Supporting Information

Mechanism and Kinetics for Reaction of the Chemical Warfare Agent Simulant, DMMP(*g*), with Zirconium (IV) MOFs: An Ultrahigh-vacuum and DFT Study

G. Wang,¹ C. Sharp,¹ A. M. Plonka,² Q. Wang,² A. Frenkel,² W. Guo,³ C. Hill,³ C. Smith,¹ J. Kollar,⁴ D. Troya,¹ and J. R. Morris^{1,*}

¹Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States ²Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11794, United States ³Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States ⁴Department of Chemistry and Biochemistry, Kennesaw State University, Kennesaw, Georgia 30144, United States

Corresponding Author

*jrmorris@vt.edu

Table of Contents

Section S1: Powder x-ray diffractograms of UiO-66, UiO-67, and MOF-808 Section S2: Infrared band assignment for peaks in difference IR spectra of UiO-66, UiO-67, and MOF-808 upon DMMP exposure Section S3: DFT calculations to accompany DMMP-Zr₆ MOF overall reaction pathway calculations

Section S1: Powder x-ray diffractograms of UiO-66, UiO-67, and MOF-808

The powder XRD measurements were performed with synchrotron X-rays at the 17-BM beam line at the Advanced Photon Source (APS) at Argonne National Laboratory with the fast and large 2D detector, using the beam of λ =0.72959 Å and were analyzed using GSAS-II software. The PXRD patterns of UiO-66, UiO-67 and MOF-808 are consistent with those of the ideal structures, as verified by comparison to models.

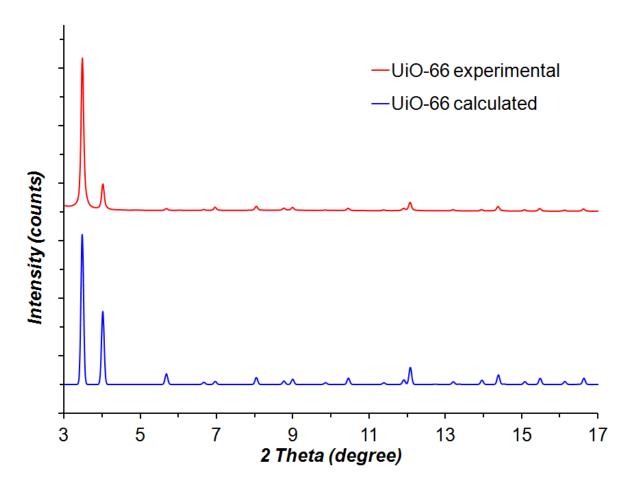


Figure S1. Experimental PXRD pattern of UiO-66 compared with the pattern calculated from the single crystal structure. No additional peaks indicate the purity of the sample.

Figure S2. Experimental PXRD pattern of UiO-67 compared with the pattern calculated from the single crystal structure. No additional peaks indicate the purity of the sample.

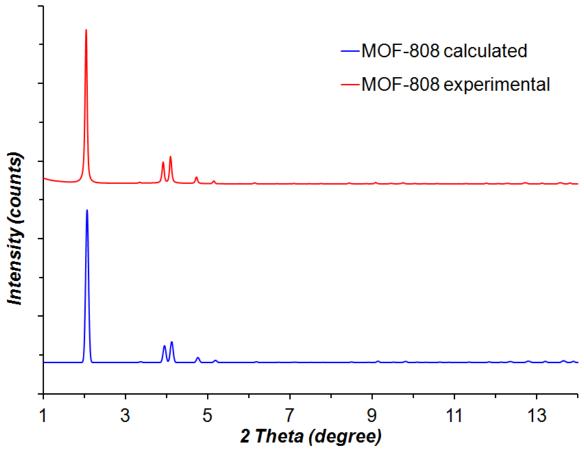


Figure S3. Experimental PXRD pattern of MOF-808 compared with the pattern calculated from the single crystal structure. No additional peaks indicate the purity of the sample.

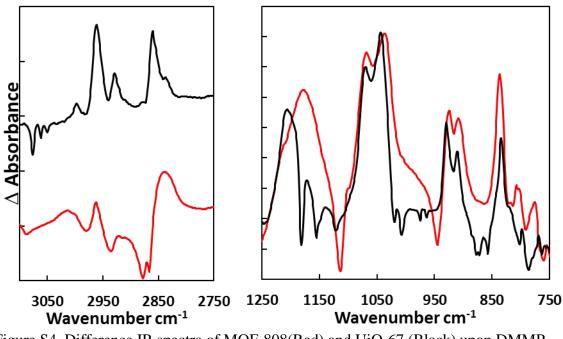
Table S1. Unit cell parameters of UiO-66, UiO-67, MOF-808 from this study, compared
with published results. Small differences in values arise from different temperatures of
data collection.

