Supporting Information

Fabrication and Characterization of Three Dimensional Core-Shell Structure

Nanofibers Designed for 3D Dynamic Cell Culture

Lin Jin,^{†,‡}* Qinwei Xu, [‡] Shreyas Kuddannaya, [‡] Cheng Li, [‡] Yilei Zhang, [‡]* Zhenling $Wang^{\dagger,\$}*$

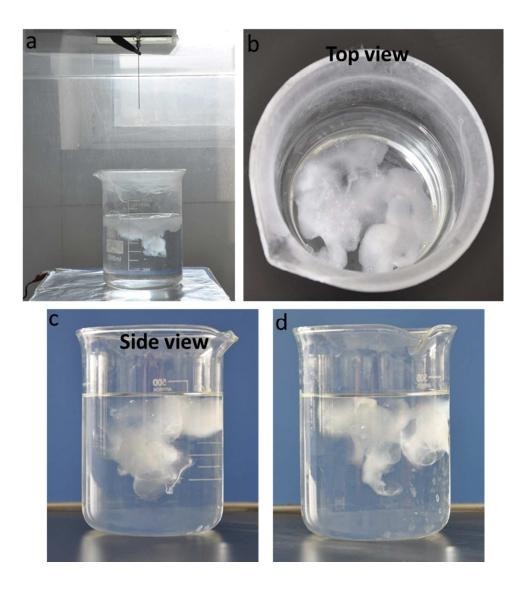
[†] The Key Laboratory of Rare Earth Functional Materials and Applications, Zhoukou Normal University, Zhoukou 466001, P. R. China

[‡]School of Mechanical & Aerospace Engineering, Nanyang Technological University,

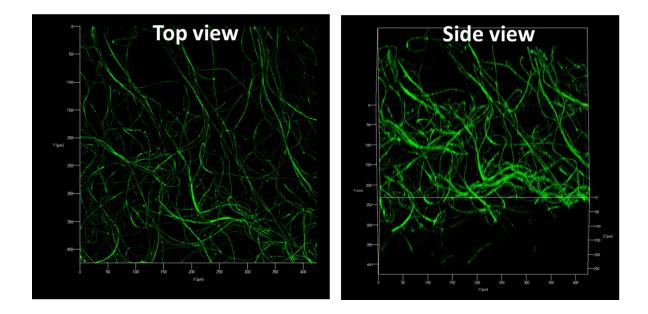
50 Nanyang Avenue, Singapore 639798, Singapore

[§]International Joint Research Laboratory for Biomedical Nanomaterials of Henan,

Zhoukou 466001 China


*E-mail for: Jin Lin : jinlin 1982@126.com

*E-mail for Z.L.W: zlwang2007@hotmail.com.


*E-mail for Y.L.Z.: ylzhang@ntu.edu.sg.

NFMs fabrication

For NFMs fabrication, the electrospinning was performed similarly as previous process.^{S1} a precursor solution was prepared by dissolving PAN (Mn=90, 000) in the solvent of N, N-dimethylformamide (DMF) at concentration of 10 wt%, under constant stirring until the mixture was clear, viscous and homogenous. The electrospinning was performed using a customized spinning system. Subsequently, the mixed solution was fed into a syringe capped with a 0.22 gauge blunt-tripped needle and driven by a syringe pump (Langer CO., Baoding, China) at a controllable feed rate of 1.0 mL/h. The distance between the tip of the syringe needle and the collector was 10 cm and a voltage of 15 kV was applied by a high voltage DC power supply (Dongwen High Voltage, Tianjing, China) to generate a continuous jetting stream. The obtained nanofibers were deposited onto the aluminium foil-covered collector. The relevant temperature and humidity during the electrospinning were $20\pm3^{\circ}$ C and $40\pm5^{\circ}$, respectively.

Figure S1. The fabrication steps of the 3D NFs. (a) Electrospinning the nanofibers into ethanol solution. (b, c) The obtained mixed solution was replaced 3 times with rinsing using DI water with rigoroush shaking. (d) 3D NFs aqueous dispersions are prepared before freeze drying.

