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A: Monomer Polarisabilities

We calculate the polarisabilities of ECTFE monomers (saturated with two additional hy-

drogen atoms for neutrality) by means of quantum chemical approach based on a response

formalism as implemented in the Turbomole computational package [18]. Two different con-

formers of the ECTFEmonomer exist. However, they show almost exactly identical responses

when averaging over all possible orientations. For the calculation of the monomer polarisabil-

ity, we have employed a hybrid density functional method combining Becke’s exchange part
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[19] and the Lee, Yang, and Parr correlation term [20] with Dunning’s correlation-consistent

basis set of triple-ζ quality [21] (B3LYP/cc-pVTZ) whereas all test computations have been

done with a PBE/def2-SV(P) combination.

B: Determination of equilibrium distances

The equilibrium distance between the ECTFE polymer and the substrate are determined

from a competition between local chemical binding and long-range dispersion forces. We eval-

uate the covalent interactions between ECTFE monomers and substrate surfaces by means

of a hybrid density functional combined with a spin-valence double-ζ Pople basis set [22]

B3LYP/6-31G(d) as implemented with the Gaussian 09 package [23]. To correctly predict

the binding energy, the counterpoise correction method by Boys and Bernardi [24] has been

applied to eliminate the basis set superposition error (BSSE) [25]. For the case of a (001) sil-

icon surface with 2-1 reconstruction, two different silicon cluster sizes have been considered:

Si31H28 and Si45H34. For both clusters, three starting positions of monomer relative to the

surface have been chosen, leading to three different optimal structures for each case. The

corresponding equilibrium distances range from 2.6–3.7Å justifying the use of an average

distance.

To transfer our results to different substrates, a correction accounting for size-effects is

introduced. It has been derived by comparing the nearest distances in optimized complexes

with the sum of known atomic properties as covalent and van der Waals radii. For orienta-

tions 1 and 2, the F-Si bond is approximately 1.5× (RF
cov + RSi

cov), whereas in orientation 3

the H–Si bond is approximately RH
vdW + RSi

vdW. The ability of fluorine atoms form a loose

covalent bond with the substrate can be rationalized by the presence of electrons in the inner

shell which are not involved in the formation of any polymer bond. By contrast, hydrogen

ions inside the polymer can only form weak van der Waals interactions with the substrate.
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Based on this model, we evaluate the rotationally averaged equilibrium surface–monomer

separation a for different substrate materials on the basis of the known atomic radii.

The van-der-Waals and covalent radii used for evaluating the equilibrium distances be-

tween various substrates and monomeric ECTFE are given in Tab. 1. For each substrate, we

consider 3 possible orientation of the monomer unit with respect to the substrate surface.

For the orientations 1 (parallel to the surface) and 2 (with the F-end of the monomer facing

the surface), the fluorine atom is the closest to the surface and we use 1.5× (RF
cov +RX

cov) as

an estimation of the separation. For orientation 3 (with the H-end of monomer facing the

surface), the sum of van-der-Waals radii H–X, RH
VdW +RX

VdW, is evaluated as the separation.

For glass, the distance has been calculated for Si and O atoms separately and then weighted

with the stoichiometric ratio 1:2. Note that the ratio of atoms in the surface layer might

deviate from this value. As the atomic parameters for Fe and Cr atoms are very similar, the

particular content of Cr dopant in steel was irrelevant to the determination of the equilibrium

distance. The evaluation details are summarized in Tab. 2.

Table 1: Van der Waals and covalent radii. Van der Waals and covalent radii of atoms
used for estimating the equilibrium distance between substrate and monomeric ECTFE. For
Fe and Cr, the van-der-Waals radius of Ni is taken.

Atom RV dW [A] Rcov[A]
H 1.20 0.38
F 1.47 0.71
Si 2.10 1.11
O 1.52 0.73
Au 1.66 1.44
Fe 1.65 1.25
Cr 1.65 1.27
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Table 2: Equilibrium separations. Evaluation of equilibrium separations between rota-
tionally averaged ECTFE monomers and different substrates.

