\circ} \mathrm{C}$ for 4 h . $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ is added and the residue is washed with saturated aqueous solutions of $\mathrm{Na}_{2} \mathrm{SO}_{3}$ and $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. The combined organic layers are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvents evaporated under reduced pressure. For each independent run, the ratio of the two products ( $\mathbf{2 a}$ vs $\mathbf{2 i}, \mathbf{j}, \mathbf{I}, \mathbf{m}$, respectively) was calculated within a $5 \%$ error from the resulting ${ }^{1} \mathrm{H}$ NMR spectra.

Table S1. Hammett constant.

| Entry | $\mathbf{X}$ | $\boldsymbol{k}_{\mathbf{x}} / \boldsymbol{k}_{\boldsymbol{H}}$ | $\log \left(\boldsymbol{k}_{\mathbf{x}} / \boldsymbol{k}_{\boldsymbol{H}}\right)$ | Hammett constant <br> $\boldsymbol{\sigma}_{\mathbf{p}-\mathbf{x}}$ |
| :---: | :---: | :---: | :---: | :---: |
| 1 | Cl | 0.4 | -0.39794 | 0.23 |
| 2 | F | 0.8 | -0.09691 | 0.06 |
| 3 | H | 1 | 0 | 0 |
| 4 | Me | 4.16 | 0.61978 | -0.17 |
| 5 | ${ }^{t} \mathrm{Bu}$ | 7.69 | 0.88606 | -0.20 |



Figure S1. Hammett correlation study. Kinetic competition experiments between compound $\mathbf{2 a}$ and compounds $\mathbf{2 i}, \mathbf{2 j}, \mathbf{2 l}$ and $\mathbf{2 m}$, respectively.

## 8 - Investigation on potential intermediate 7

### 8.1 Procedure for the independent synthesis of brominated derivative 7



A Schlenk tube equipped with a stirrer bar was charged with NBS ( $71.2 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), the sulfonamide $\mathbf{2 e}$ ( $0.2 \mathrm{mmol}, 1.0$ equiv), evacuated, and backfilled with argon, before 1.5 mL of absolute dichloroethane was added. The solution was stirred at $25{ }^{\circ} \mathrm{C}$ for 12 h under visible light. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the resulting solution was washed with saturated aqueous solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvents were evaporated under reduced pressure. The crude product was purified by chromatography (silica gel, $n$-hexane/ethyl acetate $6 / 1, \mathrm{v} / \mathrm{v}$ ) to give the pure product 7 in $60 \%$ yield.

### 8.2 Reaction of 7 under GP2



A Schlenk tube equipped with a stirrer bar was charged with NBS ( $29.4 \mathrm{mg}, 0.22 \mathrm{mmol}, 1.5$ equiv), $\mathrm{I}_{2}$ ( $1.2 \mathrm{mg}, 0.0055 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ) and the sulfonamide 7 ( $0.11 \mathrm{mmol}, 1.0$ equiv), evacuated, and backfilled with argon, before 1.0 mL of absolute dichloroethane was added. The solution was stirred at $25{ }^{\circ} \mathrm{C}$ for 12 h under visible light. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the resulting solution was washed with saturated aqueous solutions of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvents were evaporated under reduced pressure. The NMR yield of $\mathbf{3 e}$ is only $6 \%$ suggesting that benzylic bromine derivatives do not represent active intermediates.

## 9- Investigation on molecular iodine and $\mathbf{N}$-bromo phthalimide 1d

To gain further evidence for the interaction between molecular iodine and N -brominated reagents 1a and 1d, their solution behavior was investigated.

Upon mixing equimolar amounts of 1 mmol of molecular iodine and N -bromo phthalimide in 10 mL of dichloromethane, the reaction turned deep violet and gradually remained over the course of two days. At this point crystals appeared, which were separated and isolated. The solid residue was identified as N -iodo phthalimide by NMR and an unresolved X-ray analysis.


This reaction outcome likely proceeds through the involvement of the postulated halogen bonding, which in turn could not be isolated in structure. However, $N$-iodo phthalimide cannot be an active reagent in the present transformation, as it is known to promote Hofmann-Löffler pathway to pyrrolidines. ${ }^{[3]}$

## 10- Investigation on TEMPO as additive

In order to demonstrate a possible interception of the radical pathway, a modified reaction under the general conditions GP2 was carried out adding 1 equivalent of TEMPO to the standard conditions.


