Supporting Information

Peptide-mediated nanopore detection of uranyl ions in aqueous media

Golbarg M Roozbahani¹, Xiaohan Chen¹, Youwen Zhang¹, Ruiqi Xie¹, Rui Ma¹, Dien Li², Huazhong Li³, and Xiyun Guan^{1,*}

¹Department of Chemistry, Illinois Institute of Technology, 3101 S Dearborn St, Chicago, IL 60616, USA

²Environmental Sciences and Biotechnology, Savannah River National Laboratory, Aiken, SC 29808, USA

³Henan Jintai Biological Technology Co., Ltd., ZhengZhou, Henan, PR China

Table of Contents:

Table S1. Effect of buffer solution on peptide translocation in the nanopore	S2
Table S2. The net charges of peptide HH_{14} at different pH values	S 3
Figure S1. Schematic illustration of the uranyl nanopore sensor	S 4
Figure S2. Typical single-channel recording trace segment of uranyl	S 5
Figure S3. I-V Curves of peptide HH_{14} , UO_2^{2+} , and their mixtures in the nanopore	S 6
Figure S4. Dose response curve for peptide HH ₁₄	S 7
Figure S5. Dose-response curve for uranyl in asymmetric electrolyte conditions	S 8
Figure S6. Voltage effect on the sensitivity of the nanopore uranyl sensor	S 9

Table S1. Effect of buffer solution on peptide translocation in the nanopore. The experiments were performed at +80 mV with the (M113F)₇ α HL protein nanopore in electrolyte solutions with different pH values and different buffer components. The concentration of peptide HH₁₄ was 10 μ M.

Buffer components	Buffer pH	Event counts / min
	4.5	6.0
1 M NaCl, 10 mM sodium phosphate	5.5	6.7
	4.5	3.4
1 M NaCl, 10 mM sodium acetate	5.5	5.0
	4.5	2.1
1 M NaCl, 10 mM sodium citrate	5.5	2.6
	6.5	42.5
1 M NaCl, 10 mM Tris	7.5	61.7

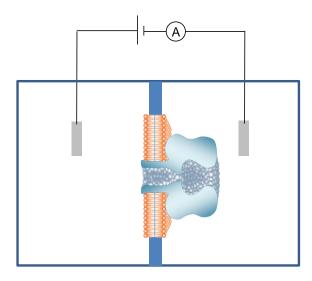
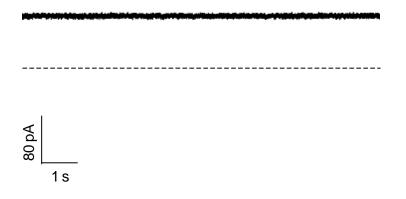
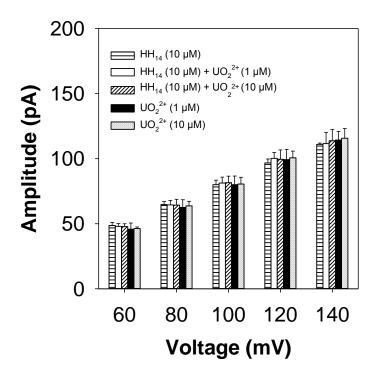
pН	Histidine	Lysine	Tyrosine	Peptide HH ₁₄
7.5	0.01	0.98	-0.03	1.05
6.5	0.25	1.00	0.00	4.05
5.5	0.78	1.00	0.00	10.31
4.5	0.97	1.00	0.01	12.69

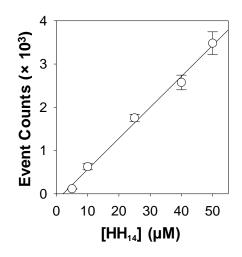
Table S2. The net charges* of peptide HH₁₄ at different pH values.