Silicon
Orientation Bond Type Sum of radii QC results Scaling coefficients

1 F-Si cov. 1.82 2.84 1.6
2 F-Si cov. 1.82 2.84 1.5
3 H-Si VdW 3.30 3.55 1.1

Orientational average 2.93
Gold

Orientation Bond Type Sum of radii Scaled sum
1 F-Au cov. 2.15 3.23
2 F-Au cov. 2.15 3.23
3 H-Au VdW 2.86 2.86

Orientational average 3.16
Glass

1 F-O cov. 1.44 2.16
2 F-O cov. 1.44 2.16
3 H-O VdW 2.72 2.72

Orientational average for O 2.25
Stoichiometric average 2.48

Steel
1 F-Fe cov. 1.96 2.94
2 F-Fe cov. 1.96 2.92
3 H-Fe VdW 2.85 2.85

Orientational average 2.93
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C: Material Constants

We start from optical data and eventually want to fit the various materials’ permittivity

with a model for their electromagnetic response. The permittivity ε and the dimensionless

polarisability ᾱ of a material are related via the Clausius–Mossotti law [27],

ᾱ =
η

ε0
α = 3

ε− 1

ε+ 2
. (1)

Here, η is the number density of particles in the bulk material. For ECTFE, one has

η = 7 · 1027m−3. Spectroscopic measurements provide the real and imaginary parts of a

material’s refractive index n, tabulated for real frequencies. They are related to the real

and imaginary parts of the material’s permittivity via ε = n2. According to the Kramers-

Kronig relations [27], the latter can then be used to find the (purely real) permittivity on

the imaginary-frequency axis by calculating an integral

ε(iω) = 1 +
2

π

∞∫
0

dω′
ω′ Im ε(ω′)

ω′2 + ω2
. (2)

If one transition dominates the dispersive properties of the material, the permittivity

may be described by a single-resonance Drude-Lorentz model:

ε(ω) = 1 +
ω2

P

ω2
T − ω2 − iγω

. (3)

Here, the plasma frequency ωP describes the strength of the resonance, the transverse fre-

quency ωT its position on the real-frequency axis and γ its width. The free electrons contained

in metals have zero transverse frequency. For materials with a more complex dielectric re-

sponse, multi-resonance models may be employed. For dielectrics all resonances are located

at finite frequencies. If they are well separated from each other, the corresponding single-

resonance response functions may simply be added. For metals, one of the resonances is
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located at zero frequency, so the following product model is advantageous:

ε(ω) =
ω2

L1
− ω2 − iγL1ω

−ω2 − iγT1ω
·
ω2

L2
− ω2 − iγL2ω

ω2
T2
− ω2 − iγT2ω

. (4)

The two different widths γL and γT facilitate a modelling of dispersion profiles with asym-

metric peaks.

Finally, we note that some of the studied materials are composite. In this case, the di-

mensionless polarisability of the compound is the sum of the polarisabilities of the individual

ingredients, weighted by the respective particle number fractions. Defining said fraction for

a given material as

qj =
ηj∑
k ηk

with
∑
j

qj = 1 , (5)

the effective polarisability of the compound is given by

ᾱ =
∑
j

qjᾱj . (6)

Stainless steel is a composite material consisting mainly of iron (Fe,84.7%) and chromium

(Cr, 15.3%). The parameters obtained by fitting the aforementioned models to the optical

data of the materials under study can be found in Tab. 3.
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Table 3: Fit parameters. Fit parameters for the materials studied. The upper three
rows, i.e. metal parameters, refer to composite model (4), while the lower three rows, i.e.
metalloids and dielectrics, were fitted with the Drude-Lorentz model (3).