Under these conditions, the oxidation pathway is altered and leads to formation of the corresponding imine as the only identified product.

## N-(2,2-Dimethyl-5-phenylpentylidene)-4-methylbenzenesulfonamide


${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta=8.41(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 5 \mathrm{H})$, 7.21-7.14 (m, 1H), 7.10-7.05 (m, 2H), $2.53(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.50(\mathrm{~m}$, $3 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$ ): $\delta=183.9,144.5,141.7,135.0,129.8,128.3,128.3,127.9$, $125.9,40.9,39.3,36.2,26.2,23.7,21.7$.


## 11- Investigation on alternative oxidants

In order to demonstrate the unique efficiency of the combined halide oxidants for catalytic C-H amination, the reaction was conducted under conditions that had previously been developed for intermolecular benzylic $\mathrm{C}-\mathrm{H}$ amination.


Conditions

| $t \mathrm{BuOOH}$ ( 5 equiv), $\mathrm{Bu}_{4} \mathrm{NI}(20 \mathrm{~mol} \%),\left(\mathrm{CH}_{2} \mathrm{Cl}\right)_{2}$ | $76 \%$ conversion to imine |
| :--- | :--- |
| $t \mathrm{BuOOH}$ (5 equiv), $\mathrm{Bu}_{4} \mathrm{NI}(20 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}$ | $62 \%$ conversion to imine |
| $t \mathrm{BuOOH}$ (5 equiv), $\mathrm{Bu}_{4} \mathrm{NI}(20 \mathrm{~mol} \%), \mathrm{CH}_{3} \mathrm{CN}$ | $<5 \%$ conversion to imine |

Scheme S5. Investigation on alternative oxidants

Under these conditions, the reaction provides exclusive access to the aldimine reported in section 10. Obviously, the intermediary N -iodinated derivative undergoes $\alpha$-elimination as previously observed for some non-related cases. ${ }^{[4]}$

## 12- Investigation on the Intermediate D

The postulated intermediate $\mathbf{D}$ could not be isolated or synthesized independently due to its high reactivity. Its synthesis was therefore addressed by an indirect manner. Reaction of the benzyl bromide 7 with sodium iodide in acetonitrile proceeds sluggishly at $60^{\circ} \mathrm{C}$. It provides a total of $60 \%$ conversion after 24 h and provides a mixture of the cyclized product $\mathbf{3 e}$ and the elimination product 8, which both stem from the putative intermediate $\mathbf{D}$. The loss in chemoselectivity is the result of the high reaction temperature.


Scheme S6. Investigation on putative intermediate D from 7 and Nal.

In contrast, the direct transformation of 7 under these conditions provides less piperidine formation and elimination due to the lower reactivity of the benzyl bromide (compare section 8.2).


Figure S2. 1H NMR spectrum of the crude mixture of piperidine $3 e$ and elimination product 8 .

## 13- Deprotection of 3 c to free piperidine 9


3c


A flame-dried pressure tube equipped with a magnetic stir bar was charged $\mathbf{3 c}$ ( $93.5 \mathrm{mg}, 0.25$ mmol, $100 \mathrm{~mol} \%$ ) and $\mathrm{K}_{2} \mathrm{CO}_{3}(207.3 \mathrm{mg}, 1.5 \mathrm{mmol}, 6$ equiv). The reaction tube was placed under an atmosphere of argon, $\mathrm{PhSH}(0.102 \mathrm{~mL}, 1.0 \mathrm{mmol}, 4$ equiv) and $\mathrm{MeCN}(4 \mathrm{~mL})$ was added by syringe. The tube was capped and the reaction mixture was allowed to stir at $50^{\circ} \mathrm{C}$ for $16 \mathrm{~h} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added and the resulting solution was washed with saturated aqueous solutions of $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 x)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and solvents were evaporated under reduced pressure. The crude product was purified by chromatography (silica gel, $n$-hexane/ethyl acetate $2 / 1$, v/v) to give the pure product 9 as yellow oil in $90 \%$ yield $(42.5 \mathrm{mg})$. Compound 9 was reported previously. ${ }^{[5]}$ Yellow oil, 90\%.
${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta=7.42-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 1 \mathrm{H})$, 3.52 (dd, $J=10.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), 2.74 (dd, $J=11.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.62(\mathrm{dd}, J=11.6,0.8 \mathrm{~Hz}$, $1 \mathrm{H})$, 1.72-1.61 (m, 2H), 1.59-1.51 (m, 1H), 1.45-1.36 (m, 1H), $1.12(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, $\mathrm{CDCl}_{3}$ ): $\delta=145.5,128.3,126.9,126.7,62.2,59.2,38.6,31.2,29.7$, 29.6, 23.8.

