Supporting Information

$B\left(C_{6} F_{5}\right)_{3}$-Catalyzed Michael Reactions: Aromatic $\mathrm{C}-\mathrm{H}$ as Nucleophiles
 Wu Li and Thomas Werner*

Leibniz-Institute of Catalysis e.V. at the University of Rostock, Albert-Einstein-Strasse 29a, 18059 Rostock, Germany.

Content

1. General Considerations S2
2. General Procedures (GP) S2
3. Characterization of the synthesized compounds S3
4. Reference S12
5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR S14

1. General Considerations

All chemicals were purchased from commercial sources with purities $\geq 95 \%$ and used without further purification. Tris(pentafluorophenyl)borane was purchased from TCI in a purity $>98.0 \%$ (NMR) and used without further purification. Deuterated solvents were ordered from Deutero GmbH and stored over molecular sieves. NMR spectra were received using Bruker 300 Fourier, Bruker AV 300 and Bruker AV 400 spectrometers. Chemical shifts are reported in ppm relative to the deuterated solvent. Coupling constants are expressed in Hertz (Hz). The following abbreviations are used: $s=$ singlet, $d=$ doublet, $t=$ triplet and $m=$ multiplet. NMR yields very determined by using mesitylene as internal standard. High resolution mass spectra (HRMS) were obtained either from a MAT 95 XP from Thermo (EI) or from an HPLC system 1200 and downstream ESI-TOF-MS 6210 from Agilent (ESI). Thin layer chromatography was performed on Merck TLC-plates with fluorescence indication (silica type 60, F_{254}), spots were visualized using UV-light or vanilline. Column chromatography was performed using silica with a grain size of 40-63 $\mu \mathrm{m}$ from Macherey-Nagel.

2. General Procedures (GP)

Coupling reaction of aromatic and hetro-aromatic compounds with α, β unsaturated carbonyl-containing compounds:

A $25 \mathrm{~cm}^{3}$ pressure tube equipped with screw cap and stiring was charged with $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(51 \mathrm{mg}, 0.10 \mathrm{mmol} 5 \mathrm{~mol} \%)$ and dissolved in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$. Subsequently 1 equiv of the aromatic or hetro-aromatic compounds $1(2.0 \mathrm{mmol})$ and 2 equiv of the α, β-unsaturated carbonyl-containing compounds $2(4.0 \mathrm{mmol})$ were added. The reaction mixture was stirred for 24 h at $80^{\circ} \mathrm{C}$. The rection mixture was cooled to room temperature and directly purifite by column chromatography (cyclohexane:ethyl acetate $=20: 1$). to afforded. After removal of all volatiles in vaccuo the desired products 3 were obtained.

3. Characterization of the synthesized compounds

4-(4-(dimethylamino)phenyl)butan-2-one (3a) ${ }^{(1)}$

According to GP, N, N-dimethylaniline 1a ($247 \mathrm{mg}, 2.04 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(51 \mathrm{mg}$, 0.100 mmol) and but-3-en-2-one 2a ($294 \mathrm{mg}, 4.20 \mathrm{mmol}$) were converted to the desired product. The product 3 a ($354 \mathrm{mg}, 1.85 \mathrm{mmol}, 91 \%$) was obtained (cyclohexane:ethyl acetate $=20: 1$) as a white solid (m.p. $52-54^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.07(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92$ (s, 6H), $2.88-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 208.6,149.2,129.0,128.9,113.0,45.7,40.9,30.1$, 28.9.

4-(4-(diethylamino)phenyl)butan-2-one (3b) ${ }^{(1)}$

According to GP, N,N-diethylaniline 1b ($324 \mathrm{mg}, 2.17 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(51 \mathrm{mg}$, 0.100 mmol) and but-3-en-2-one 2a ($282 \mathrm{mg}, 4.03 \mathrm{mmol}$) were converted to the desired product. The product $3 \mathrm{~b}(360 \mathrm{mg}, 1.64 \mathrm{mmol}, 76 \%)$ was obtained (cyclohexane:ethyl acetate $=20: 1$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 7.14-6.92(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.52(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{q}, \mathrm{J}=$ $7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.92-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.7,146.3,129.1,127.6,112.2,45.8,44.4,30.1,28.9$, 12.6.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}\left[\mathrm{M}^{+}+\mathrm{H}\right]:$ 220.1696; m / z found $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}$ $\left[M^{+}+H\right]: 220.1696$.