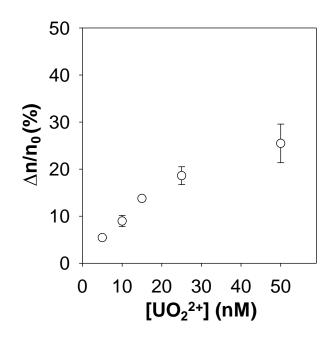
*The net charge of peptide HH_{14} (sequence: HHHHHHKHHHYHHH) at each pH value was determined by amino acid composition, i.e., the sum of the net charges of all the amino acids in the peptide. The net charge (*Z*) of an amino acid was estimated by using the equation:

$$Z = \sum_{i} N_{i} \frac{10^{pK_{ai}}}{10^{pH} + 10^{pK_{ai}}} - \sum_{j} N_{j} \frac{10^{pH}}{10^{pH} + 10^{pK_{aj}}}$$

Where the pK_a values pertain to the N-terminus and the side chains of lysine and histidine, and the *j*-index belongs to the C-terminus and tyrosine amino acid.


Figure S1. Schematic illustration of the uranyl nanopore sensor.


Figure S2. Typical single-channel recording trace segment, showing that uranyl ions didn't produce any current blockage events in the nanopore. The experiment was performed at +100 mV with the (M113F)₇ α HL protein pore in an electrolyte solution comprising 1.0 M NaCl and 10 mM Tris•HCl (pH 6.5) and in the presence of 10 μ M uranyl ions. The dashed line represents the level of zero current.

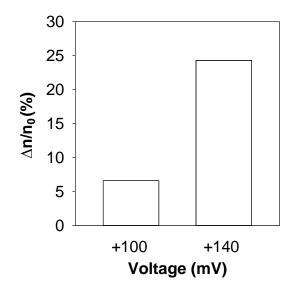

Figure S3. I-V Curves of peptide HH_{14} , UO_2^{2+} , and their mixtures in the nanopore. The experiments were performed with the (M113F)₇ αHL protein pore in an electrolyte solution comprising 1.0 M NaCl and 10 mM Tris•HCl (pH 6.5).

Figure S4. Dose response curve for peptide HH_{14} . The experiments were performed at +100 mV with the (M113F)₇ α HL protein pore in an electrolyte solution containing 1 M NaCl and 10 mM Tris (pH 6.5). Event counts were calculated based on 10-min single channel recording trace segments.

Figure S5. Dose-response curve for uranyl in asymmetric electrolyte conditions (3 M NaCl and 10 mM Tris•HCl (pH 6.5) (*cis*) / 0.5 M NaCl and 10 mM Tris•HCl (pH 6.5) (*trans*)). The experiments were performed at +100 mV with the (M113F)₇ α HL nanopore in the presence of 10 μ M peptide HH₁₄, which was added to the *trans* compartment of the nanopore sensing chamber. The change (Δ n) in the number of peptide HH₁₄ events after addition of UO₂²⁺ to the solution was calculated by using the equation: $\Delta n = n_0-n_1$, where n_0 represented the number of HH₁₄ events in the absence of uranyl, while n_1 depicted the number of peptide HH₁₄ events in the presence of UO₂²⁺.

Figure S6. Voltage effect on the sensitivity of the nanopore uranyl sensor. The experiments were performed with the (M113F)₇ α HL nanopore in the presence of 10 μ M peptide HH₁₄ and 5 nM UO₂²⁺ under a salt gradient condition of 3 M NaCl and 10 mM Tris•HCl (pH 6.5) (*cis*) / 0.5 M NaCl and 10 mM Tris•HCl (pH 6.5) (*trans*). The change (Δ n) in the number of peptide HH₁₄ events after addition of UO₂²⁺ to the solution was calculated by using the equation: $\Delta n = n_0-n_1$, where n_0 represented the number of HH₁₄ events in the absence of uranyl, while n_1 depicted the number of peptide HH₁₄ events in the presence of UO₂²⁺.