## 14- X-Ray structure analyses of products $3 \mathrm{c}, 3 \mathrm{~m}, 3 \mathrm{z}$ and 5

### 14.1 X-Ray Structure of 3c



Table S2. Crystal data and structure refinement for compound 3c.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.758^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [I $>2$ sigma(I)]
$R$ indices (all data)
Largest diff. peak and hole

CCDC 1522790
C19 H22 N2 O4 S
374.44

100(2) K
$0.71073 \AA$
Orthorhombic
Pben
$\begin{array}{ll}\mathrm{a}=16.4786(7) \AA & \mathrm{a}=90^{\circ} . \\ \mathrm{b}=7.7790(4) \AA & \mathrm{b}=90^{\circ} . \\ \mathrm{c}=28.3488(15) \AA & \mathrm{g}=90^{\circ} .\end{array}$
3633.9(3) $\AA^{3}$

8
$1.369 \mathrm{Mg} / \mathrm{m}^{3}$
$0.205 \mathrm{~mm}^{-1}$
1584
$0.20 \times 0.08 \times 0.04 \mathrm{~mm}^{3}$
1.895 to $25.758^{\circ}$.
$-19<=\mathrm{h}<=20,-9<=\mathrm{k}<=7,-23<=1<=34$
18028
$3426[\mathrm{R}(\mathrm{int})=0.0672]$
98.2\%

Empirical
0.992 and 0.892

Full-matrix least-squares on $\mathrm{F}^{2}$
3426/ 0/ 237
1.018
$\mathrm{R} 1=0.0415, \mathrm{wR} 2=0.0881$
$R 1=0.0673, w R 2=0.0992$
0.277 and -0.380 e. $\AA^{-3}$

### 14.2 X-Ray Structure of 3m



Table S3. Crystal data and structure refinement for compound 3m.

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions
$102.1500(10)^{\circ}$.
Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=40.097^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [I $>2 \operatorname{sigma}(\mathrm{I})$ ]
$R$ indices (all data)
Largest diff. peak and hole

0.773 and $-0.684 \mathrm{e} . \AA^{-3}$

### 14.3 X-Ray Structure of 3aa



Table S4. Crystal data and structure refinement for compound $\mathbf{3 z}$.

| Identification code | CCDC 1522793 |  |
| :--- | :--- | :--- |
| Empirical formula | C19 H21 N O2 S |  |
| Formula weight | 327.43 |  |
| Temperature | $100(2) \mathrm{K}$ |  |
| Wavelength | $0.71073 \AA$ |  |
| Crystal system | Monoclinic | $\mathrm{a}=90^{\circ}$. |
| Space group | $\mathrm{P} 2(1) / \mathrm{c}$ | $\mathrm{b}=98.412(2)^{\circ}$. |
| Unit cell dimensions | $\mathrm{a}=10.2375(2) \AA$ | $\mathrm{g}=90^{\circ}$. |
|  | $\mathrm{b}=9.4009(2) \AA$ |  |
|  | $\mathrm{c}=16.6135(4) \AA$ |  |
| Volume | $1581.71(7) \AA^{3}$ |  |
| Z | 4 |  |
| Density (calculated) | $1.375 \mathrm{Mg} / \mathrm{m}^{3}$ |  |
| Absorption coefficient | $0.215 \mathrm{~mm} \mathrm{~m}^{-1}$ |  |
| F(000) | 696 |  |
| Crystal size | $0.2 \times 0.2 \times 0.1 \mathrm{~mm}$ |  |
| Theta range for data collection | 2.496 to $34.243^{\circ}$. |  |
| Index ranges | $-15<=\mathrm{h}<=15,-14<=\mathrm{k}<=14,-25<=1<=25$ |  |
| Reflections collected | 29572 |  |
| Independent reflections | $6195[\mathrm{R}(\mathrm{int})=0.0501]$ |  |
| Completeness to theta $=34.243^{\circ}$ | $94.3 \%$ |  |
| Absorption correction | Multi-scan |  |
| Max. and min. transmission | 0.979 and 0.753 |  |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |  |
| Data / restraints $/$ parameters | $6195 / 0 / 217$ |  |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 0.963 |  |
| Final R indices [II 2 sigma(I) $]$ | $\mathrm{R} 1=0.0360, \mathrm{wR} 2=0.0916$ |  |
| R indices (all data) | $\mathrm{R} 1=0.0519, \mathrm{wR} 2=0.0930$ |  |
| Largest diff. peak and hole | 0.446 and $-0.364 \mathrm{e} . \AA^{-3}$ |  |