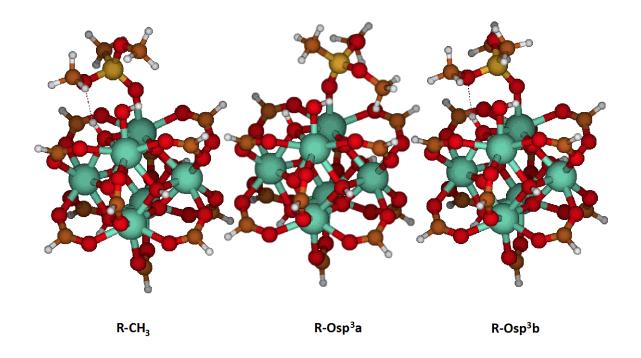
MOF	this study		published	
	lattice parameter	T(K)	lattice parameter	T (K)
	<i>a</i> (Å)		<i>a</i> (Å)	
UiO-66	20.7582(6)	298	20.7465(2)*	100
UiO-67	28.845(1)	298	26.783(3)**	100
MOF-808	35.371(2)	298	35.0764(10)***	100

*¹, *², ***³

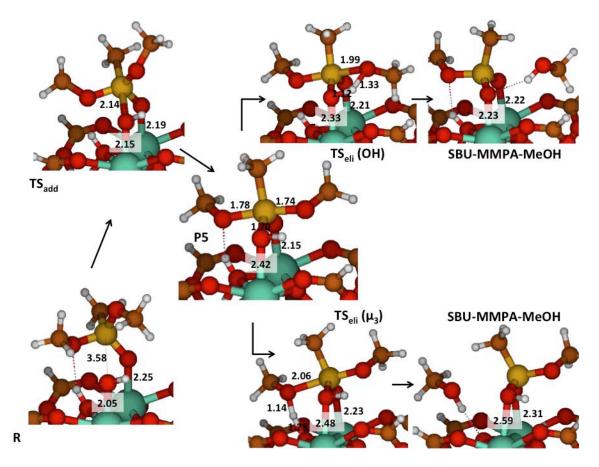
Section S2: Infrared band assignment for peaks in difference IR spectra of UiO-66, UiO-67, and MOF-808 upon DMMP exposure

The difference IR spectra of UiO-66, UiO-67, and MOF-808 were recorded by a Bruker IFS 66v/S spectrometer. The clean, pre-exposed MOFs were used as the background. The difference IR spectra of UiO-66 upon DMMP exposure can be found in Figure 3, while Figure S4 shows the difference IR pf UiO-67 (Black) and MOF-808 (Red). The assignments for the IR bands in the difference spectra are shown in Table S2.




Figure S4. Difference IR spectra of MOF-808(Red) and UiO-67 (Black) upon DMMP exposure at room temperature (298 K)

Mode	UiO-66-DMMP	UiO-67-DMMP	MOF-808-
Widde	cm ⁻¹	cm^{-1}	DMMP cm^{-1}
$\nu(ZrO-H)_{SBU, H-bounded}$	3313		
$v_{as}(CH_3)$	3009	2997	3012
$v_{as}(CH_3O)$	2950	2961	2962
$v_{s}(CH_{3})$	2950sh	2961sh	2962sh
$v_{as}(ZrOCH_3)$		2928	2913
v _s (CH ₃ O)	2846	2860	2839
$v_{s}(ZrOCH_{3})$		2836	2839sh
$\delta(PCH_3)+\delta(P=O)+v_{as}(O-P-$			1178
O)+ $\rho(OCH_3)$			1170
$\delta(PCH_3)$	1308	1207	
υ(P=O)	1255	1171	
$v_{as}(O-P-O)+\rho(OCH_3)$	1186	1138	
v _s (O-P-O)	1064sh	1070sh	1068sh
v _{as} (CO)	1064	1070	1068
v _s (CO)	1048	1043	1038
$\rho(PCH_3)_{P=O \text{ bounded to SBU}}$	952	926	925
ρ(PCH ₃)	912	910	909
v(P-C)	819	834	837
v(P-O)	789	819	775


