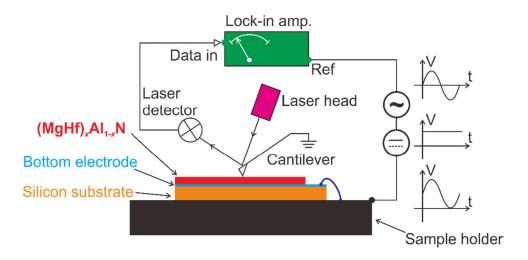
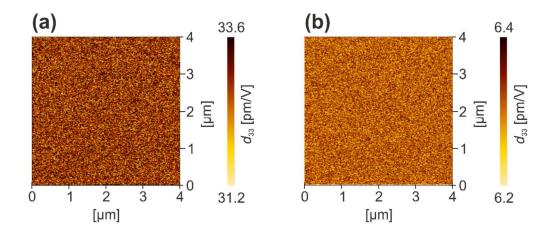
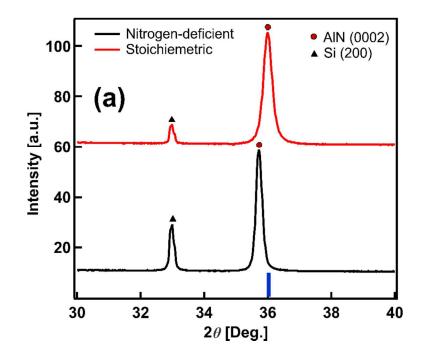

Supporting information

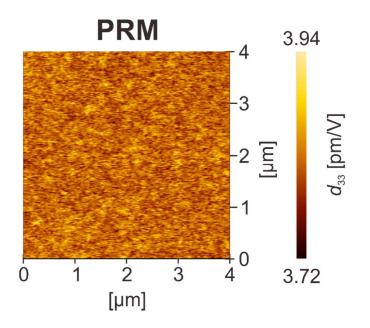
High-throughput investigation of a lead-free AlN-based piezoelectric material, (Mg,Hf)_xAl_{1-x}N


Hung H. Nguyen,^{1*} Hiroyuki Oguchi,² Le Van Minh¹, Hiroki Kuwano¹

¹Department of Robotics, Tohoku University, Sendai, Japan


²Advanced Institute for Materials Research (AIMR), Tohoku University, Japan


Figure S1. Schematic of combinatorial deposition using AlN target and Mg target with pieces of Hf on top.


Figure S2. The illustration of PRM measurement, in which an AC voltage (*V*) was applied along *c*-axis of the thin film by using an AFM conductive cantilever and bottom electrode. The AC voltage induce a displacement (*D*) on sample surface which was accurately followed by the tip in contact mode. The amplitude of the tip vibration could be measured by lock-in technique. Thus, the piezoelectric coefficient of materials (d_{33}) could be determined by $d_{33} = D/V$.

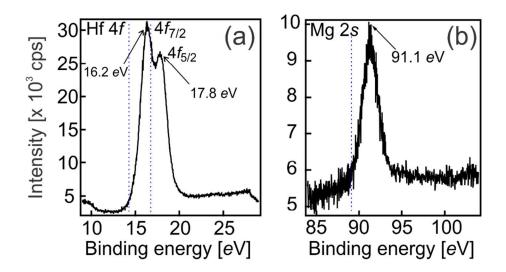

Figure S3. PRM images for LiNbO₃ (a) and SiO₂ (b) single crystal. The d_{33} values were determined by taking average for the observed area. The obtained values for LiNbO₃ and SiO₂ were 32.7 and 6.3 pm/V, respectively, which agree with widely accepted values. ^{31, 32}

Figure S4. XRD patterns for AlN thin films with and without the nitrogen deficiency. Stoichiometry was confirmed by observing (0002) peak of the AlN at $2\theta \sim 36^{\circ}$, which corresponds to the reference peak position of hexagonal AlN (solid blue line).^{7,8}

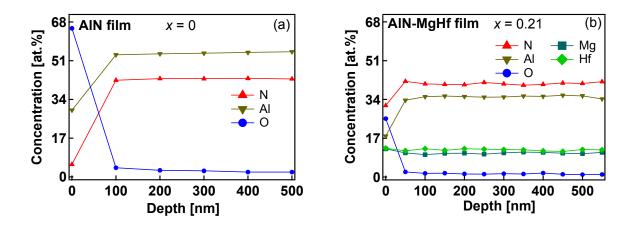


Figure S5. PRM image of stoichiometric AlN thin film. The average d_{33} value for measured area is 3.9 pm/V. The obtained value was comparable with reported value of AlN thin films. ^{1, 7, 17}

Figure S6. High-resolution XPS spectra of (a) Hf 4*f* and (b) Mg 2*s* core-levels obtained for the $(Mg,Hf)_xAl_{1-x}N$ (x = 0.21) film. Blue dotted lines denote reference peak positions. The peak positions were calibrated beforehand by using peak of carbon deposited on sample surface. The spectrum of Hf 4*f* (a) showed two singlet peaks located at 16.2 and 17.8 *e*V, corresponding to Hf 4*f*_{7/2} and Hf 4*f*_{5/2}, respectively. These values were 1.8 eV higher than those of the references for

metal Hf (14.4 eV for Hf $4f_{7/2}$ and 16.0 eV for Hf $4f_{5/2}$), and agreed well with the reported values for HfN film. Similarly, the XPS spectrum of Mg 2*s* (b) showed a peak at 91.1 eV, which was shifted by 2.5 eV to a higher energy than that of Mg metal (88.6 eV). The size of this shift agreed well with the reported value for Mg₃N₂. These results indicated that Mg and Hf had directly replaced Al and formed bonds with nitrogen.

Figure S7. Depth profile of the $(Mg,Hf)_xAl_{1-x}N$ films for x = 0 (a) and x = 0.21 (b) obtained by Ar ion sputtering at a sputtering rate of ~ 5 nm/min using XPS. The higher levels of Al than N observed in these profiles indicated that the films were N-deficient. The extent of the deficiency was roughly uniform (~ 13 at.%) for different *x*.