### 14.4 X-Ray Structure of 5



Table S5. Crystal data and structure refinement for compound 5.

| Identification code | CCDC 1522792 |
| :---: | :---: |
| Empirical formula | C10.50 H13.50 N0.50 O S0.50 |
| Formula weight | 178.75 |
| Temperature | 100(2) K |
| Wavelength | 0.71073 Å |
| Crystal system | Monoclinic |
| Space group | P2(1)/n |
| Unit cell dimensions | $a=11.6983(3) \AA$ 風 $\quad \mathrm{a}=90^{\circ}$. |
|  | $\mathrm{b}=13.0767(3) \AA$ 成 $\quad \mathrm{b}=114.637(4)^{\circ}$. |
|  | $\mathrm{c}=13.6557(5) \AA$ ® $\AA^{\text {a }}$, $\mathrm{g}=90^{\circ}$. |
| Volume | 1898.81(11) $\AA^{3}$ |
| Z | 8 |
| Density (calculated) | $1.251 \mathrm{Mg} / \mathrm{m}^{3}$ |
| Absorption coefficient | $0.184 \mathrm{~mm}^{-1}$ |
| F(000) | 768 |
| Crystal size | ? x ? x ? mm ${ }^{3}$ |
| Theta range for data collection | 2.997 to $29.012^{\circ}$. |
| Index ranges | $-15<=\mathrm{h}<=15,-16<=\mathrm{k}<=17,-17<=1<=17$ |
| Reflections collected | 35085 |
| Independent reflections | $4596[\mathrm{R}(\mathrm{int})=0.0302]$ |
| Completeness to theta $=29.012^{\circ}$ | 91.0\% |
| Absorption correction | Multi-scan |
| Max. and min. transmission | 0.985 and 0.758 |
| Refinement method | Full-matrix least-squares on $\mathrm{F}^{2}$ |
| Data / restraints / parameters | 4596/ 0/ 229 |
| Goodness-of-fit on $\mathrm{F}^{2}$ | 1.021 |
| Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ] | $\mathrm{R} 1=0.0369, \mathrm{wR} 2=0.0975$ |
| R indices (all data) | $\mathrm{R} 1=0.0416, \mathrm{wR} 2=0.1006$ |
| Largest diff. peak and hole | 0.671 and -0.394 e. $\AA^{-3}$ |

## 15. List of references

1) Martínez, C.; Muñiz, K. Angew Chem. Int. Ed. 2015, 54, 8287-8291.
2) Fillion, E.; Trépanier, V. É.; Heikkinen, J. J.; Remorova, A. A.; Carson, R. J.; Goll, J. M.; Seed, A. Organometallics 2009, 28, 3518-3531.
3) O’Broin, C. Q.; Fernández, P.; Martínez, C.; Muñiz, K. Org. Lett. 2016, 18, 436-439.
4) Fan, R.; Pu, D.; Wen, F.; Wu, J. J. Org. Chem. 2007, 72, 8994-8997.
5) Healy, M. A. M.; Smith, S. A. M.; Stemp, G. Synth. Commun. 1995, 25, 3789-3797.

16- NMR Charts of starting materials
































































KMZHWd2p.10.fid
ResearchGroup Muniz
ICIQ_1H12p8s CDCl3/opt/topspin hzhang 15
























## 17- NMR Charts of amination products


















$$
\|\|\|
$$




$1 \mid$ s s s s fl













$$
\psi_{H}
$$

$$
\iint \mid
$$




$\left|\| \int 1 \int_{1}\right|$







$$
1,1111
$$





























$\left\|\left\|\left\|\int\right\|\right\|_{\|}\right\|$











$1.5: 1$