ωT [1015 rad
s ] ωL [1015 rad

s ] γT [1014 rad
s ] γL [1014 rad

s ]

Gold −
4.3

3.8
13

0.83
38

7.9
350

Iron −
4.5

26
8.2

27
1800

1100
740

Chromium −
3.0

1.0
18

.55
37

15
270

ωT [1015 rad
s ] ωP [1015 rad

s ] γ [1014 rad
s ] ε(0)

ECTFE 27 26 72 1.93

Silicon dioxide 0.13
27

1.7
29

0.43
81

3.91

Silicon 71 23 9.8 11.7

D: Hamaker approximation

Figure 1: Hamaker approximation. Left: Contributions to U1/A in the Hamaker ap-
proach. Right: Contributions to U2/A in the Hamaker approach.

The Hamaker approximation [30] reproduces the two-body contribution to the geometry-

dependence. We hence calculate:

U = −ηECTFEηsub

∫
V1

d3r1

∫
V2

d3r2
C6

|r1 − r2|6
(7)

where C6 = − 3~
16π3ε20

∫∞
0
dωαECTFE (iω)αsub (iω) and ηECTFE, ηsub represent the number-

densities of the ECTFE film and the substrate. Using this approximation the parameter

λ, which is the ratio between the force and the force for flat surfaces, can be evaluated. To
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evaluate the double integral (7), we decompose the two corrugated structures into sections

as indicated in Figs. 1. One reads off for the energy per unit area:

U

A
=

∞∑
n=−∞

(
Un
1

A
+
Un
2

A

)
, (8)

where

Un
1

A
= −ηECTFEηsub

1

L

L∫
0

dx1

f1(x1)∫
−∞

dz1

2mL+L∫
2mL

dx2

∞∫
−∞

dy2

∞∫
z+f2(x2)

dz2
C6

|~r1 − ~r2|6
, (9)

Un
2

A
= −ηECTFEηsub

1

L

L∫
0

dx1

f1(x1)∫
−∞

dz1

2mL+2L∫
2mL+L

dx2

∞∫
−∞

dy2

∞∫
z+f3(x2)

dz2
C6

|~r1 − ~r2|6
. (10)

The functions f1 (x1) = h
L
x1, f2 (x2) = h

L
x2 − 2mh and f3 (x2) = 2 (m+ 1)h− h

L
x2 describe

the roughness profiles of the surfaces. For flat surfaces we obtain the well-known result

U
A

= −Cpw
3

2z2
, where Cpw

3 = π
6
ηECTFEηsubC6. The dominant term in the energy for small a

is represented by the term U0
1

A
, we have numerically verified that the other terms represent

small corrections. The integration gives:

U0
1

A
= − Cpw

3

8L4z2

{
L
(
2h3 + 3hL2 − 6h2z − 3L2z

)
− 2L

[
−3hz2 + z3 −

(
h2 + L2 − 2hz + z2

)3/2]
+

+ L
[
(2h2 + 2L2 + 4hz + 2z2)

√
L2 + (h+ z)2 − (h+ z)(3L2 + 2(h+ z)2)

]}
(11)

The corresponding force can be expressed in terms of the parameters θ, a and L via h =
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l/ tan θ, z = a/ sin θ:

f 1
0 (θ, a, L)

A
= − Cpw

3

6a3L3

√
L2 + (L cot θ + a csc θ)2

×

[
− 2aL(a2 − 5L2) cot θ + 2

(
−a4 + 2a2L2 + 2L4 + a2L2 cos 2θ

)
csc θ

+ csc θ
√

(a2 + L2 + 2aL cos θ)
(

4a3 − 9aL2 − 3aL2 cos 2θ − 2(a2 − 2L2 + aL cos θ)

+
√

(a2 + L2 − 2aL cos θ) csc2 θ sin θ
)]
. (12)

The roughness correction factor is then given by

λ (θ, a, L) =
f 1
0 (θ, a, L)

f 1
0 (π/2, a, L)

. (13)

9