4-(4-(dibenzylamino)phenyl)butan-2-one (3c)

According to GP, N, N-dibenzylaniline 1c ($555 \mathrm{mg}, 2.03 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(60 \mathrm{mg}$, $0.117 \mathrm{mmol})$ and but-3-en-2-one $2 \mathrm{a}(277 \mathrm{mg}, 3.96 \mathrm{mmol})$ were converted to the desired product. The product 3c ($672 \mathrm{mg}, 1.96 \mathrm{mmol}, 97 \%$) was obtained (cyclohexane:ethyl acetate $=20: 1$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.45-7.23(\mathrm{~m}, 10 \mathrm{H}), 7.08-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.65$ $(\mathrm{m}, 2 \mathrm{H}), 4.67(\mathrm{~s}, 4 \mathrm{H}), 2.88-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.79-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.7,146.3,129.1,127.61,112.2,45.8,44.4,30.1$, 28.9, 12.6.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 366.1828 ; \mathrm{m} / \mathrm{z}$ found $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 366.1833$.

4-(4-(pyrrolidin-1-yl)phenyl)butan-2-one (3d)

According to GP, 1-phenylpyrrolidine 1d (293 mg, 1.99 mmol$), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(54 \mathrm{mg}$, 0.106 mmol) and but-3-en-2-one 2a ($276 \mathrm{mg}, 3.94 \mathrm{mmol}$) were converted to the desired product. The product 3d ($376 \mathrm{mg}, 1.73 \mathrm{mmol}, 87 \%$) was obtained (cyclohexane:ethyl acetate $=20: 1$) as a white solid (m.p. 51-53 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.05(\mathrm{dd}, J=8.7,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.51(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.39-3.13(\mathrm{~m}, 4 \mathrm{H}), 2.81$ (ddd, $J=7.9,6.4,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.13$ (d, $J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.05-1.94(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.7$, 146.5, 129.0, 111.8, 47.8, 45.9, 30.2, 29.0, 25.5. HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}\left[\mathrm{M}^{+}+\mathrm{H}\right]: 218.1539 ; \mathrm{m} / \mathrm{z}$ found $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}$ [$\left.\mathrm{M}^{+}+\mathrm{H}\right]$: 218.1536.

4-(4-(piperidin-1-yl)phenyl)butan-2-one (3e)

According to GP, 1-phenylpiperidine 1e ($335 \mathrm{mg}, 2.08 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(52 \mathrm{mg}$, 0.102 mmol) and but-3-en-2-one $2 \mathrm{a}(289 \mathrm{mg}, 4.13 \mathrm{mmol})$ were converted to the desired product. The product $3 \mathrm{e}(303 \mathrm{mg}, 1.31 \mathrm{mmol}, 63 \%)$ was obtained (cyclohexane:ethyl acetate $=20: 1$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CDCl}_{3}\right) ~ \delta 7.14-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.22-3.02$ ($\mathrm{m}, 4 \mathrm{H}$), 2.81 (ddd, $J=7.9,6.5,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.77-2.66$ (m, 2H), 2.13 (s, 3H), 1.79 1.63 (m, 4H), $1.63-1.48(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 208.4,150.7,131.6,128.8,116.8,51.0,45.5,30.1$, 29.0, 25.9, 24.3.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 254.1515 ; \mathrm{m} / \mathrm{z}$ found $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]:$ 254.1509.