Figure S2. Confocal images of the 3D NFs. The nanofibers of 3D NFs were doped with CeF_3 :5%Tb nanoparticles in the fabrication process (5mg CeF_3 :5%Tb nanoparticles were dispersed into 1mL precursor solution).

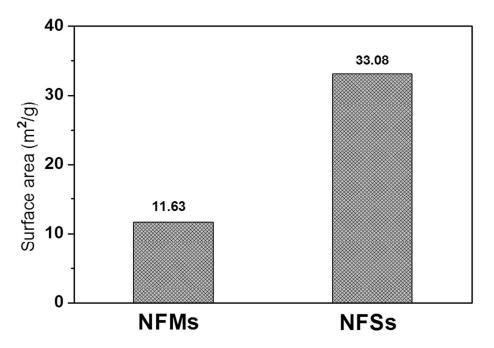
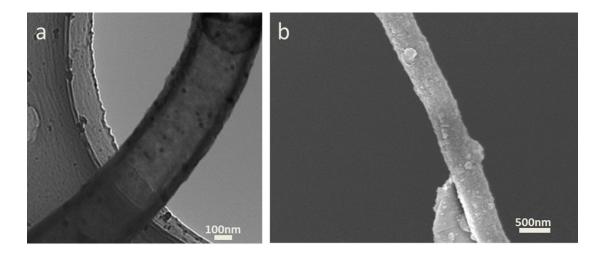



Figure S3. BET surface area of the NFMs and the 3D NFs.

Figure S4. (a) TEM image and (b) high magnification SEM image of single PPy core-shell nanofiber.

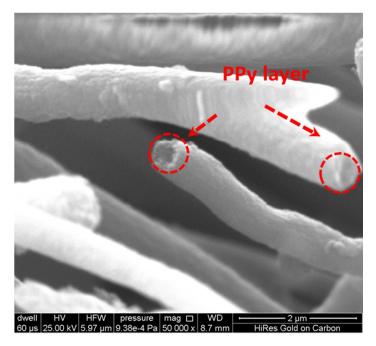


Figure S5. SEM image of PPy tubes in the 3D eNFs after removing polymer.

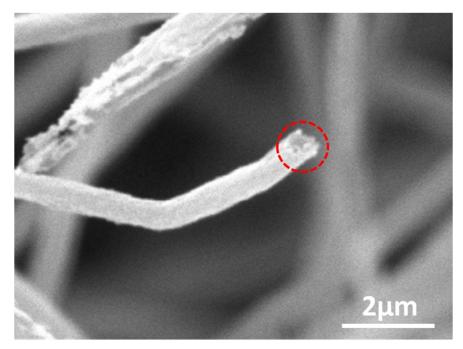


Figure S6. SEM image of PPy tubes in the 3D eNFs after carbonization .

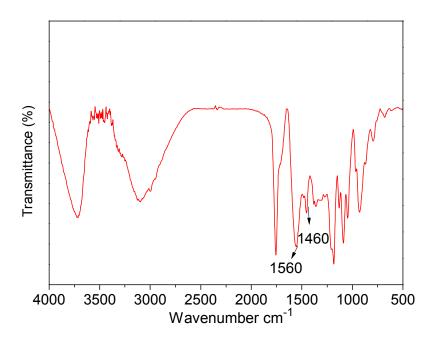


Figure S7. FTIR spectrum of 3D eNFs.

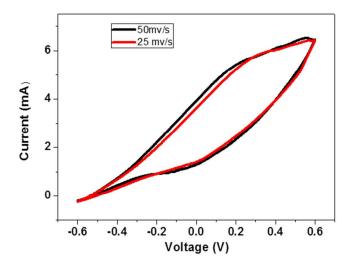


Figure S8. CV curves of 3D e-NFs at scan rates of 50mv/s and 25mv/s.

REFERENCES

(S1) Jin, L.; Wang, T.; Feng, Z. Q.; Zhu, M.; Leach, M. K.; Naim, Y. I.; Jiang, Q. Fabrication and Characterization of A Novel Fluffy Polypyrrole Fibrous Scaffold Designed for 3D Cell Culture. *J. Mater. Chem.* **2012**, *22*, 18321.