Table S2. Observed vibrational frequencies (cm⁻¹) in difference IR spectra of Zr_6 MOFs upon DMMP exposure and their assignments.⁴

v: bond stretching, ρ : rocking (in plane), δ : angle bending

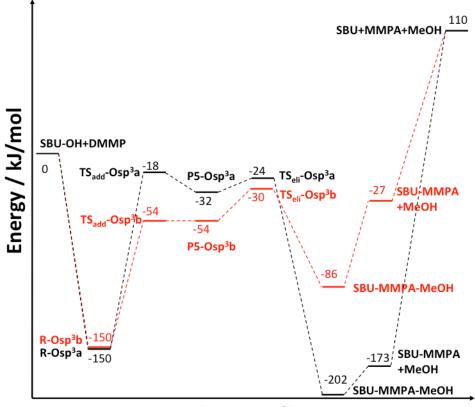

Section S3: DFT calculations to accompany DMMP-Zr₆ MOF overall reaction pathway calculations

Figure S5. Three possible reactive orientations of DMMP with respect to the Zr-OH group at a missing linker defect of UiO-67. The reaction pathway for the R-CH₃ orientation is shown in Figs. 10 and 11, and those for R-Osp³a and b are in Figs. S7-S9.

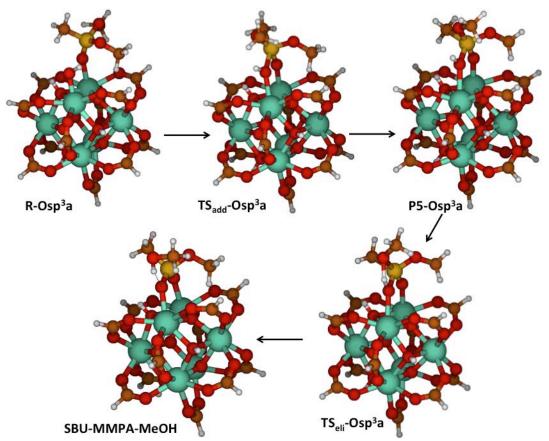
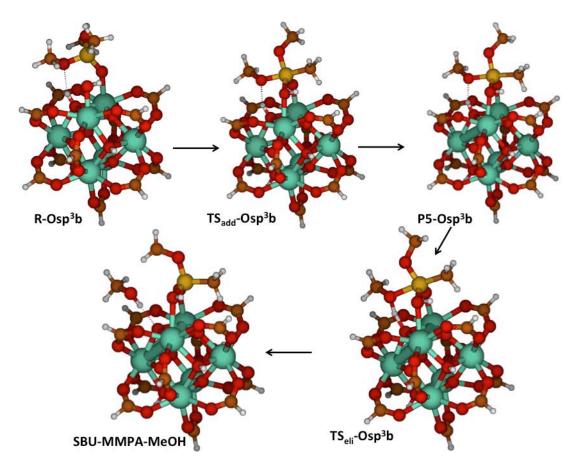


Figure S6. Selected bond distances in the central stationary points of the decomposition of DMMP with a defective SBU of UiO-67 along the approach in which the $P-CH_3$ bond of DMMP is collinear to the forming P-OH bond at the addition transition state. Same color code as Fig. 11.



reaction coordinate

Figure S7. Potential-energy profile for the reaction of DMMP with a defective SBU of UiO-67 along the approaches in which the P-OCH₃ bond of DMMP is collinear to the forming P-OH bond at the addition transition state

Figure S8. Geometries of the central stationary points in the decomposition of DMMP with a defective SBU of UiO-67 along the "Osp3a" approach in Fig. S7. Same color code as Fig. 11.

Figure S9. Geometries of the central stationary points in the decomposition of DMMP with a defective SBU of UiO-67 along the "Osp3b" approach in Fig. S7. Same color code as Fig. 11.

1. Øien, S.; Wragg, D.; Reinsch, H.; Svelle, S.; Bordiga, S.; Lamberti, C.; Lillerud, K. P., Detailed Structure Analysis of Atomic Positions and Defects in Zirconium Metal– Organic Frameworks. *Crystal Growth & Design* **2014**, *14*, 5370-5372.

2. Ko, N.; Hong, J.; Sung, S.; Cordova, K. E.; Park, H. J.; Yang, J. K.; Kim, J., A Significant Enhancement of Water Vapour Uptake at Low Pressure by Amine-Functionalization of UiO-67. *Dalton Transactions* **2015**, *44*, 2047-2051.

3. Furukawa, H.; Gandara, F.; Zhang, Y. B.; Jiang, J. C.; Queen, W. L.; Hudson, M. R.; Yaghi, O. M., Water Adsorption in Porous Metal-Organic Frameworks and Related Materials. *J. Am. Chem. Soc.* **2014**, *136*, 4369-4381.

4. Gordon, W. O.; Tissue, B. M.; Morris, J. R., Adsorption and Decomposition of Dimethyl Methylphosphonate on Y2O3 Nanoparticles. *J. Phys. Chem. C* **2007**, *111*, 3233-3240.