4-(4-morpholinophenyl)butan-2-one (3f)

According to GP, 4-phenylmorpholine 1f (342 mg, 2.10 mmol), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(55 \mathrm{mg}$, 0.108 mmol) and but-3-en-2-one 2a ($285 \mathrm{mg}, 4.07 \mathrm{mmol}$) were converted to the desired product. The product $3 f(341 \mathrm{mg}, 1.46 \mathrm{mmol}, 70 \%)$ was obtained (cyclohexane:ethyl acetate $=20: 1$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.73$ (m, 4H), $3.20-3.04$ (m, 4H), 2.82 (ddd, J = 7.9, 6.6, $1.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.71 (ddd, J = 9.3, $6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 208.2,149.7,132.5,129.0,116.0,67.0,49.6,45.4$, 30.1, 28.9.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}\left[\mathrm{M}^{+}+\mathrm{H}\right]: 234.1489 ; \mathrm{m} / \mathrm{z}$ found $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}\left[\mathrm{M}^{+}+\mathrm{H}\right]: 234.1484$.

3-(methyl(4-(3-oxobutyl)phenyl)amino)propanenitrile (3g)

According to GP, 3-(methyl(phenyl)amino)propanenitrile 1 g ($326 \mathrm{mg}, 2.04 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(55 \mathrm{mg}, 0.108 \mathrm{mmol})$ and but-3-en-2-one 2a ($302 \mathrm{mg}, 4.31 \mathrm{mmol}$) were converted to the desired product. The product $3 \mathrm{~g}(140 \mathrm{mg}, 1.46 \mathrm{mmol}, 30 \%)$ was obtained (cyclohexane:ethyl acetate $=10: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.65(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.68$ (t, J = 6.9 Hz, 2H), $2.99(\mathrm{~s}, 3 \mathrm{H}), 2.86-2.77(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.13$ (s, 3H).
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) б 208.4, 146.1, 130.2, 129.36, 118.5, 113.0, 49.2, 45.5, 38.8, 30.1, 28.8, 15.2.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 253.1311; m / z found $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{ONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]:$ 253.1312.

4-(4-(dimethylamino)-2-methylphenyl)butan-2-one (3h) ${ }^{(1)}$

According to GP, N,N,3-trimethylaniline 1h (273 mg, 2.02 mmol), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(54 \mathrm{mg}$, 0.106 mmol) and but-3-en-2-one 2a ($282 \mathrm{mg}, 4.03 \mathrm{mmol}$) were converted to the desired product. The product $3 \mathrm{~h}(383 \mathrm{mg}, 1.87 \mathrm{mmol}, 93 \%$) was obtained (cyclohexane:ethyl acetate $=20: 1$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.06-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.57(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{~s}$, 6 H), $2.86-2.76$ (m, 2H), $2.74-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 208.6,149.4,136.5,129.3,127.3,114.9,110.8,44.5$, 40.9, 30.1, 26.4, 19.9.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}\left[\mathrm{M}^{+}+\mathrm{H}\right]:$ 206.1539; m / z found $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}$ [$\left.{ }^{+}+\mathrm{H}\right]$: 206.1539.

4-(2-chloro-4-(dimethylamino)phenyl)butan-2-one (3i)

According to GP, 3-chloro- N, N-dimethylaniline $\mathbf{1 i}\left(308 \mathrm{mg}, 1.99 \mathrm{mmol}\right.$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(50$ $\mathrm{mg}, 0.098 \mathrm{mmol}$) and but-3-en-2-one $2 \mathrm{a}(289 \mathrm{mg}, 4.13 \mathrm{mmol})$ were converted to the desired product. The product $3 \mathrm{i}(395 \mathrm{mg}, 1.76 \mathrm{mmol}, 88 \%)$ was obtained (cyclohexane:ethyl acetate $=20: 1$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.55$ (dd, $J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~m}, 8 \mathrm{H}), 2.71$ (ddt, $J=8.4,7.2,0.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{t}, J=$ $0.5 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 208.3, 150.1, 134.4, 130.8, 125.7, 113.2, 111.3, 43.9, 40.5, 30.0, 27.0.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{CINO}\left[\mathrm{M}^{+}+\mathrm{H}\right]:$ 226.0993; m / z found $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{CINO}\left[\mathrm{M}^{+}+\mathrm{H}\right]: 226.0997$.

4-(4-(dimethylamino)-2,6-dimethylphenyl)butan-2-one (3j)

According to GP, $N, N, 3,5$-tetramethylaniline 1 j ($310 \mathrm{mg}, 2.08 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ (53 $\mathrm{mg}, 0.104 \mathrm{mmol})$ and but-3-en-2-one $2 \mathrm{a}(291 \mathrm{mg}, 4.16 \mathrm{mmol})$ were converted to the desired product. The product $3 \mathrm{j}(420 \mathrm{mg}, 1.92 \mathrm{mmol}, 92 \%)$ was obtained (cyclohexane:ethyl acetate $=20: 1$) as a white solid (m.p. $57-58^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.45(\mathrm{~s}, 2 \mathrm{H}), 2.90(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 6 \mathrm{H}), 2.86-2.78(\mathrm{~m}$, 2H), 2.62 - 2.51 (m, 2H), 2.28 (d, $J=0.7 \mathrm{~Hz}, 6 \mathrm{H}), 2.17$ (d, $J=0.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 208.8,149.0,136.7,126,0,113.0,43.4,40.8,29.9$, 23.0, 20.3.

HRMS (ESI-TOF/MS): m / z calcd. $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right.$: 242.1515; m / z found $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 242.1514$.

4-(4-(dimethylamino)-2-methoxyphenyl)butan-2-one (3k)

According to GP, 3-methoxy-N,N-dimethylaniline 1k (302 mg, 2.00 mmol), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($54 \mathrm{mg}, 0.106 \mathrm{mmol}$) and but-3-en-2-one $\mathbf{2 a}$ ($278 \mathrm{mg}, 3.97 \mathrm{mmol}$) were converted to the desired product. The product $3 \mathbf{k}$ ($275 \mathrm{mg}, 1.24 \mathrm{mmol}, 62 \%$) was obtained (cyclohexane:ethyl acetate $=20: 1$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.06-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.35-6.08(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H})$, 2.93 (s, 6H), 2.79 (ddd, $J=8.4,6.6,1.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.73-2.62$ (m, 2H), 2.13 (d, $J=0.5$ Hz, 3H).
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 209.3,158.1,150.9,130.2,117.5,104.7,96.4,55.1$, 44.3, 40.9, 29.9, 24.4.

HRMS (ESI-TOF/MS): m / z calcd. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 244.1308; m / z found $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]:$ 244.1307.

4,4'-(4-(dimethylamino)-6-methoxy-1,3-phenylene)bis(butan-2-one) (31)

According to GP, 3-methoxy- N, N-dimethylaniline $\mathbf{1 I}(302 \mathrm{mg}, 2.00 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($54 \mathrm{mg}, 0.106 \mathrm{mmol}$) and but-3-en-2-one $\mathbf{2 a}(278 \mathrm{mg}, 3.97 \mathrm{mmol})$ were converted to the desired product. The product $\mathbf{3 I}(192 \mathrm{mg}, 0.660 \mathrm{mmol}, 33 \%)$ was obtained as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.86$ (s, 1H), 6.61 (s, 1H), 3.79 (s, 3H), 2.91 - 2.65 (m, 8 H), 2.64 (s, 6H), 2.13 (d, J = $3.5 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.9,208.9,156.3,151.9,130.9,127.4,124.2,102.6$, 55.3, 45.2, 44.8, 43.9, 29.9, 24.9, 24.6.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 314.1727; m / z found $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 314.1727$.

4-(4-(dimethylamino)naphthalen-1-yl)butan-2-one (3m)

According to GP, N, N-dimethylnaphthalen-1-amine 1 m ($357 \mathrm{mg}, 2.09 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($54 \mathrm{mg}, 0.106 \mathrm{mmol}$) and but-3-en-2-one 2a ($280 \mathrm{mg}, 4.00 \mathrm{mmol}$) were converted to the desired product. The product 3 m ($428 \mathrm{mg}, 1.78 \mathrm{mmol}, 85 \%$) was obtained (cyclohexane:ethyl acetate $=10: 1$) as a colourless liquid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.44-8.28(\mathrm{~m}, 1 \mathrm{H}), 8.10-7.91(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.50$ (m, 2H), $7.37-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, ~ J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~m}$, $8 \mathrm{H}), 2.21(\mathrm{~d}, \mathrm{~J}=0.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.2,149.8,131.5,129.3,125.9,125.0,124.9,123.9$, 113.8, 45.4, 44.6, 30.1, 26.6.

HRMS (ESI-TOF/MS): m / z calcd. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right.$: 264.1359; m / z found $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]:$ 264.1354.

4-(1-methyl-1,2,3,4-tetrahydroquinolin-6-yl)butan-2-one (3n)

According to GP, N, N-dimethylnaphthalen-1-amine $\mathbf{1 n}$ ($138 \mathrm{mg}, 0.939 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(27 \mathrm{mg}, 0.053 \mathrm{mmol})$ and but-3-en-2-one 2a ($164 \mathrm{mg}, 2.34 \mathrm{mmol}$) were converted to the desired product. The product 3 n ($84 \mathrm{mg}, 0.387 \mathrm{mmol}, 39 \%$) was obtained (cyclohexane:ethyl acetate $=20: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.89$ (dd, $J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.78 (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 6.53 (d, J = $8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.32-3.12$ (m, 2H), 2.86 (d, J = $2.5 \mathrm{~Hz}, 3 \mathrm{H}$), 2.83-2.62 (m, 6 H), 2.14 (s, 3H), $2.08-1.88$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) б 208.7, 145.2, 128.8, 128.5, 126.7, 123.1, 111.3, 51.4, 45.8, 39.3, 30.1, 28.9, 27.8, 22.6.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 240.1359 ; \mathrm{m} / \mathrm{z}$ found $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 240.1362$.

4-(2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)butan-2-one (30)

According to GP ($130{ }^{\circ} \mathrm{C}$ in 2.0 mL mesitylene), julolidine 10 ($345 \mathrm{mg}, 1.99 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$ ($49 \mathrm{mg}, 0.096 \mathrm{mmol}$) and but-3-en-2-one 2a ($286 \mathrm{mg}, 4.08 \mathrm{mmol}$) were converted to the desired product. The product $30(275 \mathrm{mg}, 1.13 \mathrm{mmol}, 57 \%$) was obtained (cyclohexane:ethyl acetate $=30: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.61$ (s, 2H), 3.21 - 3.01 (m, 4H), $2.81-2.67(\mathrm{~m}, 8 \mathrm{H})$, 2.15 (d, J = $2.4 \mathrm{~Hz}, 3 \mathrm{H}$), 2.06 - 1.90 (m, 4H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.7,128.1,126.8,121.8,50.1,45.9,30.1,28.9,27.6$, 22.2.

HRMS (ESI-TOF/MS): m / z calcd. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right.$: 266.1515; m / z found $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 266.1510$.

4-(5-methylfuran-2-yl)butan-2-one (3q) ${ }^{(2)}$

According to GP, 2-methylfuran $\mathbf{1 q}(171 \mathrm{mg}, 2.08 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(49 \mathrm{mg}$, 0.096 mmol) and but-3-en-2-one 2a ($292 \mathrm{mg}, 4.17 \mathrm{mmol}$) were converted to the desired product. The product $3 q(180 \mathrm{mg}, 1.18 \mathrm{mmol}, 57 \%)$ was obtained (cyclohexane:ethyl acetate $=30: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl ${ }_{3}$) ס $6.05-5.73(\mathrm{~m}, 2 \mathrm{H}), 2.85(\mathrm{dd}, J=9.1,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.80$ $-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.15(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) $\delta 207.5$, 152.6, 150.6, 105.9, 105.8, 41.9, 29.9, 22.3, 13.5.

4-(1-methyl-1H-indol-3-yl)butan-2-one (3r) ${ }^{(3)}$

According to GP, 1-methyl-indole $1 \mathbf{r}(263 \mathrm{mg}, 2.01 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(50 \mathrm{mg}$, 0.098 mmol) and but-3-en-2-one 2a ($290 \mathrm{mg}, 4.14 \mathrm{mmol}$) were converted to the desired product. The product $3 \mathrm{r}(175 \mathrm{mg}, 0.871 \mathrm{mmol}, 43 \%)$ was obtained (cyclohexane:ethyl acetate $=20: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.65$ (ddd, $J=10.9,5.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), $7.42-7.23$ (m, 2 H), 7.19 (tdd, $J=6.5,3.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{dd}, J=6.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.71$ (m, 3H), $3.19-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.90(\mathrm{td}, \mathrm{J}=7.8,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.09(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ ठ 208.8, 137.0, 126.4, 121.6, 118.8, 118.8, 113.7, 109.3, 44.4, 32.6, 30.1, 19.3.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right.$: 224.1046; m / z found $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 224.1046$.

4,4'-(1-methyl-1H-indole-2,3-diyl)bis(butan-2-one) (3s)

According to GP, 1-methyl-indole $1 \mathbf{r}(263 \mathrm{mg}, 2.01 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(50 \mathrm{mg}$, 0.098 mmol) and but-3-en-2-one 2a ($290 \mathrm{mg}, 4.14 \mathrm{mmol}$) were converted to the desired product. The product $3 \mathrm{~s}(235 \mathrm{mg}, 0.867 \mathrm{mmol}, 43 \%)$ was obtained (cyclohexane:ethyl acetate $=10: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.36-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.14$ (tdd, $J=$ $6.6,2.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.70 (dd, $J=5.1,2.0 \mathrm{~Hz}, 3 \mathrm{H}$), $3.18-2.97$ (m, 4H), 2.79 (ddd, J $=21.8,9.3,5.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 3 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 208.7, 207.2, 136.9, 135.7, 127.2, 121.1, 119.0, 118.1, 110.3, 108.9, 44.6, 43.6, 30.2, 30.1, 29.7, 18.6, 18.4.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]$: 294.1465; m / z found $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{Na}\left[\mathrm{M}^{+}+\mathrm{Na}\right]:$ 294.1465.

4-(1,2-dimethyl-1H-indol-3-yl)butan-2-one (3t)

According to GP, 1,2-dimethyl-indole 1t ($295 \mathrm{mg}, 2.03 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(50 \mathrm{mg}$, $0.098 \mathrm{mmol})$ and but-3-en-2-one 2 a ($251 \mathrm{mg}, 3.59 \mathrm{mmol}$) were converted to the desired product. The product 3 t ($269 \mathrm{mg}, 1.25 \mathrm{mmol}, 62 \%$) was obtained (cyclohexane:ethyl acetate $=20: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR (300 MHz, CDCl_{3}) $\delta 7.63-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.19$ (m, 1H), 7.14 (ddt, $J=8.0,6.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}$), $3.81-3.68$ (m, 3H), 3.06 (dd, J = 8.2, $6.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.82(\mathrm{dd}, J=8.1,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}, 3 \mathrm{H}), 2.17(\mathrm{~d}, J=0.7$ $\mathrm{Hz}, 3 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (75 MHz, CDCl_{3}) δ 209.0, 133.1, 127.3, 120.6, 118.8, 117.7, 109.7, 108.7, 44.6, 30.3, 29.5, 18.7, 10.2.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 216.1383 ; \mathrm{m} / \mathrm{z}$ found $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 216.1384$.

1-(4-(dimethylamino)phenyl)octan-3-one (3u)

According to GP, N, N-dimethylaniline 1a ($247 \mathrm{mg}, 2.04 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(54 \mathrm{mg}$, 0.106 mmol) and oct-1-en-3-one 2b ($511 \mathrm{mg}, 4.06 \mathrm{mmol}$) were converted to the desired product. The product $3 \mathrm{u}(253 \mathrm{mg}, 1.83 \mathrm{mmol}, 90 \%$) was obtained (cyclohexane:ethyl acetate $=30: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.15-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.91(\mathrm{~s}$, 6 H), 2.81 (ddd, $J=9.2,7.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.62(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.26$ (m, 2H), $1.66-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.17(\mathrm{~m}, 5 \mathrm{H}), 0.98-0.80(\mathrm{t}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) ठ 210.9, 149.2, 129.2, 128.9, 113.0, 44.8, 43.1, 40.9, 31.4, 28.9, 23.5, 22.5, 14.0.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}\left[\mathrm{M}^{+}+\mathrm{H}\right]$: 248.2010; m/z found $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}$ $\left[M^{+}+H\right]: 248.2007$.

3-(4-(dimethylamino)phenyl)propanal (3v) ${ }^{(4)}$

According to GP, N, N-dimethylaniline 1a ($269 \mathrm{mg}, 2.22 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(54 \mathrm{mg}$, $0.106 \mathrm{mmol})$ and acrylaldehyde 2c ($224 \mathrm{mg}, 4.0 \mathrm{mmol}$) were converted to the desired product. The product 3 v ($234 \mathrm{mg}, 1.32 \mathrm{mmol}, 60 \%$) was obtained (cyclohexane:ethyl acetate $=20: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.82(\mathrm{t}, \mathrm{J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-6.96(\mathrm{~m}, 2 \mathrm{H}), 6.80-$ $6.48(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 6 \mathrm{H}), 2.92-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.3$, 149.3, 128.9, 128.2, 113.0, 45.7, 40.8, 27.2.
HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}\left[\mathrm{M}^{+}+\mathrm{H}\right]:$ 178.1226; m / z found $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{NO}$ $\left[M^{+}+H\right]: 178.1228$.

3-(4-(dimethylamino)phenyl)-3-phenylpropanal (3w)

According to GP ($130{ }^{\circ} \mathrm{C}$ in 2.0 mL mesitylene), N, N-dimethylaniline 1 a (484 mg , $4.0 \mathrm{mmol}), \mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(60 \mathrm{mg}, 0.117 \mathrm{mmol})$ and cinnamaldehyde 2d $(262 \mathrm{mg}$, 1.98 mmol) were converted to the desired product. The product $3 \mathrm{w}(242 \mathrm{mg}$, $0.957 \mathrm{mmol}, 48 \%$) was obtained (cyclohexane:ethyl acetate $=30: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.78(\mathrm{td}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.21(\mathrm{~m}, 5 \mathrm{H}), 7.20$ $-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.88-6.61(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.08(\mathrm{~m}, 2 \mathrm{H})$, $3.07-2.83(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.8,149.4,144.1,131.0,128.7,128.4,127.6,126.4$, 112.8, 49.6, 44.2, 40.6.

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}\left[\mathrm{M}^{+}+\mathrm{H}\right]: 254.1539 ; \mathrm{m} / \mathrm{z}$ found $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}$ $\left[M^{+}+H\right]: 254.1537$.

3-(4-(dimethylamino)phenyl)-2-methylpropanal (3x)

According to GP, N, N-dimethylaniline 1a ($238 \mathrm{mg}, 1.97 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(50 \mathrm{mg}$, $0.098 \mathrm{mmol})$ and methacrylaldehyde $\mathbf{2 e}(278 \mathrm{mg}, 3.97 \mathrm{mmol})$ were converted to the desired product. The product $3 x(184 \mathrm{mg}, 0.963 \mathrm{mmol}, 49 \%)$ was obtained (cyclohexane:ethyl acetate $=20: 1$) as a light yellow liquid.
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.72(\mathrm{dd}, J=1.7,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.84$ $-6.60(\mathrm{~m}, 2 \mathrm{H}), 3.03-2.88(\mathrm{~m}, 7 \mathrm{H}), 2.72-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.15-1.03(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 205.1,149.3,129.7,126.6,112.9,48.4,40.8,35.8,13.2$. HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}\left[\mathrm{M}^{+}+\mathrm{H}\right]:$ 192.1383; m / z found $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}$ [$\left.{ }^{+}+\mathrm{H}\right]: 192.1385$.

2-(4-(dimethylamino)phenyl)-1,4-diphenylbutane-1,4-dione (3y)

According to GP, N, N-dimethylaniline 1a ($491 \mathrm{mg}, 4.06 \mathrm{mmol}$), $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(58 \mathrm{mg}$, 0.113 mmol) and (E)-1,4-diphenylbut-2-ene-1,4-dione $2 \mathrm{f}(456 \mathrm{mg}, 1.93 \mathrm{mmol}$) were converted to the desired product. The product $3 y$ ($626 \mathrm{mg}, 1.75 \mathrm{mmol}, 91 \%$) was obtained (cyclohexane:ethyl acetate $=20: 1$) as a yellow solid (m.p. 149-151 ${ }^{\circ} \mathrm{C}$).
${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17-7.98(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.39$ $(\mathrm{m}, 5 \mathrm{H}), 7.32-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.82-6.64(\mathrm{~m}, 2 \mathrm{H}), 5.39-5.23(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dd}, \mathrm{J}=$ $18.0,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.33$ (dd, $J=18.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95$ (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.2$, 198.5, 149.8, 136.7, 136.6, 133.1, 132.7, 129.0, 128.56, 128.5, 125.8, 113.1, 47.8, 43.9, 40.5 .

HRMS (ESI-TOF/MS): m/z calcd. $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right.$]: 380.1621; m / z found $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NONa}\left[\mathrm{M}^{+}+\mathrm{Na}\right]: 380.1623$.

Tris(perfluorophenyl)borane ${ }^{5}$

${ }^{19}$ F NMR (282 MHz, CDCl_{3}) δ-129.80, -145.65, -160.35, -160.40, -160.43, -160.47, 160.51 .

4. Reference

(1) Hu, X.; Martin, D.; Melaimi, M.; Bertrand, G. J. Am. Chem. Soc. 2014, 136, 13594-13597.
(2) Dyker, G.; Muth, E.; Hashmi, A. S. K.; Ding, L. Adv. Synth. Catal. 2003, 345, 1247-1252.
(3) Bah, J.; Naidu, V. R.; Teske, J.; Franzén, J. Adv. Synth. Catal. 2015, 357, 148-158.
(4) Frost, C. G.; Hartley, B. C. Org. Lett. 2007, 9, 4259-4261.
(5) Bähr, A.; Wilkins, L.C.; Ollegott, K.; Kariuki, B.M.; Melen, R.L. Molecules 2015, 20, 4530-4547.

5. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

Original spectra for 3a:

[^0]Original spectra for $\mathbf{3 b}$:

Original spectra for 3c:

[^1]Original spectra for 3d:

Original spectra for $\mathbf{3} \mathbf{e}$:

Original spectra for 3f:

[^2]Original spectra for $\mathbf{3 g}$:

Original spectra for $\mathbf{3 h}$:

[^3]Original spectra for $\mathbf{3 i}$:

M

Original spectra for $\mathbf{3 j}$:

[^4]Original spectra for $\mathbf{3 k}$:

Original spectra for 31:

Original spectra for $\mathbf{3 m}$:

Original spectra for $\mathbf{3 n}$:

Original spectra for $\mathbf{3 0}$:

[^5]Original spectra for $\mathbf{3 q}$:

Original spectra for $\mathbf{3 r}$:

\qquad

Original spectra for 3s:

Original spectra for $\mathbf{3 t}$:

26	250	240	230	220	210	200	190	180	170	160	150	140	$\begin{gathered} 130120 \\ \mathrm{fl}_{(\mathrm{ppm})} \end{gathered}$	110	100	90	80	70	60	50	40	30	20	10	0	-10

Original spectra for 3u:

Original spectra for $\mathbf{3 v}$:

[^6]Original spectra for 3w:

Original spectra for $\mathbf{3 x}$:

[^7]Original spectra for $\mathbf{3 y}$:

Original ${ }^{19} \mathrm{~F}$ NMR spectra for $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}$:

[^0]:

[^1]:

[^2]:

[^3]:

[^4]:

[^5]:

[^6]:

[^